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Objectives: The internet data is an essential tool for reflecting public attention to hot

issues. This study aimed to use the Baidu Index (BDI) and Sina Micro Index (SMI)

to confirm correlation between COVID-19 case data and Chinese online data (public

attention). This could verify the effect of online data on early warning of public health

events, which will enable us to respond in a more timely and effective manner.

Methods: Spearman correlation was used to check the consistency of BDI and SMI.

Time lag cross-correlation analysis of BDI, SMI and six case-related indicators and

multiple linear regression prediction were performed to explore the correlation between

public concern and the actual epidemic.

Results: The public’s usage trend of the Baidu search engine and Sina Weibo was

consistent during the COVID-19 outbreak. BDI, SMI and COVID-19 indicators had

significant advance or lag effects, among which SMI and six indicators all had advance

effects while BDI only had advance effects with new confirmed cases and new death

cases. But compared with the SMI, the BDI was more closely related to the epidemic

severity. Notably, the prediction model constructed by BDI and SMI can well fit new

confirmed cases and new death cases.

Conclusions: The confirmed associations between the public’s attention to the

outbreak of COVID and the trend of epidemic outbreaks implied valuable insights into

effective mechanisms of crisis response. In response to public health emergencies,

people can through the information recommendation functions of social media and

search engines (such as Weibo hot search and Baidu homepage recommendation) to

raise awareness of available disease prevention and treatment, health services, and

policy change.
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INTRODUCTION

The outbreak of COVID-19 at the end of 2019 has triggered continual public attention in China.
As of December 2020, Chinese internet users’ numbers had reached 989 million (1). Nearly 80%
of Internet users actively paid attention to COVID-19 epidemic information many times a day (2).
Effective and efficient online monitoring is essential not only for the surveillance of public health
events at the early stage but also for risk communication with the public.
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Infodemiology is the science of distribution and determinants
of information in an electronic medium, specifically the Internet,
or in a population, with the ultimate aim to inform public health
and public policy (3, 4). Examples for infodemiology applications
include: the analysis of queries from Internet search engines to
predict disease outbreaks; monitoring peoples’ status updates on
microblogs such as Twitter for syndromic surveillance; detecting
and quantifying disparities in health information available, and
so on (3, 4). Eysenbach (4) divided online data into two
categories: demand-based data and supply-based data. Demand-
based data is what people actively search on the Internet, while
supply-based data is what is published on social media such
as Facebook and Weibo. Previous research has shown that
search engine query data and social media data can predict such
epidemics as seasonal flu (5), human immunodeficiency virus
(HIV) (6), Ebola (7), general influenza (8), and Zika virus (9).
These studies mentioned above are more based on query data
fromGoogle, which are relevant in the context of English culture.
However, the knowledge gap existed that needs to be filled
to assess whether similar conclusions apply to other diseases,
cultures, contexts, search engines, or social media.

Demand-based Search Engines in China are mainly Baidu,
Sogou, 360, and so on, while in other countries, Google and
Yahoo are most commonly used. In 2019, Baidu ranked first
in penetration rate with 90.9 percent in China (10), equivalent
to Google search in Western countries, which can better reflect
the concerns of most Chinese people on the epidemic compared
with other search engines. The BDI (Baidu Index) is the
indicator to reflect the public use of the Baidu search engine to
obtain information (11). Compared with the traditional survey,
internet search behavior has higher authenticity, objectivity,
timely and credibility, is an essential reference for social demand
monitoring (3).

Recently, the Internet data obtained from Google Trends
(3) and Baidu search (12) have been used to measure public
attention in public health emergencies such as influenza, H7N9,
and dengue fever. Eysenbach firstly used Google Trends to
predict flu trends in 2009 (4), which attracted other scholars
to investigate further. Several studies showed that there were
positive correlations between search engine data and the number
of confirmed cases of public health emergencies (such as
influenza, dengue fever, ebola, etc.) (12–16). And the correlation
is low when the outbreak begins; with cases gradually increasing,
the correlation becomes high (17). In addition, Huang et al. (18)
found that the keyword search volume of some cities was highly
correlated with the actual incidence data, while some cities were
not. COVID-19 is the most significant public health emergency
in China after SARS in 2003, and further research is needed
to determine whether there is a statistical correlation between
case-related indicators and the BDI.

