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Background: Increasing evidence suggests that exposure to air pollution during

pregnancy is associated with adverse pregnancy outcomes. However, biomarkers

associated with air pollution exposure are widely lacking and often transient. In addition,

ascertaining biospecimens during pregnacy to assess the prenatal environment remains

largely infeasible.

Objectives: To address these challenges, we investigated relationships between air

pollution exposure during pregnancy and human serum albumin Cys34 (HSA-Cys34)

adducts in newborn dried blood spots (DBS) samples, which captures an integration

of perinatal exposures to small reactive molecules in circulating blood.

Methods: Newborn DBS were obtained from a state archive for a cohort of 120 children

born at one Kaiser Permanente Southern California (KPSC) hospitals in 2007. These

children were selected to maximize the range of residential air pollution exposure during

the entire pregnancy to PM2.5, PM10, NO2, O3, based on monthly estimates interpolated

from regulatory monitoring sites. HSA-Cys34 adducts were selected based on previously

reported relationships with air pollution exposure and oxidative stress.

Results: Six adducts measured in newborn DBS samples were associated with air

pollution exposures during pregnancy; these included direct oxidation products, adducts

formed with small thiol compounds, and adducts formed with reactive aldehydes. Two

general trends were identified: Exposure to air pollution late in pregnancy (i.e., in the last

30 days) was associated with increased oxidative stress, and exposure to air pollution

earlier in pregnancy (i.e., not in the last 30 days) was associated with decreased oxidative

stress around the time of birth.

Discussion: Air pollution exposure occurring during pregnancy can alter biology and

leave measurable impacts on the developing infant captured in the newborn DBS

adductome, which represents a promising tool for investigating adverse birth outcomes

in population-based studies.
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INTRODUCTION

Periods of fetal development and early childhood have long been
recognized as a critical window of vulnerability for exposure
to a number of environmental chemicals (1, 2), and higher
prenatal exposures have been associated with adverse postnatal
effects for many common pollutants (1–3). Increasing evidence
suggests that exposure to certain air pollutants during pregnancy
may be associated with adverse pregnancy outcomes including
preterm birth (4–7), low birth weight (4–8), intrauterine growth
restriction (4, 9, 10), congenital anomalies (11, 12), and autism
spectrum disorders (13–16). However, associations between
air pollution exposures and adverse birth outcomes remain
poorly understood due to the paucity of in vivo markers of
effects. Because prospectively collected biospecimens during
pregnancy and infancy are rarely available, investigators routinely
rely on exposure assessment methods that provide estimates
of residential ambient air pollution that do not account for
infiltration, exposure away from the home, exercise that increases
ventilation rate, and other determinants of personal dose (17).
Consequently, in the newborn population there is a critical need
for new biomarker approaches for investigating relationships
with prenatal exposure to air pollution that may have significant
long-term impact on offspring.

While the underlying biological mechanisms linking air
pollution and adverse birth outcomes are complex and are not
fully understood, oxidative stress and inflammation are thought
to play a central role in air pollution toxicity through the
generation of reactive oxygen species (ROS) (18–20), altered
antioxidant defense, and disruptions in homeostatic processes
(19–21). Exposure to ambient levels of NO2 and O3 gases and
fine particles trigger a cascade of oxidative stress-related events,
including inflammation (22, 23), carbonyl stress (22, 24, 25),
mitochondrial injury (22–24, 26), and altered gene expression
(22, 25, 26). In vivo experiments have demonstrated rapid
oxidative stress responses after exposure to concentrated ambient
PM2.5, with an almost doubling of ROS in the lungs and heart
of rats (27). Chronic exposures to ambient levels of PM2.5 are
also associated with increased lipid and protein oxidation in
humans (28, 29), potentially due to the presence of a variety
of transition metals and/or free radical components present in
PM from atmospheric chemical reactions (30). Oxidative stress
also activates transcription factors (e.g., factor-κB and activator
protein-1), which upregulate the expression of cytokines,
chemokines, and other proinflammatory mediators (31–35).

