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This paper aims to evaluate the performance of multiple non-linear regression techniques,

such as support-vector regression (SVR), k-nearest neighbor (KNN), Random Forest

Regressor, Gradient Boosting, and XGBOOST for COVID-19 reproduction rate

prediction and to study the impact of feature selection algorithms and hyperparameter

tuning on prediction. Sixteen features (for example, Total_cases_per_million and

Total_deaths_per_million) related to significant factors, such as testing, death, positivity

rate, active cases, stringency index, and population density are considered for the

COVID-19 reproduction rate prediction. These 16 features are ranked using Random

Forest, Gradient Boosting, and XGBOOST feature selection algorithms. Seven features

are selected from the 16 features according to the ranks assigned by most of the

above mentioned feature-selection algorithms. Predictions by historical statistical models

are based solely on the predicted feature and the assumption that future instances

resemble past occurrences. However, techniques, such as Random Forest, XGBOOST,

Gradient Boosting, KNN, and SVR considered the influence of other significant features

for predicting the result. The performance of reproduction rate prediction is measured

by mean absolute error (MAE), mean squared error (MSE), root mean squared error

(RMSE), R-Squared, relative absolute error (RAE), and root relative squared error (RRSE)

metrics. The performances of algorithms with and without feature selection are similar,

but a remarkable difference is seen with hyperparameter tuning. The results suggest that

the reproduction rate is highly dependent on many features, and the prediction should

not be based solely upon past values. In the case without hyperparameter tuning, the

minimum value of RAE is 0.117315935 with feature selection and 0.0968989 without

feature selection, respectively. The KNN attains a low MAE value of 0.0008 and performs

well without feature selection and with hyperparameter tuning. The results show that

predictions performed using all features and hyperparameter tuning is more accurate

than predictions performed using selected features.
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INTRODUCTION

Theworld has witnessed several deadly diseases at different times.
In the year 2020, the world suffered a serious pandemic that
took away many lives (1). The coronavirus disease (COVID-
19) is a disease that started as an epidemic and evolved into
a pandemic. The disease was first discovered in late December
2019 in Wuhan, China (2). The virus responsible for causing
the disease is the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), which is highly contagious and causes severe
respiratory issues. The virus rapidly spread across the world and
affected 223 countries, infected more than 9.3 × 107 people, and
took over 2 × 106 human lives, according to the WHO report
in January 2021 (3). As a result, scientists and epidemiologists
worldwide are investigating the virus to reduce its impact on
human lives.

The coronavirus is named after the word, “coronation” since
the spikes on the surface of the virus resemble a crown. This virus
was believed to be an animal virus in 2002. The SARS-CoV is
mostly found in bats and transmitted to other animals, such as
cats. The first human-infected coronavirus case was reported in
2003 in Guangdong province in the south of China (4).

Knowledge of the immune system of our body is required
to understand the mechanisms of the COVID-19 or any
other viral infections. Viruses are microorganisms that make
our body cells their hosts for replication and multiplication.
The immune system of our body is activated by the entry
of the virus and identifies the virus as an alien body for
destruction. After attacking and killing the viruses, the immune
system “remembers” the virus and launches the same protective
measures when the virus enters again. Viruses are capable of fast
evolutions. They evolve to new shapes or mechanisms to survive
in the changing environment.

Viral infections often affect people with weak immune
systems. The elderly, children, and people with medical
conditions are prone to the attack of novel viruses. The virus can
be deadly and threatening to the senior population, especially the
elderly with chronic medical conditions.

The SARS-CoV-2 is transmitted via respiratory droplets
expelled by sneezing, coughing, or talking. The virus can also be
contracted by touching a contaminated surface. One significant
property of the SARS-CoV-2 is its capacity to survive on various
surfaces for up to 9 days at room temperature, which facilitates
its rapid transmission (5). Acute Respiratory Disease Syndrome
is caused predominantly by this virus and often leads to multiple
organ dysfunctions, resulting in physiological deterioration and
even death of the infected persons (6).

This study is intended to predict the rate of reproduction
of the deadly SARS-CoV-2. The reproduction rate (Ro) is an
important parameter to predict the spread of a disease in a
pandemic situation. The Ro value indicates the transmissibility
of a virus through the average number of new infections caused
by an infectious person in a naïve population. The value of Ro <1
indicates that the infection would die out. On the other hand,
if the value is >1, the spread of the disease would increase.
For example, a reproduction rate of 18 indicates that a single
infected individual can potentially infect 18 more individuals.

The reproduction rate is needed to determine whether the disease
is under control or turning into an epidemic.

There are many standard methods to predict the reproduction
rate. The XGBoost is an optimal Gradient Boosting algorithm
with tree pruning, parallel processing, missing value handling,
and by the efficient use of hardware resources and regularization
to avoid overfitting and bias. The XGBoost has faster
computational times (7) in all types of environments. The
XGBoost is an improvement on the Gradient Boosting
algorithm. Training models with an XGBoost iterative boosting
approach remove errors at preceding boosting trees in the
following iterations (8). Support vector regression (SVR) was
based on the Vapnik–Chervonenkis (VC) theory. It is used when
the output is a continuous numerical variable. Support vectors
are data points closest to the hyperplanes. The hyperplanes
represent the decision boundaries. The Radial Basis Function is
a commonly used kernel function. The use of a kernel function
is to transform the data into a higher-dimensional space. The
SVR and convolutional neural network (CNN) have been used
to detect groundwater location, and comparative results showed
that the SVR outperforms the CNN (9). In k-nearest neighbor
(KNN), the outcome of the variable is determined by taking an
average of the observations found in the same neighborhood.
The KNN algorithm assigns a weight, “W” to the KNN and a
weight of 0 to the others.

The performance of the machine learning algorithms
depends on the hyperparameter values. The values for the
hyperparameters can be assigned in three ways:

1) Based on default values given in the software packages.
2) Manually configured by the user.
3) Assigned by algorithms, such as the simple grid search,

random search, Bayesian optimization, ANOVA approach,
and bio-inspired optimization algorithms.

The process of identifying the most relevant features is referred
to as “feature selection.” The three main advantages of feature
selection are:

• Simplifying the interpretation of the model.
• Reducing the variance of the model to avoid overfitting.
• Reducing the computational cost (and time) for

model training.

Motivation
Artificial intelligence (AI) has been successful in many fields
and facilitates our daily life in various ways (10–17). The
reproduction rate prediction is crucial in successfully establishing
public healthcare in the battle against COVID-19. The prediction
of the reproduction rate is performed by using not just the
past values but also by using the closely related factors.
This work also investigates the impact of feature selection
and hyperparameter tuning on the performance of non-linear
machine learning techniques.