Supply-based Social Media includesWeibo,WeChat, Tik Tok,
Toutiao, online forums, and so on. As the most popular social
media platform in China, Sina Weibo has more than 800 million
registered users as of March 2018, and more than 100 million

Abbreviations: BDI, Baidu Index; SMI, Sina Micro Index; WHO, World

Health Organization.

messages are published every day (19), which cover all aspects
of social news and hot topics and can be posted or searched
anywhere and anytime (20). The SMI (Sina Micro Index) is the
indicator to measure keywords in the spread of interactive effects
on Weibo (21). Social media can provide a personalized and
unique news experience, and people can interact directly with
“news,” which is also plays an irreplaceable role in netizens’ access
to network information.

Many scholars used Sina Weibo to study the risk of network
emergencies. Li et al. (22) took an empirical study using Sina
Weibo data and found that in the initial stage of events, the
government’s control cost of risk communication is lower and
more effective. Besides, social media data were also often used
for disease prediction (23, 24). At present, there are relatively few
studies on the public health crisis in the academic community
using social media. A systematic review found that the published
social media studies relating to the Ebola virus mainly focused
on Twitter and YouTube, with only one article from Weibo (7).
On the whole, few articles use Sina Weibo as the data source to
study the correlation between public information searches and
epidemic development, which is worthy of further research.

Current research is mostly based on a single platform. This
paper uses two different types of platforms: demand-based search
engines and supply-based social media. As representatives of
current Chinese search engines and social networking platforms,
their internet data are more valuable for monitoring China’s
first national public crisis since it entered the mobile social
media era. Since COVID-19, researchers have used media reports
(25), Google Trends (26), Weibo post counts, Baidu searches
(27, 28), and Ali indices (29, 30) to study public attention and risk
communication for COVID-19 epidemic management. But there
has been no study of the Chinese public’s response to COVID-19
using data such as BDI and SMI from the perspective of supply
and demand. It can reveal the characteristic that netizen browses
information more comprehensively and provide a reference for
global outbreak information management.

Therefore, our specific research questions included
the following:

(1) Is there any difference in public concern reflected
between demand-based data and supply-based data
during COVID-19?

(2) What are the correlations between BDI, SMI and COVID-
19 epidemic indicators? Are there any significant advance or
delay effects?

(3) Whether the internet data could predict the COVID-19
epidemic in the future?

MATERIALS AND METHODS

Study Design and Data Source
To understand the public attention about COVID-19 in China,
we conducted an epidemiological study based on the online
data from January 2, 2020, to March 20, 2020. On January 20,
2020, at a press conference of the National Health Commission
of the People’s Republic of China, expert Nanshan Zhong
confirmed COVID-19 “person-to-person,” and the National
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Health Commission of the People’s Republic of China would
release the number of new cases in each province daily.
Considering the data reliability, we used the official data reported
by the government, so we selected January 20 as the starting
time of the study to collect case data. The reason for choosing
March 20, 2020, as the end time is that Hubei Province, the
hardest-hit area, reported zero new confirmed cases for 3 days in
a row and that China announced it had assisted 82 countries and
international organizations, which are preliminary indications
that public attention may shift from China to the world. Besides,
we have brought forward the starting date of the BDI and SMI
data collection to January 2, 2020, to give a complete picture of
the change of public interest. We chose 2 weeks earlier than for
the molecular diagnosis data (the diagnosis criteria were set on
January 16, 2020) because previous studies have shown that the
data from Internet search engines and social media platforms
were able to predict the disease outbreak 2 weeks earlier than the
traditional surveillance systems (31).

At the beginning of the outbreak, there was no unified name
for COVID-19. Comprehensively considering the BDI and SMI
algorithm, the habit of the Chinese public, as well as the research
during the outbreak (32), we selected “Novel coronavirus (新型
冠状病毒),” “Pneumonia (肺炎),” “New pneumonia (新型肺
炎),” “Novel Coronavirus Pneumonia (新型冠状病毒肺炎),”
“Epidemic (疫情),” “Wuhan (武汉)” and “Wuhan Pneumonia
(武汉肺炎),” seven words with large data values as the BDI
related keywords. These keywords include pneumonia, Wuhan,
virus, and other words that can represent epidemic events. The
BDI search keywords require precise words, while SMI search
words are fuzzy, such as “Wuhan Pneumonia.” The BDI data is
large, and the SMI approaches zero. Therefore, when selecting
SMI keywords, use “Pneumonia” instead of “New pneumonia,”
“Novel Coronavirus Pneumonia,” “Wuhan Pneumonia,” and
“Virus” instead of “Novel Coronavirus.” Therefore, we selected
“Pneumonia (肺炎),” “Epidemic (疫情),” “Virus (病毒)” and
“Wuhan (武汉)” as the keywords for the SMI.