Despite their important role in air pollution toxicity, ROS
and other reactive small molecules in circulating blood are
transient and therefore cannot normally be measured in vivo.
This has motivated the use of protein adducts as biomarkers
for estimating exposures to reactive electrophilic chemicals (18–
20, 36–39). Cys34 protein adducts in human serum albumin
(HSA, the most abundant protein in plasma) reflects an
integration of exposure to short-lived electrophiles over the life
span of the protein (e.g., the residence time of HSA is about
one month) (40–42). As a result, the HSA-Cys34 adductome
provides a deep interrogation of environmental exposures to
reactive electrophiles over relatively long time periods. This

study focused specifically on the HSA-Cys34 loci, which acts
as a highly efficient site for scavenging reactive chemicals
from circulating blood including, direct oxidation products,
modifications by small thiols, reactive aldehydes formed through
lipid peroxidation, and a host of other reactive small molecules.
While protein adducts have been used historically as biomarkers
for estimating exposures to environmental toxicants (43–45),
a large class of endogenously produced adducts have recently
emerged as important biomarkers of environmental exposure
that capture unique signatures of ROS, antioxidant capacity, and
modifications to circulating thiols that can act as redox switches
to regulate homeostatic processes that can be targeted in studies
investigating links between prenatal environmental exposures
and adverse health outcomes (18–20, 46–49).

In this study we applied a targeted adductomics approach
to investigate relationships between air pollution exposures
throughout pregnancy and HSA-Cys34 adducts measured in
newborn dried blood spot (DBS) samples. Concentrations of
PM2.5, PM10, NO2, and O3 were estimated with monthly
averages during pregnancy based on the birth address. After
isolating HSA from DBS samples and digesting the protein
using trypsin, adducts were measured on the third largest tryptic
peptide containing Cys34 using triple-quadrupole (QqQ) mass
spectrometry. Adducts included in our panel were based on
previous studies (18–20, 46–49) and included direct oxidation
products, small thiol compounds related to antioxidant capacity,
and markers of lipid peroxidation (Table 1). Direct oxidation
products in our adduct panel include S-sulfinic acid (addition
of two oxygen molecules) and S-sulfonic acid (addition of three
oxygen molecules), which are directly formed through reactions
with ROS. Adducts formed with small thiol compounds,
including S-Cys, S-GSH, S-γ -GluCys, and S-CysGly, can serve
as biomarkers of antioxidant defense. Because low-molecular-
weight thiols serve as antioxidants in blood, they can be
depleted during periods of increased oxidative stress. As a
result, decreased concentrations of HSA-Cys34 mixed disulfides
is indicative of increased oxidative stress (20). Finally, S-
crotonaldehyde adducts was measured as a biomarker of lipid
peroxidation. During periods of increased oxidative stress, ROS
react with polyunsaturated fatty acids and generate reactive
aldehyde species that can modify HSA-Cys34 through Michael
additions (53).

METHODS

Study Design and Newborn DBS Samples
A cohort of 120 children born at a single Kaiser Permanente
Southern California (KPSC) hospital in 2007 was identified.
Children were selected based on estimated PM2.5 exposure
during the entire pregnancy. Children with low and high
exposures were oversampled to increase the variability of
exposure and increase the power to detect associations (54). We
obtained the newborn DBS samples collected at birth from these
children from the California Biobank archive in the Department
of Public Health. Children’s sex and gestational weeks at delivery
based on ultrasonography were obtained from KPSC electronic
medical records databases. The Institutional Review Board from
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TABLE 1 | Adducts quantified in newborn DBS samples.

m/z, 3+, observed Added mass (Da) Retention time (min) Putative annotation Elemental composition References

796.43 −45.99 4.82 Cys34→ Gly -CH2S (20, 46–51)

811.76 1.01 5.22 unmodified T3 +H (18–21, 46, 48–50, 50, 51)

816.43 15.02 5.32 methylation (not Cys34) +CH3 (18–20, 46–50, 52)

822.42 32.99 4.40 S-sulfinic acid +HO2 (18–21, 46–51)

827.09 47.00 4.95 S-Methylthiolation +CH3S (20, 46–48, 50, 51)

827.76 48.99 4.45 S-sulfonic acid +HO3 (18–20, 20, 21, 46, 48–50)

830.77 58.03 5.05 S-methylisocyanate +C2H4NO (18, 46)

835.11 71.05 5.22 S-crotonaldehyde +C4H7O (18, 46–50)

841.43 90.00 4.88 S-Mercaptoacetamide +C2H4NOS (18, 46)

845.42 102.00 4.10 S-Cys (-H2O) +C3H4NOS (18, 20, 46–50)

851.43 120.01 3.50 S-Cys +C3H6NO2S (18–20, 46–48, 50, 51)

856.10 134.02 3.62 S-hCys +C4H8NO2S (18–20, 46–48, 50)

870.44 177.03 3.23 S-CysGly +C5H9N2O3S (18–20, 46–50, 52)

894.44 249.05 3.65 S-γ -GluCys +C8H13N2O5S (18–20, 46, 47, 50)

913.45 306.07 3.65 S-GSH +C10H16N3O6S (18–20, 46–50)

Selected adducts in this study were annotated using high resolution mass spectrometry in previous studies.

