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Background: Attempts to quantify effect sizes of non-pharmaceutical interventions

(NPI) to control COVID-19 in the US have not accounted for heterogeneity in social or

environmental factors that may influence NPI effectiveness. This study quantifies national

and sub-national effect sizes of NPIs during the early months of the pandemic in the US.

Methods: Daily county-level COVID-19 cases and deaths during the first wave (January

2020 through phased removal of interventions) were obtained. County-level cases,

doubling times, and death rates were compared to four increasingly restrictive NPI

levels. Socio-demographic, climate and mobility factors were analyzed to explain and

evaluate NPI heterogeneity, with mobility used to approximate NPI compliance. Analyses

were conducted separately for the US and for each Census regions (Pacific, Mountain,

east/West North Central, East/West South Central, South Atlantic, Middle Atlantic and

New England). A stepped-wedge cluster-randomized trial analysis was used, leveraging

the phased implementation of policies.

Results: Aggressive (level 4) NPIs were associated with slower COVID-19 propagation,

particularly in high compliance counties. Longer duration of level 4 NPIs was associated

with lower case rates (log beta −0.028, 95% CI −0.04 to −0.02) and longer doubling

times (log beta 0.02, 95% CI 0.01–0.03). Effects varied by Census region, for example,

level 4 effects on doubling time in Pacific states were opposite to those in Middle

Atlantic and New England states. NPI heterogeneity can be explained by differential

timing of policy initiation and by variable socio-demographic county characteristics that

predict compliance, particularly poverty and racial/ethnic population. Climate exhibits

relatively consistent relationships across Census regions, for example, higher minimum

temperature and specific humidity were associated with lower doubling times and higher

death rates for this period of analysis in South Central, South Atlantic, Middle Atlantic,

and New England states.
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Conclusion and Relevance: Heterogeneity exists in both the effectiveness of NPIs

across US Census regions and policy compliance. This county-level variability indicates

that control strategies are best designed at community-levels where policies can be tuned

based on knowledge of local disparities and compliance with public health ordinances.

Keywords: SARS-CoV-2, non-pharmaceutical intervention (NPI), doubling time, mortality rate, United States

INTRODUCTION

During the first COVID-19 wave (15th January to 31th May
2020), the disease spread rapidly across the globe, infecting
over 3 million people with the SARS-CoV-2 virus. One-
third of all reported cases and one-quarter of all deaths
were in the United States. Public health interventions to
reduce the spread of COVID-19 in the US varied in timing
and level of aggressive measures undertaken. No official US
policy existed to prevent COVID-19 transmission until January
31, 2020, when a presidential order blocked the entry of
non-US citizens into the US traveling from China. The
state of Washington declared the first State of Emergency

(February 29), followed by California (March 4) and Maryland
(March 5); however, many counties implemented restrictive
policies prior to state action. For example, three counties in

Washington (King, Pierce, Snohomish) and four in Arkansas
(Grant, Jefferson, Pulaski, Saline) ordered school closings on
March 12 vs. statewide closures on March 17; counties in
Pennsylvania, California, and New Jersey closed non-essential

businesses prior to the state; and counties in California
and Idaho issued restrictions on mass gatherings before
state policies.

Early action by counties was motivated by both the
ability to legislate response and the multifaceted issues that
impact disease risk at local levels. Such issues include racial
disparities, with a disproportionate number of Black and
Hispanic Americans reported to be infected or dying (1–3), urban
vs. rural characteristics that influence transmission and policy
implementation (4), and disease spillover from neighboring
counties, which can be exacerbated by economic disparities and
shared environmental risks (5). There is growing consensus that
SARS-CoV-2 is an airborne pathogen, spread primarily through
respiratory aerosols (6–8) that can be influenced by both micro-
and macro-environments. Much work has focused on indoor
micro-environments to help understand superspreading events,
such as in restaurants, call centers, and large social gatherings
(9–11). The relationship between COVID-19 transmission
and macro-environmental factors is more difficult, with early
work evaluating relative humidity (RH), temperature, and UV
exposure; however, findings have varied with some studies
finding no effect (12), inverse relationships (13), or mixed effects
(14, 15). Elevated humidity has been associated with an increase
in organic aerosols and higher levels of small particulate air
pollutants (PM2.5, PM10, and O3) (16, 17), which have been
correlated with transmission (18, 19); however, the simultaneous
use of RH and temperature in models of viral respiratory illness is
not recommended due to their direct functional relationship (20).

Among other factors, the absence of vaccines during the
COVID-19’s first wave resulted in the application of non-
pharmaceutical interventions (NPI, also known as community
mitigation strategies) to control COVID-19. Unfortunately,
without a randomized trial to quantify the effect size of
NPIs or the potential causes of heterogeneity across different
regions of the US, policymakers relied on modeling studies
and early evidence from Asia to guide decisions. These
included susceptible-exposed-infectious-recovered (SEIR)
models attempting to quantify the effects of isolation and
contact tracing (21) and how varying NPI effectiveness may
influence demands on critical care resources (22); and studies in
Wuhan and Hong Kong reporting how strict interventions (i.e.,
quarantine, social distancing, shelter in place and active case
detection) reduced the COVID-19 reproductive number (R0)
(23, 24). Over the past year, several studies have attempted to
quantify NPI effects, with a recent meta-analysis summarizing
studies from around the world that quantified how various
strategies helped contain COVID incidence (25). In the US,
the majority of studies trying to quantify NPI effects have
focused on the state-level (i.e., state-level policies impacting
state-level cases and deaths) (26–29). For example, White and
Hebert-Dufresne (27) analyzed five state-level policy effects,
finding that only restaurant restrictions significantly correlated
with higher doubling times; Chernozhukov et al. (26) study four
state policies using a structural equation modeling approach,
showing important effects of masking, business closures, and
stay-at-home orders on both cases and deaths; and Auger (28)
studied the effect of statewide school closures on COVID-19
cases and deaths using a negative binomial interrupted time
series analysis, finding a 62% decline in cases and 58% decline
in mortality following school closure. However, these studies
ignore county-level heterogeneity and restrict their analyses to a
specific set of policies without considering the joint effect of two
policies implemented simultaneously. Aggregating county-level
data ignores important social determinants as well as the reliance
on county governments by states to make essential decisions
regarding policy implementation and enforcement that explain
variations in NPI effectiveness (29, 30). The most comprehensive
county-level analysis to date in the US was conducted by
Ebrahim et al. (30), who found both widespread county-level
variation in policies and identified business closures as having
the most important effect on COVID-19 cases; however, this
study was limited to just one-third of US counties and relied on
the estimation of R0 rather than using reported cases.

