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Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a recently emerged

and highly contagious virus that causes coronavirus disease 2019 (COVID-19). As of

August 24, 2021, there were more than 212 million confirmed COVID-19 cases and

nearly 4.4 million deaths reported globally. Early diagnosis and isolation of infected

individuals remains one of the most effective public health interventions to control

SARS-CoV-2 spread and for effective clinical management of COVID-19 cases. Currently,

SARS-CoV-2 infection is diagnosed presumptively based on clinical symptoms and

confirmed by detecting the viral RNA in respiratory samples using reverse transcription

polymerase chain reaction (RT-PCR). Standard RT-PCR protocols are time consuming,

expensive, and technically demanding, which makes them a poor choice for large scale

and point-of-care screening in resource-poor settings. Recently developed isothermal

nucleic acid amplification tests (iNAAT), antigen and/or serological tests are cost-effective

to scale COVID-19 testing at the point-of-care (PoC) and for surveillance activities. This

review discusses the development of rapid PoC molecular tools for the detection and

surveillance of SARS-CoV-2 infections.

Keywords: COVID-19, SARS-CoV-2, point-of-care, diagnostics, isothermal amplification (LAMP), sample types,

surveillance

INTRODUCTION

The diagnosis of active SARS-CoV-2 infection is critical in epidemiological surveillance, infection
control and contact tracing, clinical management, and for monitoring the impact of interventions
against the spread of the virus. Current diagnostic tests fall into three main categories: molecular
tests that detect the SARS-CoV-2 RNA, antigen tests that detect the presence of specific viral
antigens, and serological tests that detect anti-SARS-CoV-2 immunoglobulins (Ig). COVID-19
diagnosis criteria vary among countries (1) but in every case, detection of SARS-CoV-2 RNA by
reverse transcriptase PCR (RT-PCR) is considered a confirmatory diagnosis (2). However, RT-PCR
is expensive and laborious; requiring viral RNA isolation, purification and reverse transcription to
complementary DNA (cDNA) before amplification using PCR. Hence, it requires skilled personnel
and dedicated laboratory space, thus limiting its use in resource-limited settings. More recently,
serology and antigen-based test, and isothermal nucleic acid amplification test (iNAAT) have
become available for the diagnosis of COVID-19 (Table 1). These tests have acceptable sensitivity
and do not require sophisticated equipment, offer rapid turnaround time within an hour and can be
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performed at the point-of-care (PoC). To date, several RT-
PCR diagnostic kits and, to a lesser extent antigen/antibody-
based detection tests, isothermal amplification tests, clustered
regularly interspaced short palindromic repeats (CRISPR-) and
sequencing-based detection tools have been approved by the
Food and Drug Administration (FDA) via Emergency Use
Authorization (EUA) for the diagnosis of COVID-19. This review
discusses the molecular, serological, and antigen diagnostic tools
for detecting SARS-CoV-2 infections, their potential use for PoC
diagnosis of COVID-19 (Table 1).

ANTIBODY- AND ANTIGEN-BASED
COVID-19 TESTING

Our understanding of immune response against SARS-CoV-2
infections has rapidly unfolded as millions of individuals have
been infected. Seroconversion in infected individuals has been
observed between 1 and 2 weeks post-symptom onset (3–
9). Studies on the immune responses of SARS-CoV-2-infected
patients have shown increased presence of follicular helper T
cells, activated CD4+ and CD8+ T cells with the detection of
Immunoglobulin A (IgA), IgM, and IgG against the SARS-CoV-2
spike (S), nucleocapsid (N) and envelop (E) proteins (6, 10–
13). Antibodies against SARS-CoV-2 have been shown to persist
at least 12 months post-infection in most individuals (14–18).
The majority of SARS-CoV-2 rapid diagnostic tests detect the
presence of anti-SARS-CoV-2 antibodies (IgG, and/or IgM) in
plasma or serum of infected individuals (FDA.gov).