KPSC and the California Health and Human Services Agency
approved this study and waived individual subject consent.
A summary of cohort characteristics, air pollution exposure
estimates, and adduct concentrations is provided in Table 2.

Air Pollution Exposure Assessment
Average monthly air pollution exposure, including PM2.5, PM10,
NO2, and O3 was estimated based on residential addresses
at birth recorded in KPSC electronic medical record. The
birth addresses were geocoded using MapMarker USA Version
28.0.0.11. Exposure data was compiled from the EPA regional
air quality monitoring network across Southern California. To
estimate the exposure at each residential location, we used the
inverse distance-weighted monthly average from four closest
monitoring stations within 50 km, except for geocoded locations
within 0.25 km of a monitor, for which only data from the nearest
monitoring station were used (55). Although the distance-
weighted approach has limited accuracy in areas with sparse
monitoring networks, performance is acceptable in Southern
California due to the dense geographical network of historical
measurements covering the region. In a previous Southern
California study evaluating this method using leave-one-out
validation for monthly monitoring station data, the coefficients
of determination (R2) were 0.76, 0.73, 0.53, and 0.46 for O3,
NO2, PM2.5 and PM10, respectively, with lower R2 values for PM
attributed to the local (primary emission) dust component that
is not regional (56). Bias was <1 ppb or 1 µg/m3. Each address
was assigned the monthly average of the 24-h concentrations of
PM2.5, PM10, and NO2. For O3, the monthly average of daily
maximum 8-h concentrations was estimated. Averages of the
monthly concentrations during each trimester and last 30 days of
pregnancy were then aggregated from these monthly estimates,
with each specific time window determined based on the last
menstrual period (LMP) date estimated from fetal ultrasound
used in clinical care. For months overlapping different exposure

windows (e.g., first and second trimesters), the exposure was
assigned proportional to the number of days in each window.

Isolation of HSA From DBS Samples
HSAwas isolated fromDBS samples using themethods described
by Yano et al. (48) with minor modifications. Briefly, 3.2mmDBS
punches were extracted in a 55 µL solution of 45% methanol in
deionized water to precipitate hemoglobin and other interfering
proteins. All solvents including deionized water were HPLC
grade or higher. Samples were agitated at room temperature
for 30min and centrifuged at 20k RCF for 15min at 4◦C. The
supernatant was diluted with 95 µL of a buffer consisting of
50mM triethylammonium bicarbonate, 1mM EDTA, with a pH
of 8.0. 130 µL of filtered solution was then trypsin digested
using 1 µL of 10 µg/µL trypsin. Protein digestion was performed
using a Pressure BiosciencesTM Barozyme HT48 with 30 pressure
cycles of 20 kpsi for 50 s, then atmospheric pressure for 10 s for
each cycle. Following pressure digestion, 3 µL of 10% formic
acid was added to each sample to denature the trypsin and
samples were centrifuged for 2min at 10,000 × g. Analyses were
then performed using 100 µL transferred to 300 µL borosilicate
silanized glass vials (Microsolv Technology Corporation).

Targeted Adductomics
A panel of adducts were chosen based on previous associations
with air pollution exposure and oxidative stress-related
processes, described in Table 1. Chromatographic separations
were performed using an Agilent 1,260 Infinity system with an
Agilent Poroshell 120, 3× 50mm column, with 2.7µm diameter
particles. An Agilent 1,260 Infinity Binary Pump A was used
with a 10-min gradient, with solvents A: 0.1% v/v formic acid in
deionized water; and B: 100% acetonitrile and the flow rate used
was 0.7 ml/min.

The LC gradient was: 0–1min 15% B, 1–3min 30% B, 3–6min
linear gradient from 30 to 45% B, 6–8min 100% B, 8–10min 15%
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TABLE 2 | Cohort characteristics, air pollution exposure, and adduct

concentrations.