Research Gap and Contribution
The reproduction rate is related to many factors, such as the
average number of contacts a person has, number of days a
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person is infected, from the day of exposure to the disease,
the number of active cases, values of stringency index, testing
capacity and positivity, and so on. As a result, the reproduction
rate, time curve, and future values cannot be satisfactorily
estimated by the probability distribution functions alone (18).

Time series prediction models, such as the autoregressive
integrated moving average (ARIMA), Gray Model, and Markov
Chain models do not consider multiple factors in reproduction
rate prediction. Autoregressive models assume that future values
resemble the past. Mechanistic models based on the susceptible,
exposed, infected, and recovered (SEIR) states framework or
modified version of the framework use the time series data to
hold the currently confirmed cases, removed cases (including
recovered and deceased cases), and time-varying transmission
rates. However, some factors are still not included, and there is
no weighting for the factors (19).

So there arises a need to study the various factors
acting on the reproduction rate and to prioritize it. Hence
identifying the importance of various features (for example,
Total_cases_per_million, Total_deaths_per_million) under
factors like active cases, stringency index, testing capacity, and
positivity are done using feature selection algorithms. Multiple
regression uses several explanatory variables to predict the single
response variable. The performance of the non-linear machine
learning techniques, such as Random Forest, XGBOOST,
Gradient Boosting, KNN, and SVR are used in reproduction
rate prediction. The performance of these approaches for
predicting the COVID-19 reproduction rate was measured
using the evaluation metrics like mean absolute error (MAE),
mean squared error (MSE), root mean squared error (RMSE),
R-Squared, relative absolute error (RAE), and root relative
squared error (RRSE). The influence of feature selection and
hyperparameter tuning operation on their performance is
also studied.

Structure of the Paper
Section Introduction of the paper introduces the reproduction
rate, feature selection, machine learning techniques and
hyperparameters, and the motivation of this study. Section
Related Works discusses the related works, as well as the
identified research gap and the contributions. Section Materials
and Methods describes the methods used in this work, including
feature selection, hyperparameter tuning, and prediction and
performance measurement. Section Results and Discussion
discusses the experimental results. Finally, section Conclusion
and Future Work provides the conclusion and future work.

RELATED WORKS

Zivkovic et al. (20) proposed a hybridized machine learning,
adaptive neuro-fuzzy inference system with enhanced beetle
antennae search (BAS) swarm intelligence metaheuristics. The
results showed that the system is a good prediction model in time
series forecasting. The defects in the BAS algorithmwere rectified
using the Cauchy exploration strategy BAS (CESBAS) using
the Cauchy mutation and three additional control parameters.

The selection of optimum values for the adaptive network-
based fuzzy inference system (ANFIS) parameters became an
NP-hard optimization problem. The ANFIS parameters values
were determined using the CESBAS metaheuristics algorithm.
The performance metrics, such as RMSE, MAE, MAPE, RMRE,
and R-Squared, were used to evaluate the outcomes on
influenza datasets.

The research goal in Mojjada et al. (21) was to forecast the
number of new COVID-19 cases, mortalities, and recoveries
using various machine learning regression models, such as
the lowest absolute and selective shrinking operator (LASSO),
vector supports, such as short message service (SMS), and
exponential smoking (ES) models. While the linear regression
and LASSO models were more effective in estimating and
verifying the death rate, the ES model provided the overall
best results.

Farooq and Bazaz (22) used an artificial neural network
(ANN) to forecast the COVID-19 based on an online incremental
learning technique using an adaptive and non-intrusive analytical
model. The COVID-19 data was updated every day, so online
incremental learning was the best option for forecasting since
there is no need to retrain or rebuild the model from scratch.

Milind et al. (23) discovered many factors behind the
spread of the coronavirus, such as the relationship between
the weather and the spread of COVID-19, growth rate, and
mitigation. Support vector regression (SVR) was used to predict
the transmission rate, epidemic end, and the spread of the
coronavirus across regions, and to analyze the growth rates and
the types of mitigation across countries. The Pearson coefficient
was used in the correlation between the coronavirus and weather
correlation coefficient. Weather factors, such as the wind speed,
temperature, and humidity of Milan city in Italy and New
York City in the United States were considered. The SVR
is a non-parametric technique since it only depends on the
kernel function, implying that there is no need to change the
explanatory variables in constructing a non-linear model. The
study also compared the performances of SVR, linear regression,
and polynomial regression.

Chicco and Jurman (24) predicted the survival of patients
who had heart failure based on the ejection fraction and serum
creatinine level. A database of 299 patients collected in 2015
was used. Feature selection was performed, and the factors were
ranked. The ejection fraction and serum creatinine levels were
found to be highly relevant among the 13 selected features. As
a result, the prediction model was built and executed based on
these two factors.

Mortazavi et al. (25) investigated the capability of machine
learning techniques when applied to a high dimensional and non-
linear relationship. They predicted the readmission of patients
hospitalized for heart failure. The prediction was performed with
various machine learning techniques, such as Random Forest,
Gradient Boosting, and Random Forest combined hierarchically
with support vector machines (SVMs) or logistic regression
(LR) and Poisson regression. The obtained results were tested
against traditional LR methods. The model was evaluated using
the receiver operating characteristics (ROC) curve (C statistic),
the positive predictive value (PPV), sensitivity, specificity, and
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f-score. The ROC was found to be a good measure for
model discrimination.

Balli (26) analyzed the COVID-19 data from Germany, the
United States, and other parts of the world. Methods including
the SVM, linear regression, multilayer perceptron, and Random
Forest methods were used to model the COVID-19 data.
The performances of the methods were compared using the
RMSE, absolute percentage error (APE), and mean absolute
percentage error (MAPE). Among the tested methods, the SVM
outperformed all other methods in the COVID-19 data modeling
and was successfully used to diagnose the behavior of cumulative
COVID-19 data over time.

A system to handle the data with non-linear relationships
and non-normal distribution was proposed by Kuo and Fu
(27). A total of 52 input variables relating to confirmed cases,
environment variables, country-dependent variables, community
mobility variables, and time series variables were used in the
study (27). The impact of population mobility had caused an
increase in the number of infections over the weekend. This
work served as a basis for researchers analyzing geographical
characteristics, seasonality, as well as models, such as long short-
term memory (LSTM), ARIMA, convolutional neural network
(CNN), and so on.