Immunoassays for COVID-19 diagnosis target the most
immunogenic proteins—N and S (6, 10, 11, 19–21). In serum
and plasma specimens, anti-SARS-CoV-2 antibodies could be
detected as early as 2 weeks post-symptom onset (21). However,
infected individuals show different antibody profiles over the
course of the disease (12, 22). SARS-CoV-2-specific IgA and
IgM antibodies have been detected 5 days post-symptom onset
while IgG was detected 14 days post-symptom onset (12,
22), indicating early and evolving infections, respectively. The
majority of the immunoassays in use are based on enzyme
linked immunosorbent assay (ELISA), immunochromatography
(lateral-flow) and antigen microarray (6, 10, 20–23). ELISA
offers high-throughput but requires experienced technicians, a
laboratory space, and several other instruments, and thus, it is
not feasible for PoC diagnosis. In contrast, lateral-flow-based
assays are easy to use, do not require instruments, and have
been developed and deployed as PoC tools for serological and
antigen-based diagnosis of COVID-19 (24, 25).

In spite of their advantages (Table 1), serological tests are
limited in the diagnosis of SARS-CoV-2 infections due to their
poor sensitivity to detect mild and asymptomatic infections (26).
In addition, reports of individuals who remain PCR-positive after
seroconversion suggest that they may still be shedding viral RNA
during the convalescent stage. However, this may not necessarily
indicate the presence of viable virus (3, 4, 27–30). Therefore,
serological tests may be limited to identification of past but not
active infections. Considering their relatively lower cost and ease

of use in comparison with RT-PCR, they could be used to initially
screen vulnerable populations to estimate seropositivity rates.

In contrast to antibody tests, antigen tests detect the
presence of specific SARS-CoV-2 antigens in respiratory samples.
Oropharyngeal, nasal and nasopharyngeal specimens are the
most compatible specimen types for the majority of COVID-19
antigen and NAAT methods (2, 31). Antigen tests are relatively
more affordable than RT-PCR, and considerably sensitive when
used during the infectious period of the disease (32, 33). They
are recommended for routine testing among at risk populations
(34, 35). To date, over 20 SARS-CoV-2 antigen tests have
received FDA emergency use authorization, reporting analytical
sensitivities down to 30 TCID50/mL and specificities of up to
99% (36).

MOLECULAR DETECTION OF SARS-CoV-2
INFECTIONS

Several NAAT tools have been developed to detect SARS-CoV-2
infections by amplifying the viral RNA from a wide range of
sample types including nasal swabs and saliva samples. While
RT-PCR is currently the gold standard for the detection of SARS-
CoV-2 RNA due to its high sensitivity, other methods including
recombinase polymerase amplification (RPA) and loop mediated
isothermal amplification (LAMP, see Figure 1) have also been
used for COVID-19 diagnosis (37–39). RT-PCR is expensive,
laborious and requires skilled personnel, making it unsuitable
for PoC diagnosis (37–39). The accuracy and sensitivity of RT-
PCR is affected by the purity of the sample and/or extracted
RNA. The global shortage of RNA extraction kits has had adverse
impacts on COVID-19 diagnosis and control worldwide. Though
extraction-free RT-qPCR protocols have been considered as
alternatives for the standard SARS-CoV-2 RT-PCR method,
laboratory optimizations are often required to minimize false-
negative rates (40).

Several reports suggest that RT-PCR positivity does not
necessarily correlate with clinical infectivity since respiratory
samples may contain non-viable virus, which could persist in
the body for several weeks during the convalescent stage of the
disease (41–44). Viable virus can be cultured from samples with
low RT-PCR cycle threshold (Ct) values while samples with high
Ct values are less likely to contain culturable virus (3, 45–47),
suggesting that individuals with high Ct values (usually those
at later stages of the disease) are less likely to spread the virus
than those with low Ct values (usually those in the acute phase of
the disease).

The performance of NAATs on the detection of SARS-CoV-2
RNA has been extensively reviewed elsewhere (48–52). Due to
the lack of standardization in the NAAT testing algorithms
including sample types and target genes, it is difficult to compare
the analytical performance of the various test types (Table 1).
A study by Vogels and colleagues found that test sensitivity
was comparable among most of the primer-probe sets with the
exception of primer sets targeting the RNA dependent RNA
polymerase (RdRp-SARSr) gene segment, which resulted in
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FIGURE 1 | COVID-19 diagnostic testing through isothermal NAAT. Reverse transcriptase LAMP (RT-LAMP) detection of SARS-CoV-2 RNA in nasal swab and saliva