Characteristic Median (Q1, Q3) or N (%)

Cohort characteristics

Gender

Boys 72 (60%)

Girls 48 (40%)

Gestational age at delivery (weeks) 39.0 (38.0, 40.0)

Air pollutants

PM2.5 (ug/m3)

Trimester 1 16.3 (10.4, 19.0)

Trimester 2 15.7 (10.7, 17.7)

Trimester 3 16.6 (10.6, 20.6)

Last 30 days of pregnancy 17.2 (10.2, 26.7)

PM10 (ug/m3)

Trimester 1 45.9 (34.9, 56.9)

Trimester 2 46.0 (34.2, 59.9)

Trimester 3 47.4 (34.1, 69.0)

Last 30 days of pregnancy 43.6 (31.8, 61.7)

NO2 (ppb)

Trimester 1 22.5 (20.9, 24.2)

Trimester 2 22.1 (20.6, 23.7)

Trimester 3 23.0 (17.9, 24.6)

Last 30 days of pregnancy 21.9 (17.8, 25.7)

O3 (ppb)

Trimester 1 51.2 (43.5, 60.9)

Trimester 2 59.2 (39.9, 70.4)

Trimester 3 45.6 (39.0, 57.0)

Last 30 days of pregnancy 40.0 (31.6, 60.0)

Adducts (pmol/mg HSA)

Cys34 F0E0 Gly 2.30 (1.72, 2.79)

unmodified T3 80.54 (49.91, 152.51)

methylation (not Cys34) 2.52 (1.48, 3.75)

S-sulfinic acid 5.48 (4.60, 6.50)

S-methylthiolation 0.27 (0.19, 0.45)

S-sulfonic acid 1.47 (1.11, 1.84)

S-methylisocyanate 0.50 (0.30, 0.75)

S-crotonaldehyde 1.38 (0.92, 1.80)

S-mercaptoacetamide 0.20 (0.11, 0.32)

S-Cys (-H2O) 0.84 (0.59, 1.05)

S-Cys 1.53 (0.95, 2.16)

S-hCys 0.13 (0.08, 0.23)

S-CysGly 0.31 (0.18, 0.40)

S-γ -GluCys 0.18 (0.12, 0.26)

S-GSH 15.65 (13.44, 18.61)

B. The column was maintained at 37? C using an Agilent Infinity
1,260 Thermostatted Column Compartment (G1316A). Samples
were injected using an Agilent 1,260 Infinity MicroHP sample
handling system, using 25 µl of sample per injection. To reduce
sample carryover between runs, the needle was automatically
rinsed for 10 s using 30% methanol prior to each injection.

Analyses were carried out on the Agilent 6,490 QqQ mass
spectrometer using an iFunnel electrospray source with Jetstream

technology. Mass spectrometer parameters were based on those
used in Domanski et al. (57). Adduct levels were derived from the
standard (not scheduled) SRM peak area of the [precursor (3+)
–>y17 (2+)] transition for the principle peak coeluting with the
[precursor (3+) –>b3+] qualifier peak (18). Collision energies
were calculated using default parameters creation in Skyline
(58) with no further optimization and the overall cycle time
was ∼750ms. Other instrumental parameters were set using the
Agilent Autotune functionality in positive ionmode, with Agilent
ESI-L low concentration tuning mix (Catalog# G1969-85000) for
mass calibration.

Adducts Data Processing
Data acquired from targeted runs on the Agilent 6,490 QqQ
was imported into a Skyline document containing the full set
of transitions for each run. To quantitate the level of adducts
across samples, the summed peak areas of 3 transitions per
adduct species was divided by the combined peak areas of
3 housekeeping peptide transitions. The tryptic housekeeping
peptide is adjacent in sequence to the T3 tryptic peptide and
is used to estimate the concentration of HSA in each injected
sample. Housekeeping peptide (Sequence: 41LVNEVTEFAK50)
undergoes little enzymatic and non-enzymatic modification, is
adjacent to the T3 peptide on HSA, and has similar tryptic
digestion efficiency and ionization as the T3 peptide. As a result,
this approach accounts for digestion and ionization efficiency
across samples, as described in detail by Grigoryan et al. (18).

The limit of quantification (LOQ) for each adduct was
calculated as 10 times the standard deviation of ion intensities
from 46 blank samples (59). Blank samples were analyzed within
each sample batch.