The COVID Patient Detection System (CPDS) used by Shaban
et al. (28) was designed using a Hybrid Feature Selection Method
(HFSM) consisting of two stages, a fast selection stage (FS2) and
an accurate selection stage (AS2). The FS2 used several filter
methods, and the filtered features served as the initial population
of the genetic algorithm, which was used as a wrapper method.
An enhanced K-nearest neighbor (EKNN) classifier was used

to solve the trapping problem. The most significant features
from the chest CT images of patients were selected. The HFSM
allowed the EKNN classifier to obtain rapid predictions with
high accuracy. The proposed feature selection algorithm was
compared with four recent feature selection techniques, and the
proposed CPDS had achieved an accuracy of 96%.

Sujatha et al. (29) utilized the linear regression, multi-layer
perceptron (MLP), and vector autoregression (VAR) models to
foresee the spread of the COVID-19 using the COVID-19 Kaggle
data. The correlations between the features of the dataset are
crucial in finding the dependencies. The VAR model is a more
suitable analysis model for multivariate time series. It is an m-
equation, m- variable model where an individual variable is based
on its current and past values. The MLP methods provide better
predictions than the linear regression and VAR models.

Yang et al. (30) predicted the number of new confirmed cases
using SEIR and AI methods. The authors used the probability of
transmission, incubation rate, and the probability of recovery or
death as factors in the predictions. New case predictions made by
the AI method are more accurate than the SEIR predictions.

The Gradient Boosting Feature Selection (GBFS) algorithm
learns the ensemble of regression trees to identify the non-
linear relationship between features with ease. The classification
error rates for the GBFS and Random Forest methods are
the lowest, whereas the L1-regularized logistic regression (L1-
LR) and Hilbert–Schmidt independence criterion (HSIC) Lasso
methods have higher error rates (31).

The XGBOOST algorithm was applied to calculate the
business risk by Wang (32). Several feature selection methods
were used to find the redundant features. Two hyper-parameter

FIGURE 1 | Proposed system architecture.
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optimization approaches were applied: random search (RS)
and Bayesian tree-structured Parzen Estimator (TPE). The
XGBOOST with hyper-parameter optimization performed well
for business risk modeling.

Chintalapudi et al. (33) used the predicted reproduction rate
to forecast the daily and the cumulative COVID-19 cases for the
next 30 days in Marche, Italy. The probability-based prediction
was performed with the maximum likelihood function. In the
implementation, a simple linear regressionmethodwas used to fit
the exponential growth of infected incidences over time, and the

TABLE 1 | Feature Importance Scores obtained using Random Forest

Regression, XGBoost, and Gradient Boosting.

Features Feature Random

forest

regression

feature

importance

XGBOOST

feature

importance

Gradient

boosting

feature

importance

Feature: 0 Total_cases 0.10044 0.92185 0.03024

Feature: 1 New_cases 0.02539 0.00055 0.00058

Feature: 2 Total_deaths 0.08816 0.00011 0.10000

Feature: 3 New_deaths 0.01286 0.00209 0.00000

Feature: 4 Total_cases_per_million 0.10196 0.00013 0.07758

Feature: 5 New_cases_per_million 0.01562 0.00023 0.00176

Feature: 6 Total_deaths_per_million 0.09868 0.00011 0.11893

Feature: 7 New_deaths_per_million 0.00709 0.00021 0.00003

Feature: 8 New_tests 0.00253 0.04245 0.00006

Feature: 9 Total_tests 0.04384 0.00012 0.08950

Feature: 10 Total_tests_per_thousand 0.06210 0.00000 0.05340

Feature: 11 New_tests_per_thousand 0.01958 0.00000 0.00022

Feature: 12 Positive_rate 0.00394 0.00030 0.00090

Feature: 13 Tests_per_case 0.00307 0.00019 0.00376

Feature: 14 Stringency_index 0.01744 0.00020 0.05846

Feature: 15 Population_density 0.00000 0.00000 0.00000

linear regression was applied over the incidence data. This study
showed that the outbreak size and daily incidence are primarily
dependent on the daily reproductive number.

Locatelli et al. (34) estimated the COVID-19 reproduction
rate of Western Europe with the average from 15 countries.
The authors used the generation interval, defined as the time
needed for an infected person to infect another person and for
reproduction rate estimation. The works by Zhang et al. (35) and
by Srinivasu et al. (36), Panigrahi et al. (37, 38), Tamang (39),
Chowdhary et al. (40), and Gaur et al. (41) demonstrated the
efficacy of machine learning algorithms in various fields.

MATERIALS AND METHODS

The spread of the COVID-19 depends on many factors. New
factors influencing the spread of the disease are still being
discovered, and the identification of predominant factors is
crucial. The prediction of COVID-19 spread is highly related
to the feature-reproduction rate. Data science can be applied
to track the crucial features used for the prediction from any
number of features. Traditional statistical approaches, such as
the chi-square and Pearson correlation coefficient provide the
importance of the features in relation to the other features.
Feature selection reduces the overfitting and underfitting
problems, computational cost, and time. The reproduction rate
prediction is important since it is associated with the status of the
COVID-19. Feature-ranking is performed using Random Forest
regression, Gradient Boosting, and XGBoost. Seven factors are
considered in this study: the total number of cases, number of
new cases, total number of deaths, total number of cases per
million, total number of deaths per million, total number of tests
conducted per thousand, and the positive rate. The proposed
system architecture is represented in Figure 1.

FIGURE 2 | Comparison graph of feature score given by feature selection algorithms.
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Reproduction Rate
Newly occurring diseases can be detrimental for humans and
other animals, whether the diseases are caused by a new pathogen
or a modified form of an existing pathogen (19). In this work, the
simple compartmental disease models and matrix methods are
used to calculate the reproduction rate, R0.

Feature Selection
Embedded filter-based feature selection methods, such as
Random Forest, Gradient Boosting, and XGBoost, which take
into account the regression process, are used in this work.
The Random Forest approach is an embedded feature selection
method in which hundreds of decision trees are constructed by
extracting random observation values of random features. The
training determines features that reduce impurity. The principle
of Gradient Boosting, and XGBoost methods are used to boost
the weak learners. Gradient Boosting strives to minimize the
error between the predicted and the actual values. The XGBoost
is an extreme Gradient Boosting algorithm. The XGBoost is the
regularized form of Gradient Boosting (42). The XGBoost is fast
with L1, L2 regularization and parallel computing. It delivers
high performance since it works on the second partial derivatives
of the loss function. The main highlight of the Random Forest
algorithm lies in its ability to prevent overfitting and increase
accuracy. The advantage of gradient boosting is its ability to tune
many hyperparameters and loss functions.