samples. These samples can be stored in the refrigerator for 3 days prior to NAAT testing. Where testing can be done immediately, sample preparation and/or RNA

extraction is performed, which may take between 5 and 20min. RNA purification is often required for RT-PCR-based testing. This is done because contaminants in

crude cell lysates could potentially reduce the polymerase activity of the reverse transcriptase and DNA polymerases used in RT-PCR. In contrast, the Bacillus

stearothermophilus (Bst) DNA polymerase used in LAMP is more tolerant to inhibitors. For RT-LAMP testing, a set of four to six primers targeting any of the viral genes

can be designed using online programs, e.g., Eiken Primer design software. It is recommended that a primer set targeting a human endogenous gene is included as a

control for sample preparation/RNA extraction and amplification efficiency. In RT-LAMP, both cDNA synthesis (reverse transcriptase) and amplification (Bst) occur

simultaneously and in the same reaction tube at a constant temperature (60–65◦C). A double-stranded DNA intercalating dye can be added to detect amplicons either

by colorimetry (show color change), fluorescent (for real-time detection) or both. RT-LAMP is prone to false-positive amplifications and as such any assay developed

using this technique needs to be standardized for each test type. *In a NAAT-based assay, two targets on N gene were included in a single reaction to increase the

test sensitivity. Created with Biorender.com.

lower sensitivity (53). Significant difference in sensitivity has been
observed with commercial RT-PCR kits. For instance, Igloi and
colleagues evaluated 13 commercial kits and reported analytical
sensitivities that ranged from 3.3 to 330 viral RNA copies in the
RT-PCR assays evaluated (54).

Published gene targets for the detection of SARS-CoV-2
have comparable specificity. While RT-PCR based commercial
kits used by the China National Institute for Viral Disease
Control and Prevention (CCDC) predominantly target the
Open Reading Frame 1ab (orf1ab) and N genes (55), other
commercially available RT-PCR kits target the RNA-dependent
RNA polymerase (RdRP) and/or E genes (37). In other assays,
multiple targets on the same gene are included in order to
increase the test sensitivity, e.g., two targets on the N gene
(56). The sensitivity of PCR-based detection has been improved
with double strand excision of the target using the CRISPR
gene-editing technique (38, 39, 57). The rising number of

mutations in the viral genome, particularly in the S and orf1ab
genes have raised concerns about the sensitivity of NAAT
tools to detect SARS-CoV-2 including emerged variants—alpha
(B.1.1.7), beta (B1.3.51), gamma (P.1), delta (B.1.617.2) and
epsilon (B.1.427/B.1.429), which have been associated with
high transmissibility and disease severity in many geographical
regions (58, 59). It is important that NAAT diagnostic tools are
routinely quality-checked to ensure that they detect all variants
in circulation andmeet international regulatory test performance
criteria (60).

SAMPLE TYPES FOR THE DETECTION OF
SARS-CoV-2 RNA

The sensitivity and performance of NAATs for accurate detection
of SARS-CoV-2 relies on the specimen type and quality,
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TABLE 1 | Attributes and performance of NAAT and antigen tests used for COVID-19 diagnosis.

RT-LAMP RT-PCR (Gold standard) Antigen assay References

Sample types used Upper respiratory: saliva,

nasopharyngeal/

oropharyngeal swabs

Yes Yes Yes (95–97)

Lower respiratory: sputum,

tracheal/bronchoalveolar

aspirates

Yes Yes Yes (94, 98–100)

Sample preparation/input Crude sample preparation with

lysate as input for amplification

Yes (cell lysates in lysis buffer compatible

with LAMP)

Yes, but not used routinely in diagnostic labs

as it may reduce assay sensitivity

Yes. cell lysates in suitable lysis buffer

compatible with antigen assay

(96, 101–105)

Purified RNA as input for

amplification

Yes, RNA is extracted and purified using

in-house reagents or commercial kits

Yes, RNA is routinely purified, particularly for

clinical diagnosis

Antigen detection assay detects the

SARS-CoV-2 surface proteins in the

lysate

(37, 106, 107)

Test technology cDNA synthesis and

amplification in the same

reaction.

Yes; with commercially available reverse

transcriptase and Bst DNA polymerase

(possess strand displacement activity).

E.g., NEB RT-LAMP mix

Yes; with commercially available reverse

transcriptase and Taq DNA polymerase. E.g.,

TaqManTM SARS-CoV-2 RT-PCR assay kit

N/A (65, 87, 94, 97, 102,

108–110)

Number of primers used At least 4 primers. Optional inclusion of 2

loop primers to speed up amplification

At least 2 primers. Optional inclusion of probe

for real-time amplicon detection

Antigen detection assay uses

monoclonal and/or polyclonal

antibody specific to SARS-CoV-2

antigen

Detection of multiple gene

targets

Usually, 2–3 gene targets can be

multiplexed in a single reaction tube. E.g.,

N and E gene

More than 2 gene targets can be multiplexed

using fluorescent labeled primers or probes.

E.g., E and RdRP gene

Targets viral proteins including spike

and nucleocapsid.

RNA extraction, cDNA synthesis

and amplification in a single

reaction tube.

Yes, LAMP compatible lysis buffers can be

used to lyse the virus in respiratory

samples

Possible but not routinely used in diagnosis

due to potential impact on assay sensitivity

N/A

Detection modality Instrumentation Isothermal instrument (e.g., water

bath/heat block)

Conventional/real-time PCR Visual display of test results. Optional

RDT reader

(103, 111)

Amplicon detection Use of DNA intercalating dyes; color

change and/or fluorescence detection,

turbidity (magnesium pyrophosphate

formation)

Fluorescence from DNA intercalating dyes or

probes.

N/A (87, 101, 108, 112)

Real-time detection Yes (colorimetry and fluorescence

detection)

Yes, fluorescence detection Colorimetry and fluorescence

detection

(87, 94)

Sample-to-result ≤1 h ≥2 h ≤0.5 h (111)

Analytical performance Sensitivity >95% >93% – (11)

Specificity >98% >95% –

Clinical performance Sensitivity >94% >90% 75.8–100%

Specificity >97% >95% 90–100%

Technological access Skill requirement and

point-of-care deployability

Minimal training with basic laboratory

requirements at the point-of-care; e.g.,

Clinics

Technical expertise in PCR and require

well-equipped laboratory; Accredited research

laboratories and hospitals

RDTs are user-friendly and test can

be performed at home

(52, 91, 111, 113–116)

RT-LAMP, reverse transcription loop-mediated isothermal amplification; RT-PCR, reverse transcription polymerase chain reaction; RNA, ribonucleic acid; cDNA, complementary deoxyribonucleic acid; NEB, New England BioLabs; N/A,

not applicable. Analytical and Clinical validation data taken from the European Commission COVID-19 in vitro diagnostic devices and test methods database (111).
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and the method used for processing the sample (37, 61–65).
According to the WHO guidelines, testing for SARS-CoV-2
viral RNA requires respiratory samples. Upper respiratory
specimens (nasopharyngeal, nasal, and/or oropharyngeal swabs)
are most suited for testing early-stage infections, especially in
asymptomatic or mild cases, while lower respiratory specimens
(sputum and/or endotracheal aspirate or bronchoalveolar lavage)
are recommended if for patients in the post-symptomatic phase
of the disease and those with severe disease (2). In addition to
respiratory samples, detection of viral RNA in serum and fecal
samples collected from infected patients has also been reported,
in particular where respiratory specimen gave a negative test
result (55, 63, 64). However, these samples provide no clear
utility for accurate detection of active SARS-CoV-2 infection
(66, 67).

Specimens collected from infected individuals at the pre-
symptomatic phase through to the hyperinflammatory phase of
COVID-19 have resulted in variable positive rates. Studies have
shown that a few days prior to and during the symptomatic phase,
sputum and nasopharyngeal swab samples gave higher PCR
positivity compared to fecal samples. However, the opposite has
been observed during the recovery phase (63, 68), demonstrating
the potential utility of fecal samples for monitoring viral
clearance during the recovery phase. Although a few studies
have been able to recover viable virus from fecal samples and
anal swabs of convalescent patients (69–71), it is important
to note that the presence of viral RNA in feces may not be
an indication of active infection but an indication of residual
viral RNA being cleared from the body via shedding of infected
epithelial cells.

Recent evidence has demonstrated the utility of sputum
and saliva as specimens for detection of SARS-CoV-2
(72–76) (Figure 1). For instance, a comparison of sample
positivity using quantitative RT-PCR showed that sputum
samples had higher positive rates than throat and nasal
swabs collected from the same patient (65). Other studies
have also reported differences in test sensitivity comparing
saliva and nasopharyngeal swabs (73, 76–81). Saliva has been
recommended for COVID-19 diagnosis, in particular for
surveillance activities. Saliva sampling is non-invasive and
suitable for COVID-19 screening in vulnerable populations
and in settings where swabs are in limited supply (79, 82, 83).
Sputum offers comparable sensitivity to other respiratory
samples for the detection of SARS-CoV-2 RNA (74, 84) but
its use is limited in situations where patients are unable
to expectorate enough sputum for testing (72, 74). Unless
collected properly, sputum sampling poses a high risk of viral
transmission. Therefore, nasal swabs are preferred over sputum
for the detection of SARS-CoV-2 RNA by NAAT methods
(Figure 1).

During the early stages of the pandemic, detection
of SARS-CoV-2 infection was severely impacted due to
the shortage of RNA extraction kits (85, 86). In certain
circumstances, these shortages led to delays in diagnosis,
which hampered public health control efforts. To increase
accessibility to molecular diagnostic tools for COVID-
19, several research laboratories developed and optimized

NAAT protocols to simplify and obviate the need for
RNA purification (87, 88). More cost-effective molecular
tools will be needed for SARS-CoV-2 surveillance during
and post-pandemic.

POINT-OF-CARE NAATS TO CONTROL
THE SPREAD OF SARS-CoV-2

The global spread of SARS-CoV-2 and its associated morbidity
and mortality requires cost-effective laboratory equipment and
PoC diagnostic tools for screening at-risk populations. PoC tests
are easy to use and could be readily deployed at healthcare
centers, schools and airports, and among vulnerable populations
in aged care centers. RT-PCR is generally performed in
centralized Biosafety level 2 (BSL2) laboratories and require
regulatory approval to undertake COVID-19 testing (37–39).
The complexities and the long wait times (≥2 h) for RT-PCR
test results makes it a less attractive tool for PoC diagnosis
of COVID-19.

Development of a NAAT assay combining RNA extraction,
cDNA synthesis and amplification in a single reaction tube,
and without the need for sophisticated instruments offers
huge prospects for COVID-19 diagnosis at the point-of-
care (89, 90) (Figure 1). iNAATs including RPA and LAMP
do not require expensive PCR equipment, tolerate crude
lysates as input for amplification and can be integrated into
portable isothermal instruments for PoC COVID-19 testing
(91) (Figure 1). LAMP and RPA applications for SARS-CoV-2
detection have been reviewed elsewhere (89). Although iNAATs
pose a higher risk of cross-contamination when compared to
PCR-based diagnostic tools (Table 1), certain strategies have
been shown to mitigate this problem (92–94). For instance,
a pre-optimized closed-tube isothermal amplification coupled
with quality control checks to eliminate false-positive and
carry-over contamination would be optimum for SARS-CoV-2
testing (Figure 1). As countries scale-up efforts from control
to elimination of SARS-CoV-2, cost-effective molecular tools
including iNAAT that require minimal sample processing
and can be integrated into portable isothermal devices for
use at the point-of-care or in the field will be crucial to
elimination efforts.

CONCLUSION

Laboratory testing for COVID-19 has been integral to public
health efforts to control the spread of SARS-CoV-2 globally.
However, the high cost and centralization of RT-PCR testing, and
the long testing times from sample collection to receipt of test
results could hamper SARS-CoV-2 control efforts. RT-LAMP-
based testing methods overcome most of the limitations of RT-
PCR and can be developed for PoC diagnosis of COVID-19.
Since they are compatible with most sample types for detecting
active SARS-CoV-2 infections. Thus, they could complement
other low-cost diagnostic tools including RDTs and lateral-
flow tests for monitoring SARS-CoV-2 transmission locally
and globally. With the emergence of SARS-CoV-2 variants,
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routine quality control checks of NAAT diagnostic tools will
be needed to ensure that they meet regulatory and test
performance requirements.
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