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Introduction: Human faecal sludge contains diverse harmful microorganisms, making

it hazardous to the environment and public health if it is discharged untreated. Faecal

sludge is one of the major sources of E. coli that can produce extended-spectrum

β-lactamases (ESBLs).

Objective: This study aimed to investigate the prevalence and molecular

characterization of ESBL-producing E. coli in faecal sludge samples collected from faecal

sludge treatment plants (FSTPs) in Rohingya camps, Bangladesh.

Methods: ESBL producing E. coli were screened by cultural as well as molecular

methods and further characterized for their major ESBL genes, plasmid profiles,

pathotypes, antibiotic resistance patterns, conjugation ability, and genetic similarity.

Results: Of 296 isolates, 180 were phenotypically positive for ESBL. All the isolates,

except one, contained at least one ESBL gene that was tested (blaCTX−M−1, blaCTX−M−2,

blaCTX−M−8, blaCTX−M−9, blaCTX−M−15, blaCTX−M−25, blaTEM, and blaSHV ). From plasmid

profiling, it was observed that plasmids of 1–211 MDa were found in 84% (151/180) of

the isolates. Besides, 13% (24/180) of the isolates possessed diarrhoeagenic virulence

genes. From the remaining isolates, around 51% (79/156) harbored at least one virulence

gene that is associated with the extraintestinal pathogenicity of E. coli. Moreover, 4%

(3/156) of the isolates were detected to be potential extraintestinal pathogenic E. coli

(ExPEC) strains. Additionally, all the diarrhoeagenic and ExPEC strains showed resistance

to three or more antibiotic groups which indicate their multidrug-resistant potential. ERIC-

PCR differentiated these pathogenic isolates into seven clusters. In addition to this, 16 out

of 35 tested isolates transferred plasmids of 32–112 MDa to E. coli J53 recipient strain.
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Conclusion: The present study implies that the faecal sludge samples examined here

could be a potential origin for spreading MDR pathogenic ESBL-producing E. coli. The

exposure of Rohingya individuals, living in overcrowded camps, to these organisms

poses a severe threat to their health.

Keywords: ESBL-producing E. coli, multidrug-resistant, Rohingya camps, Bangladesh, faecal sludge

INTRODUCTION

Antibiotic resistance is one of the most concerning present
global issues and it is increasing at an alarming rate. Nowadays,
it is one of the major threats to global public health and WHO
enlisted it as one of the top ten threats in 2019 (1). Excessive
use or misuse of broad-range antibiotics in medicine and
agriculture is the most prominent reason for the development
of antibiotic resistance. The incomplete metabolism in human
bodies leads to the release of a significant amount of antibiotics
into faecal sludge and subsequently in the environment (2).
Moreover, in faecal sludge treatment plants (FSTPs), chemical,
and biological treatment processes have the potential to promote
the development of antibiotic resistance and their subsequent
dissemination. Bacteria can attain antimicrobial resistance
(AMR) through many mechanisms, including enzymatic
inactivation of antibiotics, target modification, and dynamic
efflux. Enzymatic cleavage utilizing β-lactamses specially by
ESBLs is a powerful mechanism of acquired resistance against
broad-range of β-lactam antimicrobials (3). ESBLs can hydrolyze
β-lactam antibiotics including first, second, third and even
fourth-generation cephalosporins, and aztreonam which are
susceptible to β-lactamase inhibitors (4). ESBL production is
one of the most familiar procedures to gain resistance against
β-lactam antibiotics of Enterobacteriaceae including E. coli and
Klebsiella pneumoniae (5, 6). Predominantly, there are three
types of ESBL enzymes, such as CTX-M, SHV, and TEM, which
exhibit 25% homology among them (5, 7). The genes of these
various ESBLs are mostly plasmid-coded and can disseminate
through horizontal gene transfer between bacteria and even
between different species (8). With this process, pathogens can
acquire resistance genes from environmental bacteria (9–12).

Commensal E. coli is a common inhabitant of the intestines
of humans and different animals, and some E. coli strains are
pathogenic to both humans and animals and can even lead to
the onset of life-threatening infections (3). To date, six well-
described diarrhoeagenic E. coli pathotypes have been identified
that can infect humans (13): enteropathogenic E. coli (EPEC),
enteroinvasive E. coli (EIEC), enterohemorrhagic E. coli (EHEC),
enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC),
and diffusely adherent E. coli (DAEC). Besides, urinary tract
infection (UTI) is one of the most common extraintestinal
E. coli infections and the causative agent is uropathogenic
E. coli (UPEC). The pathotype, meningitis-associated E. coli
(MNEC), can cause meningitis and sepsis, another reason for
extraintestinal infections that are becoming more common. The
E. coli pathotypes with the ability to cause extraintestinal diseases
are known as ExPECs (14).