The goal of this study is to evaluate national and sub-national
effects of the four levels of NPIs using county-level data on
policies, cases and socio-environmental factors during the first
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wave in the US until implementation to Phase 1 reopening
(lifting of policies), if specified, otherwise to May 29. We
leverage the phased implementation of policies at the county
level, using a stepped-wedge cluster-randomized trial (SW-CRT)
framework (31). We quantify NPI effects on COVID-19 daily
case incidence, doubling time, and reported deaths across nine
US Census regions.

METHODS

Outcome Data
Multiple data sources were used to confirm county-level daily
cases and deaths from SARS-CoV2 infection. Data from the
Johns Hopkins University Center for System Science and
Engineering Coronavirus Resource Center (JHU-CSSE, https://
coronavirus.jhu.edu/) were compared to county data reported
on state health department’s websites, using the state data when
discrepancies were noted (i.e., counties from 34 states using
the JHU-CSSE data were discrepant with state-reported county
data). In addition, any county whose cumulative cases or deaths
declined over time was flagged and adjusted using state- or
county data. The final data are counties from all 50 US states
and the District of Columbia extending from January 22 through
May 29, 2020. US territories (American Samoa, Guam, the
Northern Mariana Islands, Puerto Rico, and the U.S. Virgin
Islands) were excluded.

Policy Data
The effective date of each public health intervention and the
phased reopening at the state and county levels was initially
extracted from online policy databases (32–36). For discrepancies
or missing county policies, we obtained policy dates in two
steps: (1) searching the county’s state government website for
reported county policies; and (2) if state websites did not
report county policies or if the county reported at least one
COVID-19 case prior to the issuance of any state order, we
conducted a systematic search of gray literature for each county’s
policies, focusing on county websites (if existent) and local news
websites. We categorized 12 policies into 4 levels of disease
control following the New Zealand alert system and Oxford
classification (37, 38): Level 1 (low)—governor declaration of
a State of Emergency; Level 2 (moderate)—school closures,
restricting access (visits) to nursing homes, or closing restaurants
and bars; Level 3 (high) – non-essential business closures,
suspending non-violent arrests, suspending elective medical
procedures, suspending evictions, or restricting mass gatherings
of at least 10 people; and Level 4 (aggressive)—sheltering in place
/ stay-at-home, public mask requirements, or travel restrictions.
These levels are mostly cumulative, meaning counties tended
to implement policies sequentially and jointly, for example,
67% of counties implemented almost all level 3 policies at the
same time, while 23% implemented them within 7 days of their
initial level 3 policy. Note that our initial analysis found no
effect of the two federal policies blocking entry to the US for
non-US citizens (i.e., from China issued January 31 and from
Schengen European countries issued March 11) on COVID-19
morbidity or mortality propagation; thus, we classified them

as the “non-intervention” period. Finally, NPI effects were
measured up to 5 days after county reopening, defined as
opening non-essential businesses (with capacity restrictions),
allowing public gatherings of more than 10 people, opening
public spaces, or easing shelter in place orders. All but 12 states
entered some phase of reopening by May 29 and six states
allowed counties to open at their discretion (CA, IA, MD, NE,
OR, WY).

Policy compliance was measured by comparing the number
of trips recorded in each county from 2020 to 2019 based on
data from the Maryland Transportation Institute and Center
for Advanced Transportation Technology (https://data.bts.gov/
Research-and-Statistics/Trips-by-Distance/w96p-f2qv). Several
studies have demonstrated the utility of mobility data as proxy
measures of policy compliance (30, 39–41). Using results from
Nouvellet et al. (42), we defined gradients of mobility decline
associated with reductions in R0. A four-level variable for
compliance was created, where non-compliance (level 0) was
defined as a mobility difference from 2019 to 2020 of <15%,
low compliance (level 1) as a decline in mobility of 15–30%,
moderate compliance (level 2) as a decline of 30–50% and
high compliance (level 3) as mobility declines >50%. We then
summed the time-lagged 10-day compliance and divided by
maximum compliance (30) to create a scaled measure, from 0
to 10, representing the average level of policy compliance over
the past 10 days. A value closer to 10 indicates high compliance
(low mobility compared to 2019), while values closer to zero
indicate lower compliance (more mobility). We expect to see
values close to zero prior to the initiation of polices and as policies
were removed.

Demographic and Environmental Data
Demographic data are from the US Census Bureau. This
includes county-level age, sex and racial composition,
migration, and educational data from the 2018 American
Community Survey (43), land area to compute population
density (1,000 people per square-km) (44), and poverty
(45). Analyses were stratified by the nine US Census regions
(Pacific, Mountain, West North Central, East North Central,
West South Central, East South Central, South Atlantic,
Middle Atlantic, New England) to evaluate differential
policy effects.

We use the USDA Rural-Urban Continuum Code that
categorizes counties into nine levels of rural-urban characteristics
(46). Three levels indicate metropolitan areas of (1) 1 million or
more people, (2) 250,000 to 1 million people, and (3) fewer than
250,000 people. Four urban levels classified by size and adjacency
to a metropolitan area: (4) 20,000 or more people adjacent; (5)
20,000 or more, not adjacent; (6) 2,500 to 19,999, adjacent; and
(7) 2,500 to 19,999, not adjacent. And two rural levels: (8)<2,500
population, adjacent to a metropolitan area; and (9) <2,500
population, not adjacent.

Environmental data are from the North American Land Data
Assimilation System (NLDAS). The NLDAS provides several
daily hydrometeorological measures, for which we define 10-
day temporal lags of minimum air temperature (Celsius), specific
humidity (g/kg) and bias-corrected shortwave radiation (W/m2).
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Statistical Methods
Outcomes were defined at the county level as the number of new
daily cases, new deaths, and case doubling time. Doubling time is
the number of days required to double the cumulative case count
on a particular day. Policy levels were time-varying, coded as a
1 while a level was active and 0 otherwise, and as the number of
days since an intervention level was initiated.

