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Background: Prior observational studies indicated that lower educational attainment

(EA) is associated with higher COVID-19 risk, while these findings were vulnerable to

bias from confounding factors. We aimed to clarify the causal effect of EA on COVID-19

susceptibility, hospitalization, and severity using Mendelian randomization (MR).

Methods: We identified genetic instruments for EA from a large genome-wide

association study (GWAS) (n = 1,131,881). Summary statistics for COVID-19

susceptibility (112,612 cases and 2,474,079 controls), hospitalization (24,274 cases and

2,061,529 controls), and severity (8,779 cases and 1,001,875 controls) were obtained

from the COVID-19 Host Genetics Initiative. We used the single-variable MR (SVMR) and

the multivariable MR (MVMR) controlling intelligence, income, body mass index, vigorous

physical activity, sedentary behavior, smoking, and alcohol consumption to estimate the

total and direct effects of EA on COVID-19 outcomes. Inverse variance weighted was the

primary analysis method. All the statistical analyses were performed using R software.

Results: Results from the SVMR showed that genetically predicted higher EA was

correlated with a lower risk of COVID-19 susceptibility [odds ratio (OR) 0.86, 95% CI

0.84–0.89], hospitalization (OR 0.67, 95% CI 0.62–0.73), and severity (OR 0.67, 95% CI

0.58–0.79). EA still maintained its effects in most of the MVMR.

Conclusion: Educational attainment is a predictor for susceptibility, hospitalization,

and severity of COVID-19 disease. Population with lower EA should be provided with

a higher prioritization to public health resources to decrease the morbidity and mortality

of COVID-19.
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INTRODUCTION

COVID-19 first emerged in December 2019 and has become
a worldwide pandemic currently (1). At the time of April 18,
2021, there have been 140,821,384 confirmed cases and 3,013,042
deaths globally (2). In this condition, it is essential to identify
high-risk groups that need special attention (3). Particularly,
with the available but limited supply of COVID-19 vaccines, a
crucial challenge is prioritizing groups to receive vaccines (4–
6). There have been discussions about vaccine prioritization for
racial minorities (4) and diabetes groups (7), since prior studies
report these groups are more vulnerable to COVID-19 disease.
In contrast, more evidence for other potential high-risk groups
such as the population with low educational attainment (EA)
is needed.

Educational attainment is a well-established social
determinant of health (8) and correlates with many diseases
(9–11). Prior observational studies indicated that the same
might have happened during the current COVID-19 pandemic
and a population with lower EA was found at a higher risk
of susceptibility, hospitalization, and mortality of COVID-19
(12–14). However, conventional observational studies lacking
randomization designs are generally prone to confounding
factors (15). Randomized controlled trials, on the other hand,
cannot be conducted.

Mendelian randomization (MR) is a method that uses genetic
variants correlated with an exposure (such as EA) to evaluate
whether it has a causal effect on the disease outcome (such
as COVID-19 susceptibility) (16), which is less likely to be
influenced by unmeasured confounding than observational
studies (17). MR is especially useful for exploring causal pathways
when the risk factors are difficult to randomize (18). There have
been several MR studies exploring the risk factors for COVID-
19 (18–20).

An extension of the single-variable MR (SVMR) is the
multivariable MR (MVMR), which can incorporate genetic
variants associated with several exposures into the same model
(21). Since EA was identified to correlate with intelligence,
income, body mass index (BMI), vigorous physical activity,
sedentary behavior, smoking, and alcohol consumption in a
prior study (22), we would also perform the paired MVMR
to investigate the direct effects of EA when controlling these
exposures separately and explore whether the effects of EA on
COVID-19 were independent of them.

Therefore, in this study, we aimed to evaluate the total
and direct effects of EA on the susceptibility, hospitalization,
and severity of COVID-19 using the SVMR and the MVMR
separately, trying to provide evidence for public health resources
allocation and targeting prevention planning.

MATERIALS AND METHODS

Genome-Wide Association Study (GWAS)
Data Sources for EA
We extracted single-nucleotide polymorphisms (SNPs)
correlated with EA from a published GWAS meta-analysis,
which included 71 studies with 1,131,881 European-descent
individuals in total (23) and this is the largest GWAS of EA to

date. We used SNPs at the genome-wide significance of p < 5 ×
10−8 and excluded those in potential linkage disequilibrium (r2

> 0.01), being palindromic with intermediate allele frequencies
or not reported in COVID-19 outcome GWAS datasets. SNP
coefficients were expressed in SD units (SD = 4.2 years). We
used the F statistics to evaluate the strength of genetic variants.
One prior study using the similar SNPs with ours reported a
median F statistics of 45 (24), indicating that the validity of
genetic variants was generally reliable. Proportion of variance
explained by included SNPs was calculated according to one
prior study (25). We presented a detailed description of EA in
Supplementary Table 1. Due to privacy policy, we only used
summary statistics excluding 23andMe in our MVMR.