Statistical Analyses
Descriptive statistics were used to examine cohort distribution.
The distributions of adduct levels were not normally distributed
and natural log transformation improved the distribution. The
relationships between log of adduct levels and air pollution
exposures were first examined by scatter plot followed by
regression analysis. Data plots did not suggest strong non-linear
associations and non-linear exposure terms in regression models
were also largely not significant. Thus, linear regression models
were used to explore associations between log of adduct levels (as
dependent variable) and PM2.5, PM10, NO2, and O3 exposures
adjusted for sex and gestational weeks at delivery. Additional
adjustment for Hispanic ethnicity (46.7% of the cohort) did not
affect the results. As this study was conducted as a proof of
concept with limited sample size and limited previous knowledge
about potential confounders, no adjustment for other factors
was considered. All analysis was performed using SAS Enterprise
Guide 7.1 (SAS Institute, Inc., Cary, NC). We assessed statistical
significance based on a 2-sided p-value < 0.05.

RESULTS

The 120 children included 72 boys and 48 girls, 46.7% with
Hispanic ethnicity, who were delivered at a median of 39 weeks
(interquartile range 38–40 weeks) of gestation. Table 2 presents
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TABLE 3 | Significant associations between air pollution exposure on log-transformed adducts, adjusted for sex and gestational weeks at delivery.

Adduct PM10 PM2.5 O3 NO2

Exposure period (Trimester or days) 1st 2nd 3rd L30 1st 2nd 3rd L30 1st 2nd 3rd L30 1st 2nd 3rd L30

S-CysGly ↑

S-methylthiolation ↓

S-γ -GluCys ↑ ↓

S-GSH ↑

S-sulfinic acid (dioxidation) ↑ ↑ ↓ ↓ ↑

S-crotonaldehyde ↓ ↓ ↓ ↓ * ↓ ↓ ↓ * ↑ * ↑ * ↓ ↓

Antioxidant capacity.

Direct oxidation.

Lipid peroxidation.

Upward arrows represent positive associations and downward arrows represent negative associations.

P-values with p < 0.01 are in green, 0.01 <= p < 0.05 are in red.

P-values with p < 0.0071 have *next to arrow (Bonferroni Correction: 0.05/7components to take care of multiple biomarker comparisons).

the PM2.5, PM10, NO2 and O3 distribution for each trimester
of pregnancy and last 30 days of pregnancy, as well as the
distribution of the 15 adducts measured from DBS.

Regression results between air pollution exposure
during pregnancy and each of the 15 individual protein
adducts measured in newborn DBS samples are provided in
Supplementary Table 1. Six different adducts were associated
with the air pollution exposures, summarized in Table 3. The
six adducts fall into three general classes of chemicals: direct
oxidation products (S-sulfinic acid or dioxidation), small
thiol compounds, including addition of glutathione to Cys34

(S-GSH), addition of cysteinylglycine to Cys34 (S-CysGly), and
addition of γ-glutamylcysteine to Cys34 (S-γ -GluCys), addition
of methanethiol to Cys34 (S-methanethiol), and addition of
reactive aldehydes, namely addition of crotonaldehyde to
Cys34 (S-crotonaldehyde). Results for each chemical class are
summarized below.

Direct Oxidation Products
S-sulfinic acid was associated with air pollution exposure during
pregnancy. Possitive associations were observed between S-
sulfinic acid and PM10 exposure in the second trimester, S-
sulfinic acid and O3 exposure in the first trimester, and S-sulfinic
acid and NO2 in the third trimester [mean difference (MD),
representing the change in the log of adduct associated with
change in one unit of air pollution = 0.0032, 0.0043, 0.0146]. In
contrast, negative associations were observed between S-sulfinic
acid and O3 in the 3rd trimester and with O3 exposure in the last
30 days of pregnacy (MD=−0.0049,−0.0037).

Small Thiol Compounds
S-GSH adducts were positively associated with exposure to O3

during the 3rd trimester (MD = 0.0035). In addition, significant
associations were observed with S-CysGly and S-γ -GluCys
adducts, which are two-amino acid precursors of GSH. S-CysGly
was positively associated with PM2.5 exposure in the 1st trimester
and S-γ -GluCys was positively associated with PM2.5 exposure
duiring the last 30 days of pregnancy (MD = 0.0353, 0.0202). In
contract, S-γ -GluCys was negatively associated with O3 exposure
duiring the last 30 days of pregnancy (MD = −0.0131). Finally,

S-methanethiol was negatively associated with NO2 exposure
during the 1st trimester (MD=−0.0439).