Descriptive differences in policy implementation were
examined using Chi-square and t-tests. To evaluate intervention
levels and socio-environmental factors, negative binomial mixed
models were fit using an approach similar to a Hussey and
Hughes SW-CRT analysis (47). The model is specified as follows:

ln
(

yit
)

= ln (Ni) + x0β0 + x1β1 + . . . xpβp + ui

Where yit is the outcome (cases, deaths, doubling time) for
county i on study day t; ln(Ni) is the offset where Ni is the
population density for county i; parameters xpβp represent the
fixed predictors (xp) and their associated parameters; and ui is
the random county effect. For the new cases and death models,
we use population density as the offest, but no offset is included
for doubling time. In addition, for case and death models,
period (study day) is included as a continuous variable while
the doubling time model uses period as a categorical variable
(similar to the SW-CRT modeling approach). When entered
as a continuous variable, we evaluated inclusion of linear and
quadratic period terms. Each outcome was fit for the country as
a whole and separately for each US Census region, combining
East andWest North Central states, East andWest South Central
states, and Middle Atlantic and New England states. Finally, to
test policy effects, we evaluate the time-varying policy variables,
i.e., duration of intervention, which are entered into case and
doubling time models simultaneously, but as individual time-
varying policy effects in death rate models (i.e. comparing policy
2 vs. 1 or nothing, policy 3 vs. 0–2, etc.). Since there are
four policies, we use the Holm-Bonferroni multiple comparisons
correction to evaluate significance (48).

Case and doubling time models were identified using one
randomly selected census region and then evaluating model
fit using AIC (49). Variables considered include: rural-urban
continuum code; minority (Black and Hispanic) and total
population density; net county migration rate in 2018; percent
of the 2018 county population Black (alone or mixed race),
Hispanic (alone or mixed race), living in poverty, or with a
college education or higher; and climate parameters (10-day
lags for minimum temperature, specific humidity, and UV
radiation). Once a final model was determined, it was used
to fit to all regions combined (adding an indicator for census
region) and for each individual census region. Final models are
shown in the full regression tables (Supplementary Table B0 for
the country as a whole; Supplementary Tables B1, C1, D1 for
COVID-19 models of cases, doubling time, and deaths by Census
region, respectively). Climate variables were evaluated only using
doubling time and death outcomes. Final models were fit using
SAS 9.4 with Gaussian adaptive quadrature.

Secondary to our evaluation of policy effects, we use the above
models to describe social and environmental disparities observed

across Census regions. In addition, we conduct an analysis on
factors associated with policy compliance by comparing change
in county compliance during the first 15 and 30 days of March
to socioeconomic and environmental characteristics. Therefore,
since we define compliance as a 10-day lagged sum of compliance,
we fit two models to estimate factors associated with compliance
change from March 1 to 15 (i.e., change compliance from April
21-March 1 to March 5–15) and change from March 1 to 30.
The compliance model includes random county effects within
states and estimates both standardized and non-standardized
beta coefficients. Standardized Beta coefficients only standardize
predictor variables, not the response; therefore, the interpretation
of the standardized beta is a one standard deviation unit change
in a covariate being associated with a change in compliance. We
note that onMarch 1, 98.8% of counties did not have any COVID
policies; by March 15, 50.9% had enacted at least policy level 2;
and byMarch 30, 98.9% of counties established policy level 3 or 4.

RESULTS

We obtained complete data from 3,142 counties. 339 counties
(10.8%) from 26 states created policies prior to their state
government, the majority (211 or 62%) were located in
Texas, Nebraska, Missouri, and Pennsylvania. Counties initiating
policies prior to the state were more likely to be located in
metropolitan areas (17.5% metro counties vs. 6.8% non-metro
countries adopted early policies, p < 0.001), have populations
with higher educational levels, higher percentages of Hispanic
population, and fewer people living in poverty (respectively,
counties with early policy adoption had 26.3, 15.9, and 13.8% of
their populations with a college degree, Hispanic descent [mixed
or alone], and living in poverty, vs. 21.0, 8.5, and 15.3% for
countries that did not adopt early policies, p < 0.001).

Speed of policy adoption varied, with fewer days spanning
initial case detection and initiation of NPIs in counties located in
North and South Central states, while counties in New England,
Middle Atlantic, and Pacific states had more days between initial
case detection and policy initiation (Figure 1). However, in these
later three regions, the first COVID-19 case was detected an
average of 10 days prior to North and South Central states.
Counties in these three regions (Pacific, Middle Atlantic and New
England) had the longest duration of level 1 policies, but the
shortest duration of time from initial case detection to the most
strict (level 4) policies (Table 1). County and state governments
in New England and Mountain states were more likely to initiate
policies before the first reported COVID-19 death compared to
other regions (data not shown). Once initiated, policy duration
averaged 5.7, 3.6, 11.9, and 44.3 days for levels 1–4, respectively,
with significant variation by state and some states having zero
days for any particular level (Supplementary Table A1, Table 1).

Compliance with policies was highly variable. As expected,
prior to the initiation of most policies (January and February
2020), compliance measures were low (i.e., no policies to
follow). Most states and counties initiated strict policies in
March 2020, which is reflected by the sharp increase in
compliance in most regions during this month (Figure 2).
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FIGURE 1 | Time between first COVID-19 case to policy initiation by US census region (mean days and 95% confidence interval). Policies classified under each level

of intervention: Level 2—school closures, restricting access to nursing homes, closing restaurants and bars; Level 3—non-essential business closures, suspending

non-violent arrests, suspending elective medical procedures, suspending evictions, restricting mass gatherings of at least 10 people; Level 4—sheltering in

place/stay-at-home, mask requirements in public, travel restrictions. States classified for each region are as follows: Pacific—CA, WA, OR, HI, AK; Mountain—MT, WY,

ID, NV, UT, CO, AZ, NM; West North Central—ND, SD, NE, KS, MN, IA, MO; East North Central—WI, IL, MI, IN, OH; West South Central—TX, OK, AR, LA; East

South Central—KY, TN, MS, AL; South Atlantic—FL, GA, SC, NC, VA, WV, DC, MD, DE; Middle Atlantic—NY, PA, NJ; New England—ME, CT, NH, MA, CT, RI.