The data for the BDI and SMI is from the Baidu Index (11)
and the Sina Weibo Index (21) official website, respectively.
COVID-19 case-related indicator data comes from the daily
outbreak notification of the official website of the National Health
Commission of the People’s Republic of China (33).

Statistical Analysis
We graphed the curves of the COVID-19 outbreak to describe
the severity of epidemics. Spearman correlation was used to
check the consistency of BDI and SMI. Time lag cross-correlation
analysis of BDI, SMI and six indicators was performed to
explore the correlation between public concern and the actual
epidemic. Furthermore, multiple linear regression prediction
models were used to build the prediction model of BDI and SMI
for COVID-19, and leave-one-out cross validation (LOOCV)
(34) was performed to check the prediction performance of
the model.

Considering the data comparability, except for the BDI and
SMI bivariate correlation analysis time from January 2 to March
20, the other correlation analysis time is from January 20 to
March 20. SPSS 26.0 software was used for analysis.

RESULTS

Public Concern About the COVID-19 in
China
The World Health Organization (WHO) listed the COVID-19
outbreak as a public health emergency of international concern
on January 30. On March 11, the WHO declared COVID-
19 a global pandemic (35). Figure 1 depicts the characteristics
of the COVID-19 outbreak in China between January 20,
2020 and March 20, 2020, through new confirmed cases, new
death cases, new cured discharge cases, cumulative confirmed
cases, cumulative death cases, and cumulative cured discharge
cases (36).

FIGURE 1 | The epidemic characteristics of COVID-19 in China from January 20 to March 20 in 2020.
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We used BDI and SMI to describe the public concern
about the COVID-19 outbreak in China. Figure 2 showed a
positive correlation of BDI and SMI (Spearson correlation
coefficient = 0.703, P < 0.001). In 2020, The BDI and
SMI of “COVID-19” related keywords experienced a state of
“developing from nothing, reaching a peak, fulling volatility,
and stabilizing gradually.” The BDI and SMI were at a low
level at the beginning of the observation period, and fluctuated
significantly from January 20 to February 20, possibly because
the pandemic was not well-controlled, the public hadmore panic,
and the rapid development of the epidemic caused strong public
attention. On January 20, the State Council included COVID-
19 in the Infectious Diseases Law, and the National Health
Commission of the People’s Republic of China immediately
released the number of new cases in each province, which
aroused widespread public concern. Subsequently, the BDI and
SMI increased significantly. On January 23, BDI reached its
first small peak, and SMI reached its peak, which may be due
to the public panic caused by the lockdown of Wuhan. The
BDI reached its peak on January 25, in which 30 provinces
in China had announced the launch of the Level I emergency
response to public health emergencies. Subsequently, the BDI
and SMI declined with fluctuation, and there were several small
peaks. Possible reasons for the small peaks are indicated in
Figure 2. Later, with the decrease of new confirmed cases and
the increase of new cured discharge cases, the BDI showed a
steady decline, while the SMI fluctuated, which may be related
to the continuous hot topics on Sina Weibo. On March 20, the
BDI and SMI were still higher than on January 20 (Figure 2).
Overall, it can be considered that the demand-based search
engine data and supply-based social media data showed the same
public concern.

To eliminate the influence of difference between people in
epidemic and non-epidemic areas, we compared the level of

public network concern in Hubei province (epidemic area) with
all other provinces except Hubei (non-epidemic area) in the same
period (Figure 3). Correlation analysis results showed a positive
correlation between Hubei and all other provinces (Spearman
correlation coefficient= 0.930, P < 0.001) (Considering that SMI
cannot be divided by different regions, and it has been proved
above that there is no significant difference in public concern
between BDI and SMI during the COVID-19, thus only BDI was
used for analysis).

Correlation Analysis Between
Case-Related Indicators and Public
Concern
We analyzed the time lag cross-correlation between the BDI, SMI
and six case-related indicators within the time range of 20 days
earlier or lagging to explore the possible indicators that cause
fluctuations in public attention (Appendix 1 showed the specific
correlation coefficients). The results (Table 1) showed that for
new confirmed cases and new death cases, the highest correlation
was found 6 and 16 days earlier in BDI, but the correlation with
the other four indicators was highest at a lag of 3–16 days. While
there was an advance effect before the change of SMI and six case
indicators, and the correlation coefficients reached the highest 19,
19, 2, 11, 11, and 11 days earlier, respectively. In addition, BDI
was more strongly correlated with case indicators than SMI.