Reactive Aldehydes
Significant relationships were also observed between S-
crotonaldehyde and air pollution constituients thoughout all
trimesters of pregnacy. While strong positive assocaitions were
observed between S-crotonaldehyde and O3 during the 3rd

trimester and last 30 days of pregnancy (MD = 0.0164, 0.0138),
associations between S-crotonaldehyde and PM2.5, PM10, and
O3 were negative during earlier stages of pregnancy.

DISCUSSION

In this study we selectively targeted a panel of 15 HSA-Cys34

adducts based on previously reported relationships between
environmental exposures and oxidative stress (19, 20, 47, 50).
Overall, two general trends were identified—(1) exposure to
air pollution late in pregnancy (i.e., in the last 30 days),
corresponding to the residence time of HSA in plasma, was
associated with increased oxidative stress, and (2) exposure to
air pollution earlier in pregnancy (i.e., not in the last 30 days)
was associated with decreased oxidative stress around the time
of birth. These two general trends are discussed below and
summarized in Table 3.

Air Pollution Exposure in the Last 30 Days
of Pregnancy
Air pollution exposure during the last 30 days of pregnancy was
associated with decreased S-sulfinic acid, decreased S-γ -GluCys,
and increased S-crotonaldehyde, which are all consistent with
increased levels oxidative stress. Because HSA has a residence
time of about a month (40–42), HSA-Cys34 adducts measured
in newborn DBS samples (collected a day or two after birth)
reflect an integration of circulating reactive compounds in
the blood during this last 30 days of pregnancy. Therefore,
adducts associated with oxidative stress triggered by air pollution
exposure late in pregnancy can be directly captured in the
newborn adductome.
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Direct Oxidation Products
Exposure to O3 during the last 30 days of pregnancy was
associated with decreases in S-sulfinic acid. While it seems
counterintuitive that HSA-Cys34 oxidation products would
decrease with oxidative stress (i.e., S-sulfinic acid), these finding
are consistent with previous reports of decreases in S-sulfinic acid
in association with cigarette smoking (18), chronic obstructive
pulmonary disease (19), and ischemic heart disease (19). In
addition, decreases in other direct oxidation products (i.e., S-
sulfonic acid) have been associated with O3 exposure (19),
which is consistent with our findings. It has been proposed that
negative relationships between HSA-Cys34 oxidation products
and increased oxidative stress may be due to perturbations to
the redox proteome and/or are the result of different rates of
adduction depending on the oxidation status of HSA-Cys34 (e.g.,
oxidized vs. reduced HSA) (18, 60–62).

Small Thiol Compounds
O3 exposure in the last 30 days of pregnancy was negatively
associated with S-γ -GluCys. S-γ -GluCys is a two-amino acid
precursor of GSH, which contains a free thiol that binds to HSA-
Cys34 forming a mixed disulfide. Oxidative stress can result in
the depletion of small thiol compounds in plasma, and therefore
decreased levels of S-γ -GluCys is consistent with increased
oxidative stress caused by exposure to O3 in late pregnancy (63).

Reactive Aldehydes
Finally, Exposure to O3 during the last 30 days of pregnancy
was associated with increases in levels of S-crotonaldehyde.
Since S-crotonaldehyde is a reactive aldehyde produced through
lipid peroxidation, increased levels of S-crotonaldehyde are
indicative of increased levels of oxidative stress. These findings
are consistent with previous findings, where biomarkers of lipid
peroxidation were positively associated with O3 exposure (64).

Air Pollution Exposure Earlier in Pregnancy
In contrast with air pollution exposures occurring during the last
30 days of pregnancy, we observed an opposite trend with air
pollution exposure in earlier stages of pregnancy (i.e., not in the
last 30 days of pregnancy).

Direct Oxidation Products
S-sulfinic acid showed an opposite trend earlier in pregnancy
with a negative associated with O3. While a positive association
was observed between NO2 exposure and S-sulfinic acid in the
3rd trimester, this association was not significant in the last 30
days. Therefore, we infer that NO2 exposure earlier in the 3rd
trimester (i.e., not in the last 30 days) is most likely responsible
for this trend, which is consistent with our O3 findings.