TABLE 1 | Median policy duration by US census region.

Census region Level 1 Level 2 Level 3 Level 4

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Pacific 11 (8–13) 2 (1–3) 3 (0–6) 33 (14–52)

Mountain 4 (4–5) 4 (1–4) 6 (0–8) 30 (11–48)

North Central 6 (5–7) 4 (2–4) 8 (4–14) 23 (0–45)

South Central 6 (4–6) 2 (1–5) 9 (5–13) 31 (14–47)

South Atlantic 5 (4–6) 4 (1–8) 10 (6–15) 27 (10–44)

Middle Atlantic & New England 9 (5–10) 3 (1–4) 2 (0–5) 34 (15–52)

In Middle Atlantic and New England States, there was
high, homogenous compliance with few counties reporting
moderate changes to mobility; however, counties in Mountain,
West North Central, East South Central and South Atlantic
exhibited high heterogeneity in compliance. Even within states,
considerable heterogeneity was observed; for example, four
states did not have any counties implement level 4 policies:
Iowa, Nebraska, North Dakota and South Dakota. Among
these four, policy compliance increased rapidly, but only
counties in Iowa maintained high and relatively homogenous
policy compliance across the state (Supplementary Table A1,
Supplementary Figure A1). Similarly, four states had over 70

days with a level 4 policy (California, Hawaii, Illinois, New Jersey)
with three experiencing high, homogenous compliance across
the state and one (Illinois) having increasing heterogeneity in
compliance over time (Supplementary Figure A1).

Policy Effects on COVID-19 Propagation
and Mortality
Case Rates
Model results for the country as a whole indicate that, under
conditions of high policy compliance (scaled value of 8),
intervention level 4 achieved a 50% reduction in COVID-19
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FIGURE 2 | Compliance with policy interventions for US counties by census region. Each dot represents a county in the US and each county has a daily time series of

compliance. The red line is a fitted penalized b-spline. US Census Regions: Pacific—CA, WA, OR, HI, AK; Mountain—MT, WY, ID, NV, UT, CO, AZ, NM; West North

Central—ND, SD, NE, KS, MN, IA, MO; East North Central—WI, IL, MI, IN, OH; West South Central—TX, OK, AR, LA; East South Central—KY, TN, MS, AL; South

Atlantic—FL, GA, SC, NC, VA, WV, DC, MD, DE; Middle Atlantic—NY, PA, NJ; New England—ME, CT, NH, MA, CT, RI.

case rates in 16 days (95% CI for 16-day case reduction: 40.2–
61.8%), compared to 22 days for intervention level 3 (95%
CI: 35.1–71.5%, Figure 3, Table 2). Intervention levels 1 and 2
never achieve significant reductions in case rates; in fact, longer
duration of level 1 policies was positively associated with cases.
Under conditions of low compliance (scaled value of zero), only
duration of level 4 policies achieved a significant decline, while
level 1 policies were inversely associated with COVID-19 cases.
The time needed for level 4 policies to achieve a 50% decline
increased to 20 days under these conditions.

Policy effects were variable across US Census regions
(Table 3). For an average level of policy compliance (scaled
value of 6), intervention level 4 was significantly associated
with declines in COVID-19 case rates in Pacific and Mountain
regions, yet did not achieve significance in other regions (Table 3,
Supplementary Figure B1, Supplementary Table B1). Further,
intervention level 3 was associated with a reduction in cases in
the Pacific region, but an increase in cases inNorth Central States.
Intervention level 1 was the only intervention not associated with
any changes to COVID-19 rates across all US Census regions.

As noted, policy compliance impacted policy effectiveness
at national and Census region levels. Each unit increase in

compliance was associated with a log beta decline in case
rates of 0.002 and 0.001 for policy level 3 and 4, respectively
(95% CI, −0.0024 to −0.0016; −0.0012 to −0.0008 respectively)
at the national level. Compliance during level 4 policies was
significantly associated with reduced case rates across all US
Census regions (Supplementary Table B1).

Doubling Time
For the country as a whole, only duration of policy level
4 achieved statistical significance to increase doubling time
(Table 2). Levels 2 and 3 had p-values under 0.05, but after
adjusting for multiple comparisons, we cannot reject the null
hypothesis of no effect; however, it is noteworthy their effect sizes
were positive, indicating that the level 2 and 3 policies trended
toward reduction of overall COVID-19 propagation. Each day on
intervention level 4 was associated with an increase in log beta
doubling time of 0.02 (95% CI: 0.01–0.03, p < 0.0001). When
calculating the predicted doubling time from the data, level 4
policies achieve a peak 40 days after initiation with an estimated
doubling time of 24 days (95% CI, 19.1–29.5) compared to 23
days after initiation of level 3 policies for an estimated doubling
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FIGURE 3 | Mean effect of each policy level on the COVID-19 case rate if the policy was implemented for 15 days, low and high compliance. The solid blue line is the

mean effect size for each intervention with 95% confidence intervals (shaded blue). A value of 1 represents no change, 1.5 is a 50% increase in cases and 0.5 is a

50% decrease. The left column is for low compliance (no change in behavior in 2020 compared to 2019, scaled value 0) and the right is for high compliance (scaled

value 8). Effect sizes are from negative binomial models reported in Supplementary Table B0.

time of 17.6 days (95% CI, 14.5–22.3) (Figure 4). Levels 1 and 2
never achieve increased doubling times.

By US Census region, duration of level 4 policies in Pacific,
Mountain and North Central states have a positive effect on
doubling time, but in other regions, duration of level 4 policies
reduced doubling time (Table 3, Supplementary Table C2). In
addition, level 3 policy duration was significantly related to
longer doubling times in Pacific andMountain states, but shorter
doubling times in Middle Atlantic and New England states.
Level 1 policy duration was significantly associated with shorter
doubling times in South Central, South Atlantic, Middle Atlantic
and New England states, and longer doubling times in Pacific and
North Central states.

Policy compliance was an important factor to explain
doubling time. At the national level, higher policy compliance
increased doubling time (log beta 0.036, 95% CI 0.03–0.04), yet
higher compliance during policies 1 through 3 reduced doubling
time. In other words, both policy level 3 and compliance increase
doubling times; however, as compliance increases, the effect of
policy level 3 declines. By Census region, the effect of compliance
varied, increasing doubling time in North Central and South
Atlantic states, but reducing doubling times in others.