Genome-Wide Association Study Data
Sources for Other Related Resources
Summary statistics for intelligence (26), income, BMI (27),
vigorous physical activity (28), sedentary behavior, smoking
(29), and alcohol consumption (29) were obtained. We
placed the detailed information about these exposures in
Supplementary Table 1.

Genome-Wide Association Study Data
Sources for COVID-19 Outcomes
We obtained GWAS data for COVID-19 outcomes from the
6th round of the COVID-19 Host Genetics Initiative (COVID-
19 HGI), which was conducted on mixed ancestry and released
at June 15, 2021. Detailed information about the COVID-
19 HGI has been described elsewhere (30). Three different
phenotypes, including susceptibility (112,612 cases and 2,474,079
controls), hospitalization (24,274 cases and 2,061,529 controls),
and severity (8,779 cases and 1,001,875 controls), were analyzed
in our MR analyses. We placed the definition and sample size of
each phenotype in Supplementary Table 2.

Additionally, we would also use the 5th round summary data
for European ancestry only to conducted sensitivity analyses.

Statistical Power
Genetic instrumental SNPs explained 3.4% of the variance for EA
(Supplementary Table 3).We used an online tool to calculate the
power to detect the casual estimates (31) https://sb452.shinyapps.
io/power/. With a type I error of 5%, we have sufficient statistical
power to detect the difference in the risk of susceptibility,
hospitalization, and severity of COVID-19 using all the cohorts.
When using the instrumental SNPs after excluding those from
23andMe, similar results were observed. We presented detailed
information in Supplementary Table 3.

Statistical Analysis
In the SVMR, we used the random-effects inverse-variance
weighted (IVW) method to estimate the total effects of EA on
COVID-19 susceptibility, hospitalization, and severity separately.
To validate the results of this study, several sensitivity analyses,
includingMR-Egger, weightedmedian, and weightedmode, were
conducted additionally. MR-Egger is a method, which can detect
and adjust for directional pleiotropy (32). Weighted median
method allows up to half of the genetic variants to be invalid
(33). As for the weighted mode, it is robust to horizontal
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pleiotropy (34). If we obtained similar results from all these
four MR models, our findings would be more robust. We also
used the Cochran’s Q test to detect possible heterogeneity across
individual SNPs and intercept from MR-Egger regression to
detect directional pleiotropy.

Next, we used overlapping SNPs as instruments. We applied
the random-effects IVW framework to estimate the direct effects
of EA in the MVMR analyses after controlling intelligence,
income, BMI, vigorous physical activity, sedentary behavior,
smoking, and alcohol consumption separately. Although there
was partial overlap among GWAS data and we did not have
individual-level data, we still calculated the conditional F-
statistic approximately for reference. The calculated results were
presented in Supplementary Table 4.

Genome-wide association study data could be accessed
through theMR-Base platform (35, 36). All the statistical analyses
were conducted using R software.

RESULTS

Genetically Predicted EA on COVID-19
Susceptibility
After selection, we used 751 SNPs for our SVMR analysis
investigating the total effect of EA on COVID-19 susceptibility
(Supplementary Figure 1). Primary analysis using IVW
indicated that a 1-SD increase in EA was related to a lower
risk of COVID-19 susceptibility [odds ratio (OR) 0.86, 95%
CI 0.84–0.89]. This effect was consistent across MR-Egger and
weighted median, while no significant relationship was observed
in weighted mode (Figure 1A). No directional pleiotropy
was found (p = 0.485), while potential heterogeneity was
detected. When using 462 SNPs after excluding those from
23andMe (Supplementary Figure 2), we observed similar
results (Figure 1B). Detailed information was presented in
Supplementary Table 5. Results from sensitivity analyses also
supported our findings (Supplementary Figure 3).

In the MVMR analysis, EA retained its association with
susceptibility of COVID-19 after controlling all other exposures
except for intelligence (Figure 2).