In developing countries, antibiotic resistance to enteric
pathogens is of particular concern as it is considered one
of the most significant challenges to treat infectious diseases.
Several studies have reported the isolation of pathogenic as
well as resistant E. coli from environmental samples, which can
participate in horizontal gene transfer of their resistance genes
containing plasmids and lead to outbreaks in a densely populated
area (15–20) like Rohingya camps. Over 330 FSTPs of different
technologies have been established within the camps to treat the
faecal sludge properly before discharging into the environment.
These technologies treat the sewage emptied from the thousands
of pit latrines in the Rohingya camps. Personal and domestic
hygiene are not adequate there, which poses a serious threat of
introducing pathogens directly into the environment and thus
creating the possibilities for outbreaks.

Faecal sludge is one of the most extensive repositories of
antibiotic resistance because of the introduction of antibiotic-
resistant bacteria (ARB) and antibiotic resistance genes (ARGs)
from human faecal materials. Horizontal gene transfer may be
facilitated by the high concentration and diversity of microbial
flora of FSTPs via mobile genetic components like plasmids
(21, 22). It is alarming that, in many studies, the existence of
an increasing ratio of ARB was reported both in raw sludge and
effluent of the treatment plants in the case of urban sewage (23–
25) as well as hospital effluents (26, 27). However, apart from
medicinal residues and ARGs, the main focus of faecal sludge
recycling was on heavy metals, bacterial pathogens, and organic
contaminants. And it is a matter of great concern that treatment
processes do not always remove infectious pathogens efficiently,
which may make their entry into the soil and food chain again
along with their antibiotic-resistance properties through treated
wastewater and faecal sludge if used for agricultural purposes
(28–30). ARGs are also found in biosolids-enriched soils and
decay much slowly (31–33). The aim of this study was to
describe the occurrence of ESBL-producing E. coli before and
after treatment in different FSTPs in the Rohingya camps. The
investigation was also intended to determine the pathogenic
genes in ESBL producing E. coli and their antibiotic resistance
pattern. A conjugation experiment was also conducted to see
the gene transfer capability of the ESBL-E. coli and ERIC-PCR
was carried out to explore the genetic homogeneity among the
pathogenic ESBL-E. coli isolates.

MATERIALS AND METHODS

Sampling Sites and Sample Collection
This study was to investigate the FSTPs at the Rohingya camps,
Cox’s Bazar (Figure 1). Sampling was done with proper approval
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FIGURE 1 | Locations of sampling points in Rohingya camps, Cox’s Bazar.

from the Refugee Relief and Repatriation Commissioner (RRRC).
Samples were collected from eighteen different FSTPs of six
different technologies (i.e., upflow filter, constructed wetland,
anaerobic baffled reactor, lime stabilization pond, wastewater
stabilization pond, and decentralized wastewater treatment
system) in the period between November 2019 to January 2020.
Two sludge samples- inlet (before treatment) and outlet (after
treatment) were collected from each FSTP. Altogether, 108 FSTP
samples were collected from both inlets and outlets of the plants
in 3 consecutive rounds consisting of 36 samples in each round.
Approximately, 500mL sample was collected in a sterile 500mL
plastic bottle (NALGENE, NY, USA) with proper label. After
collection, the samples were shipped by air transportation from
Cox’s Bazar to the Laboratory of Environmental Health, icddr,b,
Dhaka in an insulated box maintaining a temperature ranging
from 4 to 10◦C (33, 34).

Sample Processing
Samples were processed within 24 h after collection, maintaining
standard procedure. For analysis, faecal sludge samples were
subjected to serial dilutions using autoclaved normal saline
(0.85% NaCl). Hundred milliliter of serial decimal dilutions
(1/10, 1/100, 1/1,000, 1/10,000, 1/100,000, 1/1,000,000) of the
samples were filtered through a 0.22µm membrane filter
(Sartorius Stedim, Goettingen, Germany) in aMillipore filter unit
(Millipore, Darmstadt, Germany). The membrane filters were
then firmly placed on a modified Thermotolerant E. coli (mTEC)

agar (BD Difco, NJ, USA) plate. Subsequently, at 35 ± 0.5◦C, the
culture plate was incubated for 2 h, followed by another episode
of incubation at 44.5± 0.2◦C for 22± 2 h.