Deaths
This analysis includes data from 73,676 COVID-19 deaths, the
majority in Middle Atlantic (36%), East North Central (19%),
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TABLE 2 | Model predicted policy effects on case rates, doubling time, and death rates for all US counties.

Case rates Doubling time Death rates

Log beta (95% CI) Log beta (95% CI) Log beta (95% CI)

Fixed intervention effect

Level 1 0.768 (0.56–0.97)††† 0.059 (−0.03–0.15) 2.371 (1.18–3.57)††

Level 2 1.373 (1.14–1.6)††† 0.082 (−0.03–0.19) 2.999 (1.8–4.2)†††

Level 3 1.516 (1.28–1.75)††† 0.072 (−0.04–0.19) 3.187 (2–4.38)†††

Level 4 1.707 (1.47–1.94)††† 0.143 (0.03–0.26)† 3.539 (2.35–4.72)†††

Duration of intervention effect

Level 1 0.03 (0.01–0.05)†† 0.004 (−0.01–0.01) −0.018 (−0.05–0.01)

Level 2 −0.018 (−0.04–0) 0.012 (0–0.02)† 0.028 (0–0.05)†

Level 3 −0.012 (−0.02–0) 0.011 (0–0.02)† 0.062 (0.04–0.08)†††

Level 4 −0.032 (−0.04–0.02)††† 0.020 (0.01–0.03)††† 0.056 (0.04–0.07)†††

†††p < 0.0001, ††p < 0.01, †p < 0.05.

The log beta values represent the log change in the outcome when an intervention policy is in place or the change for the number of days the policy is in effect. Results are from

three negative binomial models using all counties from the US (Supplementary Table B0). Case and Doubling Time Models included the same covariates, except for the addition of

population density in the Doubling Time Model. The model for Death Rates was reduced to ease model fit.

New England (15%), South Atlantic (11%), and Pacific (7%)
states. For the country as a whole, duration of policy levels
3 and 4 were both significantly associated with higher death
rates (Table 2); however, the distribution of deaths indicate
potential heterogeneity. Indeed, model results by Census region
indicate duration of levels 1 and 2 had no effect on death
rates for any Census region (Supplementary Table D1); level
3 policy duration was significantly related to lower COVID-
19 death rates in North Central states, yet higher death rates
in South Central, South Atlantic, Middle Atlantic, and New
England states; and duration of level 4 was only related
to lower death rates in Pacific states (other regions with
p-values under 0.05 were not significant after the Holm-
Bonferroni adjustment). We note that models for death rates
had to be simplified with fewer covariates to allow for
model convergence.

The effect of policy duration on death rates is sensitive to
measures of compliance. This is particularly true for level 3
policies as seen in Figure 5, where high levels of compliance
resulted in significantly lower death rates that low levels of
compliance in North Central, South Central, and South Atlantic
states. Policy compliance did not influence the effectiveness of
other policies.

Social and Environmental Disparities
As noted in Methods, we conducted a secondary evaluation
of social and environmental factors associated with
COVID-19 cases and deaths, as well as factors related
to policy compliance. These variables include county-
level measures of: poverty, unemployment and income;
average level of educational attainment; socio-demographic
characteristics (population density, minority population,
%Black, %Hispanic); and hydro-meteorological characteristics.
Model results related to policy compliance are reported in
Table 4.

Poverty
Poverty and income data used in this study are from the
US Census Bureau’s Small Area Income and Poverty Estimate
(SAIPE). At the national level, as expected, higher levels of
poverty are associated with shorter doubling times and higher
death rates, yet, counterintuitively, lower case rates. When
evaluating poverty effects by Census region, poverty was not
associated with doubling times in any region, but was positively
associated with case rates inMountain states and inversely related
to cases in all other regions. In contrast, elevated poverty was
consistently associated with elevated COVID-19 death rates in all
regions. Although poverty was not associated with 15-day change
in compliance, a county’s poverty level was the most important
factor explaining low compliance with any policy after 30 days.

Education
Education data are 5-year averages estimated by the American
Community Survey. At the national level, the percent of the
county with at least a Bachelor’s degree was not associated with
case rates, but was associated with increased doubling times. By
Census region, higher education was consistently associated with
increased doubling time, yet variability existed when analyzing
case rates with education associated with higher case rates
in Mountain, Middle Atlantic, and New England states, but
lower cases in South Central states. Higher education was also
consistently associated with increased policy compliance, for
both the 15 and 30 day changes in compliance.

Socio-Demographic
Social and demographic data are county racial, ethnic and
total population characteristics: %Black, %Hispanic, population
density, and the USDAUrban-Rural Classification. None of these
factors were identified as related to death rates and population
density was not evaluated in case rate models as population size
is used as an offset in the model. At the national level, %Black
and %Hispanic populations were associated with elevated case
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TABLE 3 | Multivariate model results* for case incidence and doubling time by US census region.

Pacific states. Mountain states North central states South central states South Atlantic states Middle Atlantic & New England

Log beta (95% CI) Log beta (95% CI) Log beta (95% CI) Log beta (95% CI) Log beta (95% CI) Log beta (95% CI)

Case incidence

model results

10-Day

compliance

0.328 (0.24–0.42)††† 0.222 (0.15–0.29) ††† −0.039 (−0.09–0.01) 0.08 (0.02–0.14)† 0.25 (0.19–0.31)††† 0.332 (0.23–0.43)†††

Duration of intervention (days)

Level 1 0.016 (−0.03–0.06) 0.1 (0.02–0.18)† 0.013 (−0.04–0.07) 0.033 (−0.03–0.1) 0.047 (−0.01–0.1) 0.076 (0.03–0.12)††

Level 2 −0.095 (−0.2–0.01) −0.2 (−0.27–0.13)††† −0.021 (−0.07–0.02) −0.077 (−0.13–0.02)†† 0.061 (0.02–0.1)†† 0.16 (0.09–0.23)†††

Level 3 −0.103 (−0.21–0.005) −0.037 (−0.09–0.0143) 0.049 (0.03–0.07)††† 0.015 (−0.02–0.05) 0.034 (−0.01–0.08) 0.035 (−0.03–0.1)