Reactive Aldehydes
Exposures to PM2.5, PM10, and O3 in the 1st and 2nd trimesters
were consistently negatively associated with S-crotonaldehyde,
suggesting that exposures to air pollution earlier in pregnancy are
associated with a decrease in lipid peroxidation around the time
of birth.

The residence time of HSA in blood of ∼1 month is
important to the interpretation of these findings. Adducts

measured in newborn DBS samples capture an integration
of adducts formed through reactions with circulating small
molecules in the infant’s blood during the last 30 days of
pregnancy. As a result, the newborn DBS adductome does not
directly capture adducts related to environmental exposures
or biological responses to exposures earlier in pregnancy, but
rather likely reflect adaptive mechanisms that may have been
primed by air pollution exposures earlier in fetal development.
In a previous study, Tissot van Patot et al. (65) observed that
infants born at high altitude appeared to develop protective
mechanisms against oxidative stress compared with infants
born at sea level. In that study, infants born at sea level
displayed evidence of oxidative stress during labor, while infants
born at high altitude had minimal or no oxidative stress at
the time of delivery. The authors hypothesized that fetuses
developing at high altitude exposed to chronic levels of oxidative
stress during pregnancy developed compensatory responses to
oxidative stress by the time of delivery. Along these same
lines, we speculate that infants exposed to oxidative stress
from air pollution during pregnancy may develop similar
mechanisms for combating oxidative stress around the time
of birth. If this is true, decreases in oxidative stress-related
adducts measured around the time of birth may be due to a
heightened antioxidant response primed by earlier exposures to
air pollution.

It is well-established that exposures to air pollution during
pregnancy causes oxidative stress (9, 15, 66). Because HSA-
Cys34 adducts measured in newborn DBS samples provide
a record of small reactive molecules circulating in the
infant’s blood during the last month of pregnancy, it is not
surprising that exposure to air pollution in the last 30 days of
pregnancy was associated with increased levels of oxidative stress
captured in the newborn DBS adductome. Adducts that were
associated with air pollution in the last 30 days of pregnancy
were products of lipid peroxidation (S-crotonaldehyde), ROS
(S-sulfinic acid), and small thiol compounds that provide
antioxidant defense (S-γ -GluCys). Thus, our adductomics
approach captures three distinct layers of oxidative stress using
a single assay. Because directly obtaining biospecimens from
newborns before and around the time of delivery is rarely
possible, measuring protein adducts in newborn DBS samples
provides new opportunities to assess prenatal environmental
exposures and biological responses to chemical stressors prior
to birth.

We also observed an opposite trend with air pollution
exposures occurring earlier in pregnancy (i.e., not in the
last 30 days), when adducts related to oxidative stress were
consistently found to be inversely related to air pollution
exposure. We are not suggesting that exposures to air pollution
earlier in pregnancy is beneficial to early development. In fact,
mounting evidence supports a strong link between exposure
to air pollution during all stages of pregnancy and adverse
children’s health. Rather, we speculate that chronic exposures
to air pollution may trigger adaptive changes in redox biology
during critical stages of fetal development that may help to
shield the infant from environmental stressors around the time
of birth.
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CONCLUSIONS

Strengths of this study include the innovative approach to
assessing associations of air pollution on oxidative stress
in an administrative data set with high quality electronic
medical record. Although the samples were archived for
over a decade, relevant Cys34 adducts and associations with
air pollutants were identified. The approach has potential
application to other exposures, to other features of neonatal
biology, and to development of disease during childhood.
Potential confounders of the relationship between air pollutants
studied and these neonatal markers at birth are not well-
characterized. Although exposure assessment has been validated
across the dense monitoring network in southern California (56),
exposure misclassification within the single study community
and year designed to enhance exposure contrast and to
reduce unmeasured spatial confounders may have resulted in
misclassification bias. This bias would have been likely to result
in attenuated associations with the neonatal outcomes, with some
exceptions. Multiple comparisons may have resulted in false
positive associations. However, because the biological markers
were correlated and represented overlapping pathways reflecting
oxidative stress, the results were likely not independent, and we
did not adjust for false discovery of positive associations. Because
the sample size was relatively small (N = 120), power was limited
to identify weak causal associations.

In summary, results suggest late pregnancy exposures to
regulated air pollutants result in increased neonatal oxidative
stress at birth. Exposures occurring early in pregnancy may
also alter biology and leave measurable impacts on the
developing infant. Further studies are needed to confirm these
novel findings.
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