Isolation and Identification of ESBL and
KPC Positive E. coli
After incubation, colonies with red to magenta color on mTEC
media were considered as presumptive E. coli. Further, 296
isolated colonies were picked and inoculated on CHROMagar
ESBLTM (CHROMagar, Paris, France) and CHROMagar KPCTM

(CHROMagar, Paris, France) media by patch inoculation
method and incubated at 37◦C for 18–24 h. Growth and
distinctive colony color on these media confirm extended-
spectrum β-lactamases (ESBLs) and Klebsiella pneumoniae
carbapenemase (KPC) production by the isolates, respectively.
Dark pink to reddish colonies on both CHROMagar ESBLTM

and CHROMagar KPCTM represent E. coli that can produce
ESBLs and Carbapenemases, respectively (34). Further, isolates
were confirmed by using the API 20E kit (Biomerieux SA,
Marcy-I’Etoile, France) as per the manufacturer’s protocol. After
confirmation, a stock culture supplemented with 30% (v/v)
glycerol was prepared from an enrichment culture of respective
isolate and stored at−80◦C for further investigation. One loopful
from the stock culture was taken, streaked on MacConkey agar
(BD Difco, NJ, USA) and incubated for 16–18 h at 37◦C for
bacterial revival.
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Bacterial Cell Lysate Preparation
DNA from the samples was prepared following the boiling lysis
method (35). For this purpose, one or two discrete colonies
were taken from the MacConkey agar plate of pure culture
and inoculated into 3ml of LB broth, incubated overnight at
37◦C, 120 rpm in the innovaTM 4300 incubator shaker (NEW
BRUNSWICK SCIENTIFIC, NJ, USA). Then, 1.5ml of fresh
culture was taken and centrifuged at 13,000 rpm for 5min. The
supernatant was discarded, and the pellet was resuspended into
600 µL of autoclaved distilled water and mixed well by pipetting.
Immediately, after boiling at 100◦C for 10min on Stuart R© block
heater (Cole-Parmer, Stone, UK), it was then cooled in ice for
10min and centrifuged at 13,000 rpm for 7–8min. Finally, 100
µL from the supernatant was stored at−20◦C.

Detection of the bla Genes by PCR
The total DNA content of the isolates was used to test
the presence of bla gene groups, blaCTX−M−1, blaCTX−M−2

(36), blaCTX−M−8(37), blaCTX−M−9 (36), blaCTX−M−15 (38),
blaCTX−M−25 (39), blaTEM (40), and blaSHV (41) in all the isolates
by polymerase chain reaction as per methods described before.
All the PCR reactions were conducted on Bio-Rad T100TM

Thermal Cycler (Bio-Rad, CA, USA). For individual reactions,
separate primer sets were used. The primer sequences and
their corresponding PCR products specifying different antibiotic
resistance genes are listed in Supplementary Table 1. Agarose
gel electrophoresis was performed for the separation of PCR
products with 1% agarose gel.

Plasmid Isolation and Profiling
Plasmids were extracted from the ESBL producing E. coli
isolates following the Kado alkaline lysis procedure with slight
modifications (42). In brief, the extracted plasmids were analyzed
with a horizontal electrophoresis technique employing 0.7%
agarose gel and 1X Tris Borate EDTA (TBE) buffer. Molecular
sizes were determined by comparing the differential distance of
bands in the gel of the unknown sample with the size standard
plasmids. The plasmids that were used as size standards were Sa
(23 MDa), RP4 (36 MDa), R1 (62 MDa), PDK9 (2.1, 2.7, 105,
140 MDa), and E. coli V517 (1.4, 1.8, 2.0, 2.6, 3.4, 3.7, 4.8, 35.8
MDa) (43). Plasmids were mixed with 6X loading dye before
stacking into the gel and the voltage was set to 100V to carry out
the electrophoresis.

Detection of Diarrhoeagenic E. coli
All confirmed ESBL producing E. coli isolates were further
analyzed for the presence of diarrhoeagenic genes by PCR.
Certain genes encoding virulence factors were selected for the
detection of diarrhoeagenic E. coli e.g., anti-aggregation protein
transporter (aat) and aggR-activated island (aaiC) for EAEC,
attaching and effacing (eae) and bundle forming pilus (bfp)
for EPEC, heat-labile (lt) and heat-stable (st) for ETEC (44).
PCR was also performed for the detection of invasion plasmid
antigen H (ipaH) and the invasion-associated locus (ial) for EIEC
(45, 46). The multiplex PCR reaction was carried out following
the protocol described before (35). The second multiplex PCR to
detect genes encoding Shiga toxin (stx1 and stx2) was conducted

according to the previously published procedure (47, 48). The
sequences of primers and corresponding product lengths are
listed in Supplementary Table 1.