Level 4 −0.147 (−0.18–0.11)††† −0.047 (−0.1–0.004) 0.028 (0.01–0.05)† 0.01 (−0.02–0.04) 0.001 (−0.04–0.04) 0.037 (−0.02–0.09)

10-day compliance* duration of intervention

Level 1 −0.002 (−0.01–0.004) −0.008 (−0.02–0.002) 0.009 (0.002–0.016)†† −0.007 (−0.01–0.001) −0.015 (−0.02–0.008)†† −0.01 (−0.02–0.001)†

Level 2 −0.013 (−0.03–0.003) 0.007 (0–0.014) 0.013 (0.01–0.018)††† 0.012 (0.01–0.019)†† −0.014 (−0.02–0.008)††† −0.016 (−0.03–0.007)††

Level 3 −0.013 (−0.02–0.001)† −0.004 (−0.01–0.002)††† −0.002 (−0.003–0.001)††† 0.001 (−0.001–0.003) −0.006 (−0.008–0.004)††† −0.012 (−0.02–0.005)††

Level 4 −0.002 (−0.003–0.001)††† −0.003 (−0.004–0.002)††† −0.001 (−0.001–0.001)††† −0.002 (−0.002–0.002)††† −0.001 (−0.001–0.001)†† −0.004 (−0.004–0.004)†††

Doubling time

model results

10–day

compliance

−0.072 (−0.119–0.024)†† −0.043 (−0.07–0.014)†† 0.126 (0.105–0.147)††† −0.012 (−0.034–0.009) 0.043 (0.025–0.062)††† −0.101 (−0.142–0.06)†††

Duration of intervention (days)

Level 1 0.077 (0.041–0.112)††† 0.001 (−0.045–0.048) 0.144 (0.112–0.177)††† −0.083 (−0.116–0.049)††† −0.058 (−0.085–0.032)††† −0.029 (−0.057–0)†

Level 2 0.265 (0.197–0.333)††† −0.029 (−0.11–0.052) 0.022 (−0.007–0.052) −0.105 (−0.133–0.077)††† −0.021 (−0.042–0.001) −0.085 (−0.172–0.003)

Level 3 0.361 (0.279–0.444)††† 0.116 (0.035–0.197)†† −0.002 (−0.022–0.019) −0.008 (−0.027–0.011) 0.013 (−0.008–0.034) −0.208 (−0.297–0.119)†††

Level 4 0.376 (0.305–0.447)††† 0.129 (0.048–0.21)†† 0.014 (−0.006–0.035) −0.027 (−0.044–0.009)†† −0.024 (−0.045–0.003)† −0.128 (−0.216–0.04)††

10-day compliance* duration of intervention

Level 1 0.003 (0.001–0.005)†† −0.004 (−0.008–0.001)† −0.022 (−0.024–0.02)††† 0.002 (0–0.004) 0.004 (0.002–0.006)††† −0.001 (−0.003–0.002)

Level 2 0.008 (0.002–0.014)† 0.011 (0.007–0.02)††† −0.005 (−0.007–0.003)††† 0.01 (0.008–0.012)††† −0.004 (−0.005–0.002)††† 0 (−0.003–0.003)

Level 3 0.011 (0.006–0.016)††† 0 (0–0.001) 0 (0–0) −0.003 (−0.003–0.002)††† −0.003 (−0.004–0.003)††† 0.008 (0.006–0.011)†††

Level 4 0.002 (0.002–0.003)††† 0.001 (0.001–0.001)††† 0 (0–0) 0.001 (0.001–0.001)††† 0.0002 (0–0)††† 0.003 (0.003–0.003)†††

†††p < 0.0001, ††p < 0.01, †p < 0.05.

*Results are from 2 separate sets of negative binomial models, six per set for each Census region. Estimates are log beta incidence rates where negative values indicate reductions in the outcome (i.e., lower case rates or lower doubling

time) and positive values indicate increases in the outcome. The full multivariate models are shown in Supplementary Table B1 for case incidence and Supplementary Table C1 for doubling time.
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FIGURE 4 | Model-predicted doubling time by policy intervention level. Model

predictions are from the final Doubling Time model shown in

Supplementary Table B0.

rates, which was consistent across Census regions. Case rates
were also consistently higher in metropolitan areas as well as
non-metropolitan areas with more than 20,000 people compared
to smaller counties (i.e., non-metro areas under 20,000 people
and rural counties). By Census region, %Black and %Hispanic
were both associated with elevated cases in North Central, South
Atlantic, Middle Atlantic, and New England states. %Black was
also associated with elevated cases in South Central states while
%Hispanic was associated with elevated cases in Pacific states.
Case rates by urban-rural classification varied considerably by
Census region: Pacific and South Atlantic states had similar
patterns with smaller counties having higher rates that larger
counties; Middle Atlantic and New England states had the
opposite patterns (large counties had higher rates compared
to smaller counties); and the other Census regions had mixed
patterns. Counties with the highest policy compliance levels
tended to have larger %Hispanic, lower %Black populations, and
be in counties with larger population sizes (i.e., non-metropolitan
counties with >20K people and larger).

Climate
Hydrometeorological data were used to define 10-day temporal
lags of minimum air temperature, humidity, and shortwave
radiation. The relationship between climate parameters
and COVID-19 was variable, and these relationships
often differed between case doubling time and deaths
(Supplementary Figures D1, D2). Solar radiation, for example,
which is frequently invoked as a negative forcing on COVID-19
transmission on account of its relationship with UV radiation
intensity (50, 51), is associated with increased case doubling
time (i.e., decreased transmission) in coastal regions but with

decreased doubling time in the North Central and South Atlantic
regions. For deaths, most northern census regions (Middle
Atlantic, New England, North Central, Mountain) had tend
toward decreased deaths with increased solar radiation, but
southern regions had mixed relationships.

Increases in specific humidity and minimum temperature
were associated with decreased doubling time and increased
deaths for the county as a whole (specific humidity: log beta
−0.006, 95% CI −0.009 to −0.003 for doubling time, 0.015,
95% CI 0.003–0.027 for deaths; minimum temperature: log
beta −0.005, 95% CI −0.006 to −0.003 for doubling time,
log beta 0.015, 95% CI 0.0075-0.0225 for deaths). In the
South Central, South Atlantic and Middle Atlantic/New England
Census regions, minimum temperature and specific humidity
exhibited the same inverse relationship with doubling time (i.e.,
higher values, shorter doubling times) and positive relationship
with death rates (higher values, higher death rates). Other regions
had contrasting relationships. For example, specific humidity
was significantly associated with lower doubling times in Pacific
states, but higher doubling times in North Central; however,
specific humidity had a (non-significant) downward trend with
death rates in those two regions.