Genetically Predicted EA on COVID-19
Hospitalization
We used 751 SNPs in our SVMR analysis investigating
the total effect of EA on COVID-19 hospitalization
(Supplementary Figure 1). Primary analysis using IVW
indicated that a 1-SD increase in EA was correlated with a
lower risk of COVID-19 hospitalization (OR 0.67, 95% CI
0.62–0.73). This association was consistent with weighted
median, while no causal relationship was observed in MR-
Egger and weighted mode (Figure 3A). Results from the
MR-Egger intercept and heterogeneity test were presented in
Supplementary Table 5. When using 462 SNPs after excluding
those from 23andMe (Supplementary Figure 2), we observed
similar results (Figure 3B). Detailed results were presented in
Supplementary Table 5. Results from sensitivity analyses also
supported our findings (Supplementary Figure 3).

In the MVMR analysis, EA maintained its association with
susceptibility of COVID-19 after accounting for all other
exposures (Figure 4).

Genetically Predicted EA on COVID-19
Severity
After selection, we used 744 SNPs in our SVMR analysis
investigating the total effect of EA on COVID-19 severity
(Supplementary Figure 1). Primary analysis using IVW
indicated that a 1-SD increase in EA was correlated with a
lower COVID-19 severity (OR 0.67, 95% CI 0.58–0.79). This
association was consistent with weighted median, while no
causal relationship was observed in MR-Egger and weighted
mode (Figure 5A). Results from the MR-Egger intercept and
heterogeneity test were presented in Supplementary Table 5.
When using 455 SNPs after excluding those from 23andMe

FIGURE 1 | The SVMR forest plot of EA on COVID-19 susceptibility using SNPs from (A) all the cohorts and (B) all the cohorts excluding 23andMe. COVID-19,

coronavirus disease 2019; MR, Mendelian randomization; OR, odds ratio; SNPs, single-nucleotide polymorphisms; IVW, inverse-variance weighted; SVMR,

single-variable MR; EA, educational attainment.
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FIGURE 2 | The MVMR forest plot of EA on COVID-19 susceptibility controlling intelligence, income, body mass index, vigorous physical activity, sedentary behavior,

smoking, and alcohol consumption separately. COVID-19, coronavirus disease 2019; OR, odds ratio; MVMR, multivariable Mendelian randomization; EA, educational

attainment.

FIGURE 3 | The SVMR forest plot of EA on COVID-19 hospitalization using SNPs from (A) all the cohorts and (B) all the cohorts excluding 23andMe. COVID-19,

coronavirus disease 2019; MR, Mendelian randomization; OR, odds ratio; SNPs, single-nucleotide polymorphisms; IVW, inverse-variance weighted; SVMR,

single-variable MR; EA, educational attainment.

(Supplementary Figure 2), the effect of EA on COVID-19
severity was observed among all the methods, except weighted
mode (Figure 5B). Results from sensitivity analyses also
supported our findings (Supplementary Figure 3).

In the MVMR analysis, EA maintained a direct effect on
the severity of COVID-19 after controlling all other related
exposures, except income and sedentary behavior (Figure 6).

DISCUSSION

In this study, using both the SVMR and MVMR, we found
genetically higher EA was related to a lower risk of susceptibility,
hospitalization, and severity of COVID-19.

Using data from UK Biobank, a prior study reported that
lower EA was correlated with a higher COVID-19 infection
risk [relative risk (RR) 2.00, 95% CI 1.66–2.42] (13), indicating
EA might be a possible predictor for COVID-19 infection.
However, the sample size of this study was relatively small,
with only 948 cases enrolled, making their results less reliable.
While in this study, using the largest GWAS of EA and
latest summary statistics for COVID-19, we have sufficient
statistical power and found that EA is correlated with COVID-
19 susceptibility. The underlying mechanism between EA and
COVID-19 susceptibility could be partly explained by frontline
jobs usually without a requirement of an advanced degree
(37), thus individuals with lower EA being more likely to be
infected. Second, people with lower EA tend to have a lower
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FIGURE 4 | The MVMR forest plot of EA on COVID-19 hospitalization controlling intelligence, income, body mass index, vigorous physical activity, sedentary behavior,

smoking, and alcohol consumption separately. COVID-19, coronavirus disease 2019; OR, odds ratio; MVMR, multivariable Mendelian randomization; EA, educational

attainment.

FIGURE 5 | The SVMR forest plot of EA on COVID-19 severity using SNPs from (A) all the cohorts and (B) all the cohorts excluding 23andMe. COVID-19, coronavirus

disease 2019; MR, Mendelian randomization; OR, odds ratio; SNPs, single-nucleotide polymorphisms; IVW, inverse-variance weighted; SVMR, single-variable MR;

EA, educational attainment.

socioeconomic status. As a result, they are more likely to live
with multiple close generations and, therefore, at greater risk of
contracting COVID-19 (4).