Parameter Settings
The experiments use multiple non-linear regression tree
algorithms and the result is implemented in Python. For
experiments without hyperparameter tuning, the default values
in the SciKit library are used. For Random Forest regression,
the parameter values are initialized as follows: n_estimators =
100, n_jobs = −1, oob_score = True, bootstrap = True, and
random_state = 42. For XGBoost, the XGB Regressor method
is used to fit the test data, and n_estimatorsis set to 100. The
Gradient Boosting feature importance is calculated by setting the
value of n_estimators to 500, max_depth to 4, min_samples_split
to 5, learning_rate to 0.01, and loss as ls. For the KNN algorithm,
the lower error rate is achieved when the K value equals 7. For
the SVR, the radial basis function kernel is used with degree
= 3 and gamma = scale. For experiments with hyperparameter
tuning, grid search and randomized approaches are used. A grid
search exhaustively tests all possible combinations of the specified

hyperparameter values for an estimator. In a randomized search,
the model selects the combinations randomly. Both approaches
are very effective ways of tuning the parameters to increase
the generalizability of the model. The GridSearchCV method of
sklearn tunes the hyperparameters of the SVR, KNN, XGBoost,
and Gradient Boosting approaches. The randomized search CV
function is used for the hyperparameter tuning of Random
Forest Regressor.

Dataset
The dataset was taken from the website “https://github.
com/owid/covid-19-data/tree/master/public/data” (43). A
total of 16 fields were used for the study of reproduction
rate. They are Total_cases, New_cases, Total_deaths,
New_deaths, Total_cases_per_million, New_cases_per_million,
Total_deaths_per_million, New_deaths_per_million,
New_tests, Total_tests, Total_tests_per_thousand,
New_tests_per_thousand, Positive_rate, Tests_per_case,
Stringency_index, Population_density. Records from April 1,
2020, to November 30, 2020, are used as training data (244
records/day). Records from December 1, 2020, to March 10,
2021, are used as testing data (100 records/day).

Performance Metrics
Numerous machine learning (ML)-based predictive modeling
techniques are used in the COVID-19 predictions. Therefore,
there is a need to measure the performance of each model and its
prediction accuracy. The metrics used to assess the effectiveness

FIGURE 3 | Performance comparison graph of regression techniques without

feature selection and without hyperparameter tuning.

TABLE 2 | Prediction without Feature Selection and without hyperparameter tuning.

Sl. No Performance metrics Prediction without feature selection and without hyperparameter tuning

Random forest regression XGBOOST Gradient boosting KNN SVR

1 MAE 0.0230122 0.0189412 0.02226608 0.0228918 0.0712651

2 MSE 0.0016347 0.0016482 0.00135535 0.0018072 0.0064267

3 RMSE 0.0404316 0.0405992 0.03681510 0.0425122 0.0801667

4 R-Squared 0.9792338 0.9790759 0.97830657 0.9710729 0.8971356

5 RAE 0.1206129 0.3754830 0.11731593 0.1306129 0.4754830

6 RRSE 0.1700794 0.1605438 0.14728681 0.1700794 0.3207246
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TABLE 3 | Prediction with Feature Selection and without hyperparameter tuning.

Performance metrics Prediction with feature selection and without hyperparameter tuning

Random forest regression XGBOOST Gradient boosting KNN SVR

MAE 0.02168571 0.0183910 0.0225887 0.024706 0.0902574

MSE 0.00139726 0.0016258 0.0016091 0.001867 0.0090748

RMSE 0.03738006 0.0403218 0.0401140 0.043210 0.0952621

R-Squared 0.97415592 0.9796126 0.9798852 0.970115 0.8547498

RAE 0.11583870 0.0968989 0.1301729 0.120172 0.3755501

RRSE 0.15999851 0.1613162 0.1728719 0.162871 0.1728719

FIGURE 4 | Performance comparison graph of regression techniques with

feature selection algorithm and without hyperparameter tuning.

of the model in predicting the outcome are very important
since they influence the conclusion. The performance metrics to
identify the error rate between the predicted and observed values
are as follows:

• Root mean square error (RMSE)
• Mean absolute error (MAE)
• Determination coefficient (R2)
• Relative absolute error (RAE)
• Root relative squared error (RRSE)

Mean Absolute Error

The mean absolute error measures the sum of the absolute
differences between the predicted output and the actual output.
One cannot identify whether it is under predicting or over
predicting since all variations have equal weight.

Equation 1 provides the formula to calculate the MAE.

MAE =
1

N

N
∑

i=1

|SWLFOR,i − SWLOBS,i|, (1)

where SWLFOR,i represents the forecast output, SWLOBS,i
represents the actual output, N represents the total number
of data points, and I represents a single data entry from the
data points.

Root Mean Squared Error

The RMSE measures the square root of the average squared
deviation between the forecast and the actual output, as given in
Equation 2. It is used when the error is highly non-linear. The
RMSE indicates the amount of errors in the predicted data on
average and is a good measure of the prediction accuracy.

RMSE =

√

√

√

√

N
∑

i=1

(SWLFOR,i − SWLOBS,i)
2

N
(2)

Determination Coefficient

The R2 metric shows the percentage variation in y explained by x-
variables, where x and y signify a set of data. It finds the likelihood
of the occurrence of a future event’ in the predicted outcome, as
given in Equation 3.

R2 =





n(
∑

xy)− (
∑

x)(
∑

y)
√

[n
∑

x2 − (
∑

x)2][n
∑

y2 − (
∑

y)2]





2

(3)

Relative Absolute Error

Relative Absolute Error (RAE) metric gives the ratio of residual
or mean error to the forecast error of a naive model. Equation 4,
returns a value less than 1, when the proposed model performs
better than the naïve model. In Equation 4, “P” stands for the
predicted value and “A” for the actual value.

RAE =

[

n
∑

i=1
(Pi − Ai)

2

]
1
2

[

n
∑

i=1
A2
i

]
1
2

(4)

Root Relative Squared Error

The Root Relative Squared Error (RRSE) is given as the square
root of the relative squared error (RSE). The RSE metric
compares the actual forecast error to the forecast error of a naive
model. It can be used in models whose errors are measured in
different units. As given in Equation 5 and 6, the total squared
error is divided by the total squared error of the simple predictor.
The simple predictor is just the average of the actual values.
The predicted output is “P” and “T” is the target value. Further,
the value “i” represents the model and j represents the record.
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RRSE is given as the square root of the relative squared error,
which provides the error in the dimensions of the quantity being
predicted, as given in Equation (7). RSEi represents the relative
squared error for the model “i”.