Regarding policy compliance, after 30 days, no climate factors
were associated with compliance.

DISCUSSION

This study evaluates the effectiveness of four non-pharmaceutical
intervention categories on COVID-19 case rates, doubling time,
and deaths at the county level in the US, and the heterogeneity
that exists across Census regions. We find that during the first
wave of COVID-19, the most restrictive NPI policies (level 4)
were the most effective at reducing case rates and increasing
doubling time of COVID-19 compared to any other policy level.
In addition, we observed that higher levels of policy compliance,
as measured by changes in county-level mobility from 2019 to
2020, resulted in larger reductions in cases but lower increases
in doubling time for these restrictive NPI. Analysis of NPI
effectiveness across Census regions revealed strong variation
across regions and within states. Level 4 policies were associated
with reduced case incidence only in Pacific states and increased
doubling time only inMountain states, yet associated with higher
case rates in North Central States and lower doubling times in
multiple regions, noting in particular that the effect sizes for
doubling time in Mountain vs. Middle Atlantic/New England
states were exactly the same value but in opposite directions.

Surprisingly, duration of level 4 policies was associated with
higher rates of death at the national level, but when analyzed
separately by Census region, associated with lower rates of death
in Pacific, North Central, and South Atlantic states (also trended
to lower rates in Mountain and South Central regions, but was
not statistically significant). Given thanMiddle Atlantic and New
England states comprised 51% of all deaths reported during the
first wave, the relationship in these two regions likely dominated
the national trend. The initiation of level 4 policies was slowest in
these regions, allowing for both case and mortality momentum
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FIGURE 5 | Risk ratio and 95% confidence intervals of COVID-19 deaths by duration of policy for each US census region. Shaded areas represent the 95%

confidence interval for each region. US Census Regions: Pacific—CA, WA, OR, HI, AK; Mountain—MT, WY, ID, NV, UT, CO, AZ, NM; North Central—ND, SD, NE, KS,

MN, IA, MO, WI, IL, MI, IN, OH; South Central—TX, OK, AR, LA, KY, TN, MS, AL; South Atlantic—FL, GA, SC, NC, VA, WV, DC, MD, DE; Middle Atlantic—NY, PA, NJ;

New England—ME, CT, NH, MA, CT, RI.

that resulted in the positive association observed. It is clear
from Supplementary Table D1 that level 4 policies not only
reduced death rates in other regions, but higher compliance may
complement policy effectiveness.

Why do NPIs exhibit such variation in effects? As alluded
to above, policy compliance likely plays a key role, which we
measured as the change in mobility over a 10-day period in

2019 vs. 2020. It is not surprising that we find compliance to
be associated with enhanced policy effectiveness and reduced
COVID-19 burden, i.e., higher compliance was significantly
related to lower case rates and higher doubling times for
each day on level 4 policies in all Census regions, as well
as lower death rates in most regions during both level 3
and level 4 policies. However, we found considerable variation
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TABLE 4 | Socioeconomic characteristics associated with policy compliance (changes in mobility) during the first 15 and 30 days of March 2020.

Compliance change Compliance change

March 1 to March 15 March 1 to March 30

Beta (SE) Standardized beta (SE) Beta (SE) Standardized beta (SE)

Intercept 0.225 (0.547) 2.32 (0.253)††† 19.614 (0.982)††† 25.17 (0.338)†††

% Of county population: With Bachelor degree 0.056 (0.008)††† 28.68 (3.899)††† 0.097 (0.015)††† 49.44 (7.557)†††

Hispanic 0.009 (0.006) 6.66 (4.344) 0.028 (0.011)†† 21.50 (8.278)††

Black −0.012 (0.006)† −9.97 (4.916)† −0.015 (0.012) −11.99 (9.473)

Living in Poverty 0.024 (0.013) 7.94 (4.462) −0.114 (0.026)††† −38.35 (8.656)†††

Net migration rate −0.006 (0.006) −3.54 (3.505) 0.057 (0.011)††† 35.98 (6.788)†††

2018 County population density, 1,000 people/km2
−0.112 (0.098) −3.44 (3.021) 0.12 (0.191) 3.69 (5.877)

Rural-urban continuum

code (Ref = 9-Rural <2,500

people, not adjacent to

metro)

1—Metro >1 million people 1.025 (0.251)†† 19.35 (4.74)†† 5.431 (0.488)††† 102.48 (9.198)†††

2—Metro, 250 K-−1 million

people

1.869 (0.233)††† 33.83 (4.226)††† 6.13 (0.454)††† 110.96 (8.214)†††

3—Metro, <250K people 2.122 (0.226)††† 37.32 (3.97)††† 5.769 (0.439)††† 101.47 (7.721)†††

4—Non-metro, >20K

people, adjacent to metro

area

2.47 (0.258)††† 34.77 (3.635)††† 6.548 (0.502)††† 92.19 (7.065)†††

5—Non-metro, >20K

people, not adjacent to

metro area

2.429 (0.338)††† 22.58 (3.145)††† 6.771 (0.659)††† 62.95 (6.128)†††

6—Non-metro,

2,500–19,999 people,

adjacent to metro area

1.542 (0.197)††† 33.63 (4.298)††† 5.425 (0.383)††† 118.29 (8.357)†††

7—Non-metro,

2,500–19,999, not adjacent

to metro area

1.573 (0.203)††† 30.01 (3.878)††† 5.248 (0.396)††† 100.14 (7.55)†††

8—Rural, <2,500 people,

adjacent to metro

0.889 (0.244)†† 12.68 (3.485)†† 2.058 (0.476)††† 29.36 (6.789)†††

Minimum temperature −0.08 (0.017)††† −37.14 (8.103)††† 0.012 (0.031) 5.68 (14.249)

Solar radiation −0.003 (0.002) −6.84 (4.315) 0.002 (0.004) 3.56 (8.194)

†††p < 0.0001, ††p < 0.01, †p< 0 .05.