Hospitalization is another important COVID-19 outcome
and the population with lower EA was reported at a higher
rate of hospitalization in a prior observational study (38).
However, a major disadvantage of this study is that they only
used data from 5 New York City boroughs and their sample
might not be representative enough. While in this study, this
shortcoming was overcome and we found that EA was a
predictor for COVID-19 hospitalization in both the SVMR and
MVMR. In addition to COVID-19, EA has been identified as a
risk factor for hospitalization among many infectious diseases
such as pneumonia and bacteremia (39, 40). Data from a

Danish population-based case–control study indicated that the
population with a short duration of education had a substantially
higher risk of bacteremia than those with long duration (39).
The underlying mechanism between lower EA and higher risk
of hospitalization might be mediated by overcrowding, poor
housing conditions, and hygienic practices.

In addition, this study also found that EA was a predictor
for COVID-19 severity, which was in accordance with one
prior MR study from Japan (41). However, comparing with
the study from Japan, we applied the latest 6th round of
COVID-19 summary statistics in this study with a larger sample.
Several hypotheses are elucidating the mechanism between EA
and COVID-19 severity. First, individuals with lower EA and
socioeconomic positions are more likely to be affected by job
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FIGURE 6 | The MVMR forest plot of EA on COVID-19 severity controlling intelligence, income, body mass index, vigorous physical activity, sedentary behavior,

smoking, and alcohol consumption separately. COVID-19, coronavirus disease 2019; OR, odds ratio; MVMR, multivariable Mendelian randomization; EA,

educational attainment.

stress such as unemployment, which might lead to a higher
risk of immune system disruption and comorbidities (42). So
far, both the weak immunity and the presence of comorbidities
are recognized risk factors of COVID-19 severity (43, 44).
Besides, population with lower EA is more likely to have
unhealthy behaviors such as smoking and an unbalanced diet
(45), while these unhealthy behaviors have been recognized
as risk factors of COVID-19 mortality or severity (46, 47).
Additionally, lower EA generally correlates with lower income
and socioeconomic status, which means that they have limited
access to healthcare (48) and once they are infected, they
might not get treatment in time and turn to be critically ill or
even dead.

As for the MVMR, we found that EA still maintained its
effects on COVID-19 outcomes under almost all the conditions.
This showed that the effects of EA were generally independent
of these exposures. One limitation of our MVMR was that
part of the conditional F-statistic was relatively low. However,
since there was partial overlap, the conditional F-statistic
might not be accurate enough and should be interpreted
cautiously (21).

This study has several strengths. First, using the largest GWAS
of EA with 1.1 million participants and the latest summary
statistics for COVID-19 from the 6th round of the COVID-19
HGI, we have enough statistical power. Second, although MR
study is still prone to potential sources of bias, it is generally
less vulnerable to confounding factors than observational studies.
Third, in addition to the SVMR, we also conducted the MVMR
analyses and results showed that the effects of EA on COVID-19
outcomes were generally independent of some other exposures.
However, this study could not be devoid of limitations. First,
since individuals with no or mild symptoms are less likely
to test for COVID-19 and there might be potential selection

bias in this study. Second, COVID-19 outcome ascertainment
methods were not exactly the same among all the cohorts in
the COVID-19 HGI, leading to the potential heterogeneity.
However, we were unable to estimate how these differences might
influence our findings since we only had access to the overall
summary statistics. Third, in order to increase the sample size
and statistical power, we used the overall COVID-19 HGI GWAS
in our primary analyses, which was conducted on mixed ancestry
and might lead to some potential population stratification biases.
However, we have conducted sensitivity analyses using the
summary statistics for European only. Fourth, one prior study
reported that using GWAS of education-related traits might be
biased from population stratification (49). Another limitation of
our MR is the partial overlap of participants (e.g., UKB) in the
exposure and outcome datasets, which might lead to possible
bias (50). However, bias caused by sample overlap would likely
to be minimal for both the continuous and binary outcomes
(50) and it has also been shown that 2-sample MR methods may
be safely used in single sample provided the data are derived
from large biobanks (51), as is the case in our analysis. Last,
EA is a complex phenotype and might correlate with some
cofounders. Although we observed no directional pleiotropy
and the MVMR analyses also showed that the effects of EA on
COVID-19 outcomes were generally independent of some other
exposures, it is still possible that confounding and pleiotropymay
be present.

CONCLUSION

Our MR analyses indicated that EA is a predictor for
susceptibility, hospitalization, and severity of COVID-19 disease.
Population with lower EA should be provided with a higher
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prioritization of public health resources to decrease themorbidity
and mortality of COVID-19.
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