RSEi =

n
∑

j=1
(Pij − Tj)

2

n
∑

j=1
(Tj − T)

2
(5)

T =
1

n

n
∑

j=1

Tj (6)

RRSE =
√

RSEi (7)

RESULTS AND DISCUSSION

Results
All experiments were performed using Python’s Sci-Kit Library
on a Jupyter notebook. The feature importance scores obtained
by Random Forest regression, XGBoost, and Gradient Boosting
are given in Table 1 and plotted in Figure 2.

Out of the 16 features, the top seven features
affecting the reproduction rate are identified from
the obtained feature importance scores. The seven
features are Total_cases, New_cases, Total_deaths,
Total_cases_per_million, Total_deaths_per_million, Total_tests,
Total_tests_per_thousand, and Positive_rate.

Experiments were conducted for the reproduction rate
prediction using Random Forest, XGBoost, Gradient Boosting,
support-vector regression (SVR), and k-nearest neighbor
(KNN) regression methods. In addition, the experiments were

intended to investigate the impacts of feature selection and
hyperparameter tuning. Four experiments were conducted
with and without feature selection or hyperparameter tuning.
Experiment 1 was conducted using the five regression techniques
without feature selection and without parameter tuning.
Experiment 2 was conducted with feature selection and without
parameter tuning. Experiment 3 was conducted without
feature selection and with hyperparameter tuning, and finally,
Experiment 4 was conducted with feature selection and with
parameter tuning. The reproduction rate prediction was
measured using the mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), R-Squared,
relative absolute error (RAE), and root relative squared error
(RRSE). The best, the second-best and the worst results for the
particular metrics and experiments are discussed in detail below.
The best results obtained for the metrics are given in bold in the
Tables 2, 3, 5, 6.

The first experiment used all features in the reproduction rate
prediction, and each of the regression techniques used the default
values for the hyperparameter. The resulting performance metric
values are given in Table 2. The Gradient Boosting method
performs well with the lowest MSE, RMSE, RAE, and RRSE
values and the second-best score for MAE. Random Forest is
the next best algorithm with the best R-Squared value and the
second-best scores for MSE, RMSE, and RAE. The XGBoost
has an average performance. The SVR has the worst scores in
all of the performance metrics. The lowest MAE of 0.0189412
was obtained by XGBoost followed by Gradient Boosting with
the second-best MAE of 0.02226608. The SVR has the highest
MAE of 0.0712651. The minimum MSE, RMSE, RAE, and RRSE
values of 0.00135535, 0.036815107, 0.1173159354, and 0.1472868,
respectively, are achieved by Gradient Boosting. Random Forest

TABLE 4 | Best tuned values of the hyperparameters for the different regression techniques.

ML algorithms Hyper parameter values

Random Forest Regression {“n_estimators”: 800, “min_samples_split”: 2, “min_samples_leaf”: 1, “max_features”: “auto,” “max_depth”: 100, “bootstrap”:

True}

KNeighbors Regressor (n_neighbors = 3, weights = “distance”)

Support Vector Regression {“C”: 1.5, “epsilon”: 0.1, “gamma”: 1e-07, “kernel”: “linear”}

XGBOOST {“colsample_bytree”: 0.7, “learning_rate”: 0.1, “max_depth”: 5, “min_child_weight”: 3, “n_estimators”: 500, “objective”:

“reg:squarederror,” “subsample”: 0.5}

Gradient Boosting Regression {“learning_rate”: 0.02, “max_depth”: 10, “n_estimators”: 1,500, “subsample”: 0.5}

TABLE 5 | Prediction without Feature Selection and with hyperparameter tuning.

Performance metrics Prediction without feature selection and with hyperparameter tuning

Random forest regression XGBOOST Gradient boosting KNN SVR

MAE 0.021551531 0.020971233 0.021192539 0.008626385 0.064263084

MSE 0.001430578 0.001684012 0.001578488 0.000225718 0.005462202

RMSE 0.037822976 0.041036714 0.039730185 0.015023919 0.073906711

R-Squared 0.977102535 0.973046128 0.974735124 0.996387212 0.912573368

RAE 0.113551075 0.110493591 0.111659615 0.045450843 0.338590443

RRSE 0.151319084 0.164176344 0.158949287 0.060106472 0.295679949
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achieves the maximum R-squared value of 0.97923. The obtained
metric values are plotted in Figure 3.

The seven selected features were used in the second
experiment, and the prediction process was performed without
hyperparameter tuning. There is a reduction in the MAE,
MSE, and RMSE values of about 0.01 using Random Forest
regression. There is a marginal reduction in the MAE, MSE,
and RMSE values using XGBoost and Gradient Boosting for
feature selection. The lowest MAE value of 0.018391, RAE
value of 0.096898, and the best R-squared value of 0.9796126
is achieved by XGBoost. Random Forest gives the lowest MSE
of 0.00139, RMSE of 0.037380, and RRSE of 0.159998. Out of
all the algorithms, the SVR produces the highest error rate.
The results are given in Table 3 and plotted in Figure 4. The
Random Forest regression and XGBoost techniques performed
better than the other techniques. The performance of SVR is
the worst among the algorithms compared for reproduction
rate prediction. In the experiment with feature selection and
without hyperparameter tuning, the Random Forest approach
has achieved the top performance with three best scores and two
second-best scores. The XGBoost has the best scores for theMAE,
R-squared, and RAE, and the second-best score for RRSE.

Experiment 3 was conducted without feature selection and
with hyperparameter tuning. The tuned hyperparameter values
are listed in Table 4. The results are good after hyperparameter
tuning is performed with the grid search or random search.
The results are analyzed based on the best, the second-best, and
the last scores. The performance of KNN tops all of the other

FIGURE 5 | Performance comparison graph of regression techniques without

feature selection and with hyperparameter tuning.

algorithms when the experiment is performed without feature
selection and with hyperparameter tuning. Random Forest is the
next best algorithm with the second-best scores for the MSE,
RMSE, R-Squared and RRSE. The values are given in Table 5 and
plotted in Figure 5.

Experiment 4 was conducted with feature selection and
with parameter tuning. In this experiment, the Random Forest
approach has the best scores for the MSE, RMSE, R-Squared, and
RRSE. The XGBOOST has the best scores for the MAE and RAE.
Nevertheless, Gradient Boosting has the second-best scores in the
MSE, RMSE, R-Squared, and RRSE. The KNN has two second-
best scores. Again, the SVR has the worst scores for all of the
performance metrics. The values are given in Table 6 and plotted
in Figure 6.

The computation times for the different types of prediction
are computed and listed in Table 7. The Random Forest
algorithm uses a random search technique for hyperparameter
tuning, which requires more time. All of the other algorithms
use the grid search technique. The KNN and SVR are able
to perform hyperparameter tuning rapidly. XGBOOST and
Gradient Boosting regression have moderate running times of
around 100 s.