Epidemic Prediction Using Public Attention
From the above, only for new confirmed cases and new death
cases, both BDI and SMI had advance effects. So we established
the following four multiple linear regression models using new
confirmed cases and new death cases as dependent variables, and
seven BDI-related keywords or four SMI-related keywords as
independent variables. Stepwise regression was used to remove

FIGURE 2 | The changing trend of the Baidu Index and Sina Micro Index of COVID-19 in China from January 2 to March 20 in 2020. Blue explains the Baidu Index,

orange explains the Sina Weibo Index, and black explains both.
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FIGURE 3 | The changing trend of the National Baidu Index and Hubei Baidu Index of COVID-19 in China from January 20 to March 20 in 2020.

TABLE 1 | The time lag cross-correlation between the BDI, SMI and COVID-19-related data from 20 January to 20 March in 2020.

New

confirmed

cases

New death

cases

New cured

discharge

cases

Cumulative

confirmed

cases

Cumulative

death cases

Cumulative cured

discharge cases

BDI Day Lag-6 Lag-15 Lag16 Lag5 Lag5 Lag3

Spearman correlation coefficient 0.900 0.879 −0.973 −0.986 −0.986 −0.986

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SMI Day Lag-19 Lag-19 Lag-2 Lag-11 Lag-11 Lag-11

Spearman correlation coefficient 0.753 0.739 −0.722 −0.707 −0.707 −0.707

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

TABLE 2 | Forecast results of model 1 and model 2.

Model 1 Model 2

(Constant) −3,927.923*** −30.881***

Novel coronavirus

Pneumonia

New pneumonia

Novel coronavirus pneumonia

Epidemic 0.007*** 1.26*10−4***

Wuhan 0.012***

Wuhan pneumonia 0.021***

R2 0.443 0.315

Adj. R2 0.413 0.303

S.E 1,686.423 41.242

F 15.094 27.103

P-value <0.001 <0.001

***Significance level of 1%.

variables that had no significant effect on the dependent variable
(P > 0.1) and were closely related to other independent variables.

Model 1 (Table 2): seven BDI-related keywords were used to
predict new confirmed cases.

Model 2 (Table 2): seven BDI-related keywords were used to
predict new death cases.

TABLE 3 | Forecast results of model 3 and model 4.

Model 3 Model 4

(Constant) 1,072.5056*** 80.034***

Pneumonia −2.33*10−4*** 3.318*10−6***

Epidemic

Virus −5.472*10−6***

Wuhan 2.31*10−4*** 6.020*10−6***

R2 0.344 0.522

Adj. R2 0.322 0.497

S.E 1,813.456 35.044

F 15.228 20.750

P-value <0.001 <0.001

***Significance level of 1%.

Model 3 (Table 3): four SMI-related keywords were used to
predict new confirmed cases.

Model 4 (Table 3): four SMI-related keywords were used to
predict new death cases.

LOOCV was used to evaluate the fitting effect of the models,
and it was found that Spearman correlation coefficients between
predicted values (Appendix 2) and actual values of the four
models were 0.892, 0.762, 0.766, and 0.674, respectively. It shows
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that the above four models performwell in predicting COVID-19
new cases.

DISCUSSIONS

Main Findings
Using publicly accessible BDI, SMI, and COVID-19 case-related
indicator data, this study analyzed the correlation between BDI,
SMI and COVID-19 epidemic indicators and built prediction
models of BDI and SMI for COVID-19. We found the public
across the country had paid equal attention to demand-based and
supply-based COVID-19 information. BDI, SMI and COVID-19
indicators had significant advance or lag effects, among which
SMI and six indicators all had advance effects while BDI only had
advance effect with new confirmed cases and new death cases.
Notably, the prediction model constructed by BDI and SMI can
well fit new confirmed cases and new death cases. Our study
demonstrated that BDI and SMI, as effective early indicators,
have been proved to monitor COVID-19 epidemics in China.