Results are from two separate models of compliance change over time, adjusting for within state county correlation. The interpretation of the standardized beta is a one standard deviation unit change in a covariate being associated

with a change in compliance.
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in compliance both within Census regions and within states
(Figure 2, Supplementary Figure A1) indicating that adherence
to policies has strong community and census-level mediating
factors. This is consistent with our findings that that compliance
varies by levels of poverty, educational level, racial/ethnic
composition, and rurality. Recent studies corroborate these
findings and also highlight the importance of perceived risk,
occupation, and local social pressures (52–55). Importantly, we
find poverty levels to be the most important factor in explaining
compliance, which was also found in other studies (52, 56). This
relationship between poverty, policy compliance, and COVID-
19 risk is tied to the overall literature of population vulnerability
and the burdens of low-income households to maintain food
security and financial stability during a time when businesses and
employment opportunities were closing (57).

Overall, the results of this study are consistent with
findings from Wuhan (23) and Europe (58) that reported
significant declines in the effective reproductive number
following implementation of NPIs that included quarantine,
travel restriction, shelter-in-place, school and business closures,
and social distancing. Results are also consistent with studies
in the US highlighting the effect of shelter-in-place (5, 59) and
closure of schools, restaurants and businesses (26–28). However,
in contrast to these studies, we combine multiple NPIs into an
ordered grouping of policies that tended to be implemented
simultaneously, thereby avoiding the potential biases in assigning
attributable risk reduction to individual policies when their
roll-out occurs concurrently with others. For example, 51% of
counties had school and restaurant closures occur <2 days apart
(level 2 NPI), and 55% initiated restrictions on mass gatherings
and non-essential business closures within 2 days (level 3
NPI). It is very difficult, statistically, to measure independent
policy effects in an observational study when those policies are
implemented in such close temporal proximity. The stepped-
wedge approach, although not designed for observational data,
is a novel attempt to control for these overlapping periods.

The stepped wedge approach was only applied to the
doubling time models, primary due to difficulties in achieving
model convergence for case and death rate models. For
doubling time, we produced predicted estimates for each NPI
adjusting for all covariates entered into the model (Figure 4,
Supplementary Figure C1). These predicted doubling times
adjust for all the observed heterogeneity across counties,
demonstrating that policy impact is likely not continuous in
reality, but achieves a peak after a certain amount of time. Overall,
we report level 4 achieving peak doubling time after 40 days and
23 days for level 3. This peaking is likely associated with reduced
perceptions of local risk and reduced compliance even when
policies are still in effect. For Census regions, they all appear to
reach a peak doubling time for level 4 policies with the exception
of Middle Atlantic and East North Central, which tended to
have less heterogeneity in policy compliance compared to other
regions as indicated in Figure 2. This plateauing of intervention
effects remains an important area of research, which is tied
to issues related to adherence, transportation, and racial and
economic disparities. The timing of policy implementation may
also have introduced heterogeneity across regions. We observed

that states experiencing early cases (Pacific, New England, and
Mid-Atlantic) had significantly longer gap times between case
detection and NPI initiation than states experiencing their first
COVID-19 case later. This difference in policy initiation time is
likely due to non-coastal US Regions learning from experience of
coastal regions to implement NPIs more quickly. Unfortunately,
early response during the first wave, which proved effective,
may have given policy-makers false confidence as 12 states
reported case spikes on June 23 and 7 states reported highs
for hospitalization (https://covidtracking.com/)—all but one of
these states began removing social distancing protections by May
11 and all but four are located in Mountain, North and South
Central regions.

In addition to evaluating policy effects, this study reported
the effects of temperature, specific humidity, and solar radiation
related to COVID-19. These mixed results highlight a number
of important points on climate predictors of COVID-19: (1)
the regional heterogeneity of the relationship between climate
parameters and SARS-CoV-2 is consistent with the variability
observed in studies of MERS-CoV infection and climate (60–
63); (2) climate analyses are sensitive to choice of response
variable and analysis period, and may not provide stable results
at the stage of epidemic data collection considered in this
study—for example, our results tend to run in the opposite
direction of those reported by Ma et al. (64), but the studies
use different response variables (Rt vs. doubling rate), as well
as different periods of analysis, ranges of climate variability,
and statistical methods; (3) there is substantial inter-regional
variability in climate sensitivities, such that large scale analyses
are not necessarily representative of regional climate influence;
and (4) it is difficult to isolate climate effects from those of
other predictors, and analyses that examine climate variables
without adequate control for policy and other factors are prone
to spurious climate associations.We recommend further research
be conducted at different spatial scales (community, census tract,
etc.) to better characterize the climate-COVID-19 relationship.

Limitations
There are several limitations to note in our study. First,
the analysis does not have an accurate representation of the
availability of testing (or the number of tests administered) at the
county level for the time series. As this availability changed over
time for all counties in the US, we cannot accurately characterize
the population at risk for COVID-19 case detection. However, we
are more confident in COVID-related deaths reported. Second,
our measure of compliance is based on reduced mobility in
countries, but not a direct measure of adherence. In some
states, policy levels 3 and 4 were viewed as an affront to civil
liberties. While the use of mobility data has been shown to
be an appropriate proxy for compliance, studies focusing on
smaller geographic units may be able to obtain more accurate
data on compliance to measure NPI “dose.” Third, we do not
look at individual interventions. However, this was a choice as
the sets of NPIs are considered a more appropriate response
than single interventions, which have never been employed
historically without others. Finally, we would ideally be applying
these methods to a randomized design, which is impossible for
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COVID-19. Thus, our inferences are drawn from observational
data regardless of our SW-CRT analytical framework.

CONCLUSION

The most aggressive NPIs (shelter-in-place, public mask
requirements, and travel restrictions) were the only policies
that are consistently associated with a reduction in COVID-
19 cases and doubling times in the US between January
2020 and the phased re-opening of states. However, when
analyzing by Census region, considerable variation of
NPI effectiveness is observed, likely due to variations in
policy adherence. Socio-environmental factors, including
poverty, racial/ethnic status and educational levels,
contribute to heterogeneity of COVID-19 propagation,
NPI adherence and NPI effectiveness. These results may
inform public health policy as states continue to manage the
ongoing pandemic.
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