The predicted and actual reproduction rates for Random
Forest, KNN, SVR, XGBoost, and Gradient Boosting are,
respectively, plotted in Figures 7–11. The graphs show that the
predicted values are very close to the actual values.

FIGURE 6 | Performance comparison graph of regression techniques with

feature selection algorithm and with hyperparameter tuning.

TABLE 6 | Prediction with Feature Selection and with hyperparameter tuning.

Performance metrics Prediction with feature selection and with hyperparameter tuning

Random forest regression XGBOOST Gradient boosting KNN SVR

MAE 0.020152332 0.019385962 0.021180387 0.019439098 0.076691979

MSE 0.001476030 0.001715576 0.001683149 0.001706222 0.007260537

RMSE 0.038419141 0.041419510 0.041026197 0.04130644 0.085208784

R-Squared 0.976375028 0.972540924 0.973059942 0.97269064 0.883789669

RAE 0.106178955 0.102141089 0.111595587 0.102421055 0.404076017

RRSE 0.153704171 0.165707803 0.164134267 0.165255439 0.340896364
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TABLE 7 | Running time of algorithms with hyperparameter tuning and prediction.

ML algorithms Running time

including

hyperparameter

tuning with all

features (in

seconds)

Running time

including

hyperparameter

tuning with

selected feature

(in seconds)

Random Forest

Regression

492.46183967590330 383.7128930091858

KNeighbors

Regressor

0.2534364700317383 0.131617689132690

Support Vector

Regression

0.8226490020751953 0.512803316116333

XGBOOST 165.45190143585205 145.1453814506530

Gradient Boosting

Regression

120.36712908744812 93.36355471611023

FIGURE 7 | Graph describing the predicted value vs. actual value of

Random Forest.

FIGURE 8 | Graph describing the predicted value vs. actual value of KNN.

DISCUSSION

The major contributions of this paper are the study of
features affecting the COVID-19 reproduction rate, as well
as the investigation into the effects of feature selection
and hyperparameter tuning on the prediction accuracy.

FIGURE 9 | Graph describing the predicted value vs. actual value of SVR.

FIGURE 10 | Graph describing the predicted value vs. actual value

of XGBoost.

FIGURE 11 | Graph describing the predicted value vs. actual value of

Gradient Boosting.

Furthermore, prediction accuracy comparisons of the state-of-
the-art regression techniques for COVID-19 reproduction rate
have also been performed.

The selected features suggest that the total numbers of death
and testing also influence the reproduction rate. Instead of
depending only on the past value of the predictor variable as
cited by Milind et al. (23), our work finds the crucial features
affecting the predictor variable. Different regression techniques
are used in the prediction and they are used to determine the
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final reproduction rate. The effectiveness of feature selection in
prediction has also been proven. Random forest has achieved the
best performance in the accuracy comparison of the state-of-the-
art techniques, as has already been proven by Chicco and Jurman
(24). In the results obtained by the four experiments, the overall
best values of MAE, MSE, RMSE, RAE, RRSE, and R-Squared
were all obtained by the KNN approach. Therefore, KNN has
obtained the best performance on average, followed by Random
Forest and XGBOOST.

CONCLUSION AND FUTURE WORK

Predicting the reproduction rate is crucial, especially when a
country has to take preventative measures to protect its citizens
from a pandemic. Autoregressive models rely on and work with
previous values to forecast future values. Non-linear machine
learning regression algorithms have consistently produced the
best prediction results in various applications, including the stock
exchange, banking, and weather forecasting. Among the many
factors involved in the spread of the COVID-19, the prominent
factors are identified using Random Forest, Gradient Boosting,
and XGBOOST in this work. Random Forest returned the highest
importance score for Total_cases_per_million as 0.10196. For
XGBOOST, the maximum score was 0.92185 for Total_case, and
for Gradient Boosting, the top value of Total_deaths_per_million
is 0.1183. Out of 16 features selected for investigation,
seven features, namely, Total_cases, New_cases, Total_deaths,
Total_cases_per_million, Total_deaths_per_million, Total_tests,
Total_tests_per_thousand, and Positive_rate, are found to be
prominent in reproduction rate prediction. Furthermore, this
work investigated the reproduction rate prediction with non-
linear machine learning regression techniques. The experiments
were performed using Random Forest, Gradient Boosting,
XGBOOST, KNN, and SVR, with and without feature selection
and hyperparameter tuning. The results showed a decrease in
the prediction error rate with hyperparameter tuning and with

all of the features. Overall, the KNN algorithm had obtained
the best performance. The study shows that Random Forest
obtained the best performance with hyperparameter tuning and
selected features. Individual regression techniques are applied
in this study. However, the ensemble of regression techniques
can be applied to obtain better performances. The regression
algorithms obtained improved results with hyperparameter
tuning and Gridsearch or Randomsearch methods. There
is no remarkable difference in the prediction accuracy of
algorithms with and without feature selection algorithms, so
there is a need to find out the optimal features related to the
reproduction rate.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

C-YC and KSr: conceptualization. C-YC: resources, project
administration, and funding acquisition. JK and KSu:
methodology and software. KSr, SM, and C-YC: validation.
KSr, SM, and SC: writing—review and editing. JK: writing—
original draft preparation. All authors contributed to the article
and approved the submitted version.

FUNDING

This research was partially funded by the Intelligent Recognition
Industry Service Research Center from The Featured Areas
Research Center Program within the framework of the Higher
Education Sprout Project by the Ministry of Education (MOE)
in Taiwan. Grant number: N/A and the APC were funded by the
aforementioned Project.

REFERENCES

1. Available online at: https://www.history.com/topics/middle-ages/pandemics-

timeline (accessed May 20, 2021).

2. WHO (2020). Available online at: https://www.who.int/dg/speeches/detail/

whodirector-general-s-opening-remarks-at-the-mission-briefing-oncovid-

19-$-$12-march-2020 (accessed May 20, 2021).

3. Available online at: https://www.who.int/emergencies/diseases/novel-

coronavirus-2019 (accessed May 21, 2021).

4. Wadhwa P, Aishwarya, Tripathi A, Singh P,Diwakar M, Kumar

N. Predicting the time period of extension of lockdown due to

increase in rate of COVID - 19 cases in India using machine

learning. Mater Today. (2020) 37:2617–22. doi: 10.1016/j.matpr.2020.

08.509

5. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble

A, Williamson BN, et al. Aerosol and surface stability of SARSCoV-

2 as compared with SARS-CoV-1. N Engl J Med. (2020) 382:1564–

7. doi: 10.1056/NEJMc2004973

6. Gibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome

(ARDS): clinical features and differences from typical pre-COVID-19 ARDS.

Med. J. Australia. (2020) 2:54–6. doi: 10.5694/mja2.50674

7. Bhattacharya SRK, Maddikunta PKR, Kaluri R, Singh S, Gadekallu

TR, Alazab M, et al. A novel PCA-firefly based xgboost classification

model for intrusion detection in networks using GPU. Electronics. (2020)

9:219. doi: 10.3390/electronics9020219

8. Luckner M, Topolski B, Mazurek M. Application of XGBoost algorithm

in fingerprinting localisation task. In: 16th IFIP International Conference

on Computer Information Systems and Industrial Management. Bialystok:

Springer (2017). p. 661–71. doi: 10.1007/978-3-319-59105-6_57

9. Vanden Driessche P. Reproduction numbers of infectious disease models.

Infect Dis Model. (2017) 2:288–303. doi: 10.1016/j.idm.2017.06.002

10. Iwendi C, Bashir AK, Peshkar A, Sujatha R, Chatterjee JM, Pasupuleti S, et al.

COVID-19 patient health prediction using boosted random forest algorithm.

Front Public Health. (2020) 8:357. doi: 10.3389/fpubh.2020.00357

11. Bhattacharya S, Maddikunta PKR, Pham QV, Gadekallu TR, Krishnan SSR,

Chowdhary CL, et al. Deep learning and medical image processing for

coronavirus (COVID-19) pandemic: a survey. Sustain Cities Soc. (2021)

65:102589. doi: 10.1016/j.scs.2020.102589

12. Iwendi C, Maddikunta PKR, Gadekallu TR, Lakshmanna K, Bashir AK, Piran

MJ. A metaheuristic optimization approach for energy efficiency in the IoT

networks. Softw Pract Exp. (2020). doi: 10.1002/spe.2797. [Epub ahead of

print].

Frontiers in Public Health | www.frontiersin.org 11 September 2021 | Volume 9 | Article 729795

https://www.history.com/topics/middle-ages/pandemics-timeline
https://www.history.com/topics/middle-ages/pandemics-timeline
https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-mission-briefing-oncovid-19-$-$12-march-2020
https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-mission-briefing-oncovid-19-$-$12-march-2020
https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-mission-briefing-oncovid-19-$-$12-march-2020
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://doi.org/10.1016/j.matpr.2020.08.509
https://doi.org/10.1056/NEJMc2004973
https://doi.org/10.5694/mja2.50674
https://doi.org/10.3390/electronics9020219
https://doi.org/10.1007/978-3-319-59105-6_57
https://doi.org/10.1016/j.idm.2017.06.002
https://doi.org/10.3389/fpubh.2020.00357
https://doi.org/10.1016/j.scs.2020.102589
https://doi.org/10.1002/spe.2797
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Kaliappan et al. COVID-19 Reproduction Rate Prediction

13. Dhanamjayulu C, Nizhal UN, Maddikunta PK, Gadekallu TR, Iwendi C, Wei

C, et al. Identification of malnutrition and prediction of BMI from facial

images using real-time image processing and machine learning. IET Image

Processing. (2021). doi: 10.1049/ipr2.12222. [Epub ahead of print].

14. Srinivasan K, Garg L, Chen B, Alaboudi AA, Jhanjhi NZ, Chang

CT, et al. Expert system for stable power generation prediction

in microbial fuel cell. Intellig Automat Soft Comput. (2021)

30:17–30. doi: 10.32604/iasc.2021.018380

15. Srinivasan K, Garg L, Datta D, Alaboudi AA, Jhanjhi NZ, Chang

CT, et al. Performance comparison of deep cnn models for

detecting driver’s distraction. Comput Mater Continua. (2021)

68:4109–24. doi: 10.32604/cmc.2021.016736

16. Srinivasan K, Mahendran N, Vincent DR, Chang C-Y, Syed-Abdul

S. Realizing an integrated multistage support vector machine model

for augmented recognition of unipolar depression. Electronics. (2020)

9:647. doi: 10.3390/electronics9040647

17. Sundararajan K, Garg L, Srinivasan K, Bashir AK, Kaliappan J, Ganapathy

GP, et al. A contemporary review on drought modeling using machine

learning approaches. CMES Comput Model Eng Sci. (2021) 128:447–

87. doi: 10.32604/cmes.2021.015528

18. Khosravi A, Chaman R, Rohani-Rasaf M, Zare F, Mehravaran S, Emamian

MH. The basic reproduction number and prediction of the epidemic size of

the novel coronavirus (COVID-19) in Shahroud, Iran. Epidemiol Infect. (2020)

148:e115, 1–7. doi: 10.1017/S0950268820001247

19. Wangping J, Ke H, Yang S, Wenzhe C, Shengshu W, Shanshan Y,

et al. Extended SIR prediction of the epidemics trend of COVID-

19 in Italy and compared with Hunan, China. Front Med. (2020)

7:169. doi: 10.3389/fmed.2020.00169

20. Zivkovic M, Bacanin N, Venkatachalam K, Nayyar A, Djordjevic A,

Strumberger I, et al. COVID-19 cases prediction by using hybrid machine

learning and beetle antennae search approach. Sustain Cities Soc. (2021)

66:102669. doi: 10.1016/j.scs.2020.102669

21. Mojjada RK, Yadav A, Prabhu AV, Natarajan Y. Machine learning

models for covid-19 future forecasting. Mater. Today Proc. (2020).

doi: 10.1016/j.matpr.2020.10.962. [Epub ahead of print].

22. Farooq J, Bazaz A. A deep learning algorithm for modeling and forecasting

of COVID-19 in five worst affected states of India. Alexandria Eng J. (2020)

60:587–96. doi: 10.1016/j.aej.2020.09.037

23. Milind Y, Murukessan P, Srinivas M. Analysis on novel coronavirus

(COVID-19) using machine learning methods. Chaos Solitons Fractals. (2020)

139:110050. doi: 10.1016/j.chaos.2020.110050

24. Chicco D, Jurman G. Machine learning can predict survival of patients with

heart failure from serum creatinine and ejection fraction alone. BMC Med

Inform Decis Mak. (2020) 20:16. doi: 10.1186/s12911-020-1023-5

25. Mortazavi BJ, Downing NS, Bucholz EM, Dharmarajan K, Manhapra

A, Li S-X, et al. Analysis of machine learning techniques for heart

failure readmissions. Circ Cardiovasc Qual Outcomes. (2016) 9:629–

40. doi: 10.1161/CIRCOUTCOMES.116.003039

26. Balli S. Data analysis of Covid-19 pandemic and short-term cumulative

case forecasting using machine learning time series methods. Chaos Solitons

Fractals. (2021) 142:110512. doi: 10.1016/j.chaos.2020.110512

27. Kuo CP, Fu JS. Evaluating the impact of mobility on COVID-19 pandemic

with machine learning hybrid predictions. Sci Total Environ. (2021)

758:144151. doi: 10.1016/j.scitotenv.2020.144151

28. Shaban WM, Rabie AH, Saleh AI, Abo-Elsoud MA. A new COVID-

19 Patients Detection Strategy (CPDS) based on hybrid feature

selection and enhanced KNN classifier. Knowl Based Syst. (2020)

25:106270. doi: 10.1016/j.knosys.2020.106270

29. Sujatha R, Chatterjee JM, Hassanien AE. A machine learning forecasting

model for COVID-19 pandemic in India. Stoch Environ Res Risk Assess. (2020)

34:959–72. doi: 10.1007/s00477-020-01827-8

30. Yang Z, Zeng Z, Wang K, Wong S-S, Liang W, Zanin M, et al.

Modified SEIR and AI prediction of the epidemics trend of COVID-19

in China under public health interventions. J Thorac Dis. (2020) 12:165–

74. doi: 10.21037/jtd.2020.02.64

31. Xu Z, Huang G, Weinberger KQ, Zheng AX. Gradient boosted feature

selection. In: Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. New York, NY: ACM (2014).

p. 522–31.

32. Wang Y. A Xgboost risk model via feature selection and Bayesian hyper-

parameter optimization. arXiv:1901.08433 (2019).

33. Chintalapudi N, Battineni G, Sagaro GG, Amenta F. COVID-19 outbreak

reproduction number estimations forecasting in Marche, Italy. Int J Infect Dis.

(2020) 96:327–33. doi: 10.1016/j.ijid.2020.05.029

34. Locatelli I, Trächsel B, Rousson V. Estimating the basic reproduction

number for COVID-19 in Western Europe. PLoS ONE. (2021)

16:e0248731. doi: 10.1371/journal.pone.0248731

35. Zhang Z, Trevino V, Hoseini S, Shahabuddin B, Smaranda B, Manivanna

Zhang P, et al. Variable selection in logistic regression model with genetic

algorithm. Ann Transl Med. (2018) 6:45. doi: 10.21037/atm.2018.01.15

36. Srinivasu PN, SivaSai JG, Ijaz MF, Bhoi AK, KimW, Kang JJ. Classification of

skin disease using deep learning neural networks with MobileNet V2 LSTM.

Sensors. (2021) 21:2852. doi: 10.3390/s21082852

37. Panigrahi R, Borah S, Bhoi A, Ijaz M, Pramanik M, Kumar Y,

et al. Consolidated decision tree-based intrusion detection system

for binary and multiclass imbalanced datasets. Mathematics. (2021)

9:751. doi: 10.3390/math9070751

38. Panigrahi R, Borah S, Bhoi A, Ijaz M, Pramanik M, Jhaveri R, et al.

Performance assessment of supervised classifiers for designing intrusion

detection systems: a comprehensive review and recommendations for future

research.Mathematics. (2021) 9:690. doi: 10.3390/math9060690

39. Tamang J. Dynamical properties of ion-acoustic waves in space plasma

and its application to image encryption. IEEE Access. (2021) 9:18762–

82. doi: 10.1109/ACCESS.2021.3054250

40. Chowdhary CL, Patel PV, Kathrotia KJ, Attique M, Perumal K, Ijaz MF.

Analytical study of hybrid techniques for image encryption and decryption.

Sensors. (2020) 20:5162. doi: 10.3390/s20185162

41. Gaur L, Singh G, Solanki A, Jhanjhi NZ, Bhatia U, Sharma S, et al. Disposition

of youth in predicting sustainable development goals using the neuro-fuzzy

and random forest algorithms. Hum Cent Comput Inf Sci. (2021) 11:24.

doi: 10.22967/HCIS.2021.11.024

42. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In:

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. San Francisco, CA. (2016) p. 13–7.

doi: 10.1145/2939672.2939785

43. Available online at: https://github.com/owid/covid-19-data/tree/master/

public/data (accessed May 2, 2021).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Kaliappan, Srinivasan,Mian Qaisar, Sundararajan, Chang and C.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Public Health | www.frontiersin.org 12 September 2021 | Volume 9 | Article 729795

https://doi.org/10.1049/ipr2.12222
https://doi.org/10.32604/iasc.2021.018380
https://doi.org/10.32604/cmc.2021.016736
https://doi.org/10.3390/electronics9040647
https://doi.org/10.32604/cmes.2021.015528
https://doi.org/10.1017/S0950268820001247
https://doi.org/10.3389/fmed.2020.00169
https://doi.org/10.1016/j.scs.2020.102669
https://doi.org/10.1016/j.matpr.2020.10.962
https://doi.org/10.1016/j.aej.2020.09.037
https://doi.org/10.1016/j.chaos.2020.110050
https://doi.org/10.1186/s12911-020-1023-5
https://doi.org/10.1161/CIRCOUTCOMES.116.003039
https://doi.org/10.1016/j.chaos.2020.110512
https://doi.org/10.1016/j.scitotenv.2020.144151
https://doi.org/10.1016/j.knosys.2020.106270
https://doi.org/10.1007/s00477-020-01827-8
https://doi.org/10.21037/jtd.2020.02.64
https://doi.org/10.1016/j.ijid.2020.05.029
https://doi.org/10.1371/journal.pone.0248731
https://doi.org/10.21037/atm.2018.01.15
https://doi.org/10.3390/s21082852
https://doi.org/10.3390/math9070751
https://doi.org/10.3390/math9060690
https://doi.org/10.1109/ACCESS.2021.3054250
https://doi.org/10.3390/s20185162
https://doi.org/10.22967/HCIS.2021.11.024
https://doi.org/10.1145/2939672.2939785
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Performance Evaluation of Regression Models for the Prediction of the COVID-19 Reproduction Rate
	Introduction
	Motivation
	Research Gap and Contribution
	Structure of the Paper

	Related Works
	Materials and Methods
	Reproduction Rate
	Feature Selection
	Parameter Settings
	Dataset
	Performance Metrics
	Mean Absolute Error
	Root Mean Squared Error
	Determination Coefficient
	Relative Absolute Error
	Root Relative Squared Error


	Results and Discussion
	Results

	Discussion
	Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	References