Interpretations and Policy
Recommendations
The BDI and SMI had a significant positive correlation,
consistent with the findings of Kui et al. (37). The behaviors
and concerns of the public during public health emergencies
are consistent, whether actively seeking information or passively
obtaining information. However, by the end of the observation
period, SMI still had obvious fluctuations while BDI was
relatively stable. Causes were attributed to that the epidemic has
been well controlled, the public has more information about
COVID-19, and thus the behavior of searching in Baidu search
engine for the epidemic stabilized (38); a large amount of instant
news provided by Sina Weibo will affect the public’s information
reception, and thus stimulating the public’s information search
behavior. The results of this study contribute to providing policy
implications for government to respond to public opinion on
public health emergencies by effectively using the information
dissemination characteristics of search engines and social media.
During public health emergencies, the Baidu search engine can
give priority to provide users with the most attention and the
most reliable sources of information, rather than the latest
information; Sina Weibo can adjust the ranking of hot searches
in the critical period, thereby affecting the public’s information
search behavior.

Another interesting finding was that SMI had an earlier effect
than BDI in time lag cross-correlation analysis, which is a unique
finding of this study. Compared with traditional websites, Sina
Weibo, as a social media similar to Facebook and Twitter, is a
typical “speed-type”media that spreads information faster, covers
more widely (39), and is a collection and distribution center of
“gossip.” By contrast, BDI is demand-based data, and its increase
implies the tremendous need for COVID-19-related knowledge
to the public, which usually occurs after the progress of the
epidemic. Significantly, both BDI and SMI had advance effects for
new confirmed cases and new death cases, meaning the public’s
great concern. It reminds us that the government should pay
more attention to the information disclosure and interpretation

of new confirmed cases and new death cases when responding to
public health emergencies.

This study also showed that BDI had a higher correlation with
the case indicators compared with SMI, consistent with previous
studies about Google trends (40–42). But unfortunately, the
previous study (43) only reported the correlation between BDI,
SMI and the number of influenza patients. In this research, BDI,
SMI and six important disease indicators were, respectively, used
for correlation analysis, which was more specific and convincing.
According to the 46th China Internet Development Statistics
Report, Baidu searches (81.5%) have a higher netizen usage rate
than SinaWeibo (42.5%) (44), which ismore representative of the
search intention of the wider public. Besides, Sina Weibo, which
is easily driven by hot events, may cause huge fluctuations of the
SMI in a short period (32).

Relying on traditional laboratory and clinical data to publish
weekly statistics for countries and regions usually results in
a lag of 1–2 weeks (27). But our data showed that the
popularly used Internet search engines, Baidu, and the social
media platform, Sina Weibo, were able to predict the disease
outbreak 6–19 days earlier than the traditional surveillance
systems. Big data monitoring of the epidemic can track the
trends of infectious diseases and epidemics faster than traditional
monitoring systems (27), which could buy time for controlling
outbreaks of these diseases and reducing the risk of transmission
to humans (37). This finding suggests that the government
could build a tool for infectious disease surveillance based on
BDI and SMI, which should be considered as supplementary
to the traditional public health monitoring systems. When
an outbreak occurs in the future, the government can make
preparations for risk communication through this tool in
advance. In the early stage of the epidemic, the communication
content should focus on the disclosure and explanation of case-
related indicators, especially new confirmed cases and new death
cases, to effectively reduce public panic. Previous public health
experience indicated that no individual country could single-
handedly prevent and protect itself from public health threats
(37). Accordingly, countries could jointly build a monitoring
platform based on Internet data for information sharing to
achieve early warning and risk communication of public health
emergencies in advance.

LIMITATIONS

Our research only focused on Sina Weibo and Baidu search
engines and cannot describe netizens’ attention to other
platforms, such as WeChat.

CONCLUSIONS

In this study, we found that the public concern presented by
demand-based network data and supply-based network data
is consistent. Supply-based network data and six indicators
all had advance effects, while demand-based network data
only had advance effects with new confirmed cases and new
death cases. The confirmed associations between the public’s
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attention to the outbreak of COVID on social media and
the trend of epidemic outbreak implied valuable insights of
effective mechanisms of crisis response and can be used to
gain judgment related to people’s information needs and to
target groups who need additional attention. The information
exchanges of netizens on the two platforms completely exposed
their preferences and behaviors for epidemic information in
online data. Interaction through online platforms potentially
results in the concentration of prevailing concerns about the
pandemic. In response to public health emergencies, people
can through the information recommendation functions of
social media and search engines (such as Weibo hot search
and Baidu homepage recommendation) to achieve accurate
information push. Social media about infectious disease raises
awareness of available disease prevention and treatment and
sensitizes the public to their need for health care. Moreover,
this can lead to increased demand for health services which
may, in turn, lead to changes in healthcare provision and
policy change.
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