Detection of Extraintestinal Pathogenic E.

coli (ExPEC)
The non-diarrhoeagenic isolates were subsequently tested for
seven extraintestinal pathogenic E. coli (ExPEC) related virulence
genes. The pathogenic markers are: afa (afimbrial adhesins),
focG (F1C fimbriae), hlyD (cytolytic protein toxin), iutA (iron
acquisition system), kpsMII (group 2 polysaccharide capsule),
papA (P fimbriae), and sfaS (S fimbriae) (49, 50). Two multiplex
PCRwere performed for the detection of these genes (51). If three
or more of these genes are present in one isolate, that can be
characterized as an ExPEC strain (52).

Determination of Antibiotic Susceptibility
Patterns
The patterns of antibiotic susceptibility for the pathogenic,
both diarrhoeagenic and ExPEC gene harboring isolates,
were obtained by following the standard Kirby-Bauer disk
diffusion method as per the suggestion of the Clinical
and Laboratory Standards Institute (CLSI) guidelines (53).
Interpretation of antimicrobial susceptibility patterns was made
for 19 antibiotic agents. For antimicrobial susceptibility testing,
commercially available antibiotic disks (Thermo ScientificTM

OxoidTM, Basingstoke, Hampshire, UK) e.g., ampicillin (AMP,
10 µg), cefuroxime (CXM, 30 µg), ceftazidime (CAZ, 30 µg),
cefotaxime (CTX, 30 µg), cefepime (FEP, 30 µg), aztreonam
(ATM, 30 µg), imipenem (IPM, 10 µg), meropenem (MEM,
10 µg), amikacin (AK, 30 µg), gentamicin (CN, 10 µg),
nitrofurantoin (F, 300 µg), tetracycline (TE, 30 µg), tigecycline
(TG, 15µg), nalidixic acid (NA, 30µg), ciprofloxacin (CIP, 5µg),
sulfamethoxazole-trimethoprim (SXT, 25 µg), chloramphenicol
(C, 30 µg), azithromycin (AZM, 15 µg), and fosfomycin
(FOS, 50 µg) were used. In this experiment, we used E. coli
ATCC 25922 strain as a standard organism, and the procedure
was replicated three times. The average measurement of the
diameter of inhibition zone (mm) for individual antibiotic
agent was determined and from this information, isolates were
categorized as susceptible, intermediate, and resistant as per CLSI
guidelines (53).

DNA Fingerprinting by ERIC-PCR
For the investigation of genetic relatedness among the pathogenic
isolates, Enterobacterial Repetitive Intergenic Consensus (ERIC)
sequences PCR was performed using ERIC2 primer (5′-AAG
TAAGTGACTGGGGTGAGCG-3′). The PCR was carried out
as per the protocol mentioned before (54). The amplified PCR
products were resolved on 2% agarose gel. Gels were run at
90 volts for ∼3 h. Invitrogen 1 kb plus ladder (Thermo Fisher
Scientific, US) was used in the very first and last lanes per gel. GelJ
v.2.0 software was used for gel image analysis (55). The gaussian
regression method was used to normalize the image. Clusters
of ERIC-PCR patterns were generated through dice coefficient
and the unweighted pair groupmethod using arithmetic averages
(UPGMA) with 1.0% tolerance value.
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FIGURE 2 | Prevalence of different bla genes in ESBL producing E. coli.

Conjugation Ability Testing
In the conjugation experiment, donor isolates were selected
based on their plasmid profiles from the pathogenic and
non-pathogenic isolates. The non-pathogenic isolates were
picked randomly from different sampling rounds. Usually, a
threshold size of 50 MDa was selected as a selection criterion
as large plasmids containing antimicrobial-resistant genes are
responsible for drug resistance (56). Twenty-two pathogenic and
thirteen non-pathogenic isolates were taken as donors. Sodium
azide-resistant E. coli-J53 was used as the recipient. Conjugation
was performed in broth mating assay at 30◦C for 19 ±1 h.
MacConkey agar plates containing cefotaxime (1 mg/L) and
sodium azide (100 mg/L) were used to select transconjugants
based on growth and colony morphology. Transconjugants
were verified by plasmid profiling, antibiotic susceptibility tests
by disk diffusion method and the presence of ESBL genes
by PCR.

RESULTS

Frequent Occurrence of ESBL-E. coli in
Faecal Sludge Samples
A total of 108 isolates from inlets and 188 isolates from outlets
were inoculated in CHROMagar ESBLTM and CHROMagar
KPCTM media by patch inoculation method for the phenotypic
identification of ESBL and KPC positive E. coli. Finally,
180 ESBL producing E. coli isolates were identified on
CHROMagar ESBLTM agar plates, where 69% (75/108) of
the isolates were from inlets and 56% (105/188) from the
outlets. The overall distribution of ESBL producing E. coli
was 61% (180/296). These isolates were recovered from 78%

(42/54) of the inlets and 69% (37/54) of the outlet samples.
Interestingly, none of the isolates was found positive for
KPC. The counts of E. coli isolates were represented in
Supplementary Table 2.

blaCTX−M−1 and blaCTX−M−15 Genes Were
More Prominent in ESBL-E. coli Isolates
Among 180 ESBL-E. coli, 179 contained at least one of the
tested ESBL genes i.e., blaCTX−M−1, blaCTX−M−2, blaCTX−M−8,
blaCTX−M−9, blaCTX−M−15, blaCTX−M−25, blaTEM , and blaSHV .
A total of 93% (168/180) isolates were positive for blaCTX−M−1

gene followed by 58% (105/180) for blaCTX−M−15, 42% (75/180)
for blaTEM , 2% (3/180) for blaSHV and 0.6% (1/180) for
blaCTX−M−9 genes. No isolate carried blaCTX−M−2, blaCTX−M−8,
and blaCTX−M−25 genes. Notably, among the blaCTX−M−1,
blaCTX−M−15, blaTEM , and blaSHV genes, a maximum of three
genes (blaCTX−M−1, blaCTX−M−15, and blaTEM) were found in
19% (34/180) of the isolates. In addition, blaCTX−M−1 and
blaCTX−M−15 were found to co-exist in 38% (69/180) and
blaCTX−M−1 and blaTEM in 17% (31/180) of the isolates. No
isolate was found to carry these four genes together (Figure 2).
In case of the inlet, blaCTX−M−1 was present in 93% (70/75) of
isolates followed by blaCTX−M−15 in 57% (43/75), blaTEM in 49%
(37/75), and blaSHV in 1% (1/75) of the isolates. However, in the
outlet, it was 93% (98/105), 59% (62/105), 36% (38/105), and 2%
(2/105), respectively (Table 1).

High Prevalence of Plasmid Containing
Isolates
Plasmids play a significant role in antimicrobial resistance,
virulence, microbial adaptation, and evolution. Moreover,

Frontiers in Public Health | www.frontiersin.org 5 December 2021 | Volume 9 | Article 783019

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Hossain et al. ESBL-Producing E. coli in Faecal Sludge

TABLE 1 | Presence of bla genes in ESBL positive E. coli isolates detected via PCR.

blaCTX−M−1 blaCTX−M−9 blaCTX−M−15 blaTEM blaSHV

Total isolates 93% (168/180) 0.6% (1/180) 58% (105/180) 42% (75/180) 2% (3/180)

Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet

Number of isolates 70 98 1 0 43 62 37 38 1 2

Percentage 93% (70/75) 93% (98/105) 1.33% (1/75) 0% 57% (43/75) 59% (62/105) 49% (37/75) 36% (38/105) 1% (1/75) 2% (2/105)

FIGURE 3 | Agarose gel electrophoresis of plasmid DNA showing the patterns

among the ESBL positive isolates. Lane-C: RP4 (36 MDa), Lane-F: E. coli

strain PDK9 (140, 105, 2.7, 2.1 MDa), Lane-H: R1 (62 MDa), Lane-K: Sa (23

MDa), Lane-L: V517 (35.8, 3.4, 3.7, 2.0, 1.8, 1.4), Lane-A, B, D, E, G, I, J, M,

and N are ESBL positive E. coli. The molecular weight of the markers is shown

in the picture.

antibiotic resistance genes are mostly plasmid coded
(7, 8). We, therefore, determined the plasmid number
and size in ESBL positive E. coli isolates. Plasmid analysis
showed that 84% (151/180) of the isolates contained
plasmids of different sizes ranging from 1.19 to 211.54
MDa (Figures 3, 4). Among them, 72% (108/151) plasmid
containing isolates possessed more than one plasmid,
whereas 28% (43/151) owned only a single plasmid.
Maximum seven plasmids were found in three isolates only
(Supplementary Table 4).

Both Diarrhoeagenic and Extraintestinal
Pathogenic E. coli Were Found in Faecal
Sludge
In the multiplex PCR, for the detection of ETEC, EPEC, EAEC,
EHEC and EIEC, a well-characterized ETEC (for lt, st), EPEC

(for bfp, eae), EAEC (for aat, aaiC), EHEC (for stx 1, stx 2), and
EIEC K-309 (for ipaH, ial) strains were used as positive controls.
At least one diarrhoeagenic virulence gene was detected in 13%
(24/180) of the ESBL producing E. coli isolates among the ten
tested E. coli pathotype-specific virulence genes. Among them,
two-thirds were from the outlet and the rest were from the inlet.
Besides, 12 and 5 isolates were found positive for only lt and
st genes, respectively, whereas only 1 was positive for both lt
and st genes. However, 3 isolates were positive for aat, and 1
isolate for bfp, ial, and ipaH gene each. None of the isolates was
found positive for eae, aaiC, stx 1, and stx 2 genes. So, among
the 24 diarrhoeagenic E. coli isolates, 75% (18/24), 13% (3/24),
8% (2/24), and 4% (1/24) were found positive for ETEC, EAEC,
EIEC, and EPEC, respectively (Figure 5A).

In the case of ExPEC virulence factor, five out of seven
genes were detected that comprised sfaS, focG, kpsMII, iutA,
and afa whereas their prevalence rates were 35% (55/156),
15% (23/156), 10% (16/156), 5% (8/156), and 1% (1/156),
respectively. Among 156 non-diarrhoeagenic isolates, 51%
(79/156) were positive for at least one ExPEC virulence factor.
From those, 42% (33/79), 20% (16/79), 6% (5/79), and 4%
(3/79) were positive for only sfaS, kpsMII, iutA, and focG,
respectively. Though both sfaS + focG were present in 17
isolates, sfaS + afa and sfaS + iutA were in 1 isolate each.
Interestingly, 4% (3/79) isolates were found to carry sfaS+ focG+
iutA genes (Figure 5B). Though 79 isolates had at least one
ExPEC virulence marker, 3 isolates were identified as ExPEC
strains because of harboring three or more ExPEC associated
genes (52).

Pathogenic E. coli Isolates Were
Multidrug-Resistant
To explore the multidrug resistance properties of the pathogenic
isolates, antibiotic resistance profiles of 24 diarrhoeagenic and
3 ExPEC isolates were determined by the Kirby-Bauer disk
diffusion method. A total of 19 antimicrobial agents from 15
different antibiotic classes i.e. penicillin, cephalosporin (second,
third, and fourth generation), monobactam, carbapenem,
aminoglycoside, nitrofuran, tetracycline, glycylcycline,
quinolone, sulfonamide, phenicol, macrolides, and phosphonic
acid were used. All of the 27 isolates were resistant to ampicillin
and cefotaxime. About 78% (21/27) of the isolates were found
to be resistant to cefuroxime, followed by 59% (16/27) to
ceftazidime, 78% (21/27) to cefepime, 74% (20/27) to aztreonam,
7% (2/27) to nitrofurantoin, 30% (8/27) to tetracycline,
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FIGURE 4 | Percentage of isolates with number of plasmids they contained. Tweenty nine isolates contained no plasmid which comprises 16% of the total isolates.

Accordingly, 43 (24%) of the isolates contained a single plasmid, 57 (32%) isolates contained double plasmids, 29 (16%) isolates contained 3 plasmids, 10 (6%)

isolates contained 4 plasmids, 7 (4%) isolates contained 5 plasmids, 2 (1%) isolates contained 6 plasmids and 3 (2%) isolates contained 7 plasmids.

FIGURE 5 | (A) Distribution of diarrheagenic pathogens and different E. coli pathotypes. (B) Percentage of ExPEC genes among the positive isolates.

44% (12/27) to nalidixic acid, 26% (7/27) to ciprofloxacin,
26% (7/27) to sulfamethoxazole-trimethoprim, 7% (2/27) to
chloramphenicol, 48% (13/27) to azithromycin, and 4% (1/27)
to fosfomycin. None of the isolates was found resistant to
gentamicin, imipenem, meropenem, amikacin, and tigecycline
(Figure 6). Surprisingly, all of the pathogenic isolates were
multidrug-resistant and 41% (11/27) of isolates were resistant to
seven or more classes of antibiotics (Table 2). The interpretation
based on the diameter of zone of inhibition is given in
Supplementary Table 2.

Genetic Fingerprinting of the Pathogenic
ESBL E. coli
We investigated the clonal relatedness of the ESBL producing
pathogenic E. coli by ERIC-PCR for molecular typing to
calculate the visibility and placement of the gels according
to their molecular weights and molecular markers. The
genotyping profiles of 27 E. coli isolates according to ERIC-
PCR fingerprinting are shown in Figure 7. Dendrogram analysis
revealed that ERIC-PCR differentiated the isolates into seven
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FIGURE 6 | Antibiotic resistance patterns of pathogenic ESBL producing E. coli isolates.

TABLE 2 | Number of isolates resistant to different classes of antibiotics.

Classes of antibiotics Number of isolates

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam 5

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Macrolide 2

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Nitrofuran + Quinolone 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Nitrofuran + Quinolone + Macrolide 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Quinolone 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Quinolone + Sulfonamide + Macrolide 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Quinolone + Sulfonamide + Phenicol +

Phosphonic acid

1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Sulfonamide 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Sulfonamide + Macrolide 2

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Tetracycline + Macrolide 3

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Tetracycline + Quinolone 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + 4G Cephalosporin + Monobactam + Tetracycline + Quinolone + Phenicol 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + Quinolone + Sulfonamide + Macrolide 1

Penicillin + 2G Cephalosporin + 3G Cephalosporin + Tetracycline + Quinolone 2

Penicillin + 2G Cephalosporin + 3G Cephalosporin + Tetracycline + Quinolone + Macrolide 1

Penicillin + 3G Cephalosporin + Macrolide 1

Penicillin + 3G Cephalosporin + Quinolone + Sulfonamide + Macrolide 1

Total 27

clusters, E1–E7 with 70% similarity. The isolates produced
4–17 amplicons ranging from 180 to 2,000 bp, where 200,
320, and 1,250 bp were common in most of the isolates.

Here the maximum 9 isolates were in E7, 5 in E5, 4 in E4,
3 in both E2 and E3, 2 in E1 and a single isolate in the
E6 cluster.
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FIGURE 7 | Dendrogram of ERIC-PCR fingerprints from the pathogenic E. coli isolates. The percentage of genetic homology among banding patterns is indicated.

Isolate ID, round, pathotypes and treatment technology of the plants are plotted next to dendrogram.

A Significant Proportion of Isolates
Transferred Their Plasmids via Conjugation
We explored the ARGs transferability of the ESBL producing E.
coli via conjugation using E. coli-J53 plasmid recipient strain.
Conjugation experiments using representative isolates (n =

35) with diverse plasmid patterns demonstrated that plasmids
ranging in size from 32.13 to 112.20 MDa were self-transmissible
to a sodium azide resistant E. coli-J53 recipient strain but the
smaller plasmids (<30 MDa) could not be transferred. With the
transfer rates ranging from 4.3 × 10−9 to 1.82× 10−4 per donor
cell, 16 isolates successfully transferred the cefotaxime resistance
determinants to a susceptible E. coli recipient (Table 3). Analysis
of antibiotic susceptibility patterns of transconjugants showed
that cefuroxime, tetracycline, ceftazidime, cefepime, aztreonam,
nalidixic acid, sulfamethoxazole-trimethoprim, ciprofloxacin,
and azithromycin resistance were co-transferred through
plasmids along with cefotaxime resistance. On the other hand,
phenicol resistance genes were not transferred via conjugative
plasmids. Among the 16 donors, maximum of 3 plasmids were
transferred by a single isolate whereas a minimum of 1 plasmid
was transferred by 7 isolates each.

DISCUSSION

Antimicrobial resistance has expanded globally, posing a risk
to the efficient treatment of various infectious diseases (57, 58).
The rise of such resistance has been associated with faecal

contamination of surface water, recreational water, marshlands
and even potable water (59–63). In addition, pathogenic bacteria
are 10–100 times more abundant in faecal sludge than in
wastewater, posing environmental, and health risks (64). So, there
is every possibility of occurring MDR pathogenic bacteria in
faecal sludge and infections with them limit therapeutic options.

This study was aimed to investigate the ability of E. coli
to produce ESBLs, the presence of virulence factors, antibiotic
resistance patterns and plasmid transferability. In this study,
among a total of 108 FSTP samples, 100% (54/54) samples
from the inlets and 85% (46/54) samples from the outlets were
contaminated with E. coli. In our study, ESBL producing E. coli

was recovered from 78% (42/54) of the inlet and 69% (37/54)
of the outlet samples. Previously, ESBL producing E. coli were
recovered from faecal samples (41, 65–68) and sewage sludge (69,
70). Recovery of ESBL E. coli from the samples manifested a real
probability of bacterial circulation within the FSTPs and might
also escape to the surrounding environment and eventually
contaminate the surface water and groundwater.

In this study, among the 180 ESBL producers, 179 were
positive for β-lactamases of class A having clinical significance.
Among the ARGs, blaCTX−M−1 and blaCTX−M−15 were found
93% (168/180) and 58% (105/180) of the isolates, respectively.
Interestingly, in our study, 42% (75/180) contained blaTEM ,
while 2% (3/180) were positive for blaSHV . It has been reported
before that genotypic characterization showed a dominance of
the blaCTX−M−1 group similar to our study (71). E. coli strains
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TABLE 3 | Findings of conjugation assays between antibiotic resistant E. coli isolates obtained from faecal sludge samples and the recipient E. coli J53 strain.

Isolate ID Parent strain Transconjugant Transfer rate

Plasmid pattern ESBL gene pattern Resistance pattern Plasmid pattern ESBL gene pattern Resistance pattern

R1-1A 65.80; 54.33 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM, TE, NA, SXT

54.33 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP, ATM 3.47 × 10−6

R2-6A 94.84; 67.56 CTXM-1, TEM AMP, CXM, CAZ, CTX, FEP,

ATM, AZM

67.56 CTXM-1, TEM AMP, CXM, CAZ, CTX, FEP,

ATM, AZM

7.79 × 10−9

R2-22A 66.45; 56.02; 2.87 CTXM-1 AMP, CXM, CAZ, CTX, FEP,

ATM, TE, AZM

66.45; 56.02 CTXM-1 AMP, CXM, CAZ, CTX, FEP,

ATM, TE, AZM

4.3 × 10−9

R2-52B 81.91; 1.58 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM, TE, NA, CIP

81.91 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM, TE, NA, CIP

2.84 × 10−8

R3-15A 86.25; 37.24 CTXM-1, CTXM-15,

TEM

AMP, CXM, CAZ, CTX, FEP,

ATM

86.25; 37.24 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP, ATM 3.73 × 10−8

R3-29B 87.39; 32.13 CTXM-1, CTXM-15,

TEM

AMP, CXM, CAZ, CTX, FEP,

SXT

87.39; 32.13 CTXM-1, CTXM-15,

TEM

AMP, CXM, CTX, FEP, SXT 2.57 × 10−7

R3-37A 112.20; 61.11; 52.68 CTXM-1, CTXM-15 AMP, CXM, CTX, FEP, ATM,

F, NA, AZM

112.20; 61.11;

52.68

CTXM-1, CTXM-15 AMP, CXM, CTX, FEP, ATM, AZM 1.27 × 10−8

R3-42A 110.56; 64.61; 4.82;

2.50

CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM, TE, NA, CIP, C

64.61 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP, ATM 4.29 × 10−8

R3-45B 78.51; 61.08; 49.40;

6.47

CTXM-1, CTXM-15,

TEM

AMP, CXM, CAZ, CTX, FEP,

ATM, NA

61.08 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP, ATM 1.82 × 10−4

R3-49A 75.78; 38.63 CTXM-1 AMP, CXM, CAZ, CTX, FEP,

ATM

75.78; 38.63 CTXM-1 AMP, CXM, CAZ, CTX, FEP, ATM 1.96 × 10−6

R3-52A 71.39; 48.69 CTXM-1, CTXM-15 AMP, CXM, CTX, FEP, ATM 71.39; 48.69 CTXM-1, CTXM-15 AMP, CXM, CTX, FEP, ATM 7.5 × 10−8

R3-52B 71.39; 48.69 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM, SXT

71.39; 48.69 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP, ATM 8.82 × 10−8

R3-52D 71.39; 48.69 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM

71.39; 48.69 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP, ATM 1.62 × 10−8

R3-53A 77.07; 59.55 CTXM-1, CTXM-15 AMP, CXM, CTX, FEP, ATM,

SXT, AZM

77.07 CTXM-1, CTXM-15 AMP, CXM, CTX, ATM 1.43 × 10−4

R3-53B 77.07; 59.55 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM, SXT, AZM

77.07 CTXM-1, CTXM-15 AMP, CXM, CTX 1.52 × 10−4

R3-54B 57.51; 39.24 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP,

ATM

57.51; 39.24 CTXM-1, CTXM-15 AMP, CXM, CAZ, CTX, FEP, ATM 5.10 × 10−9
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expressing blaCTX−M−15 have arisen and spread around the
world and are currently a major causative agent of hospital-
acquired and community-onset urinary tract, and bloodstream
infection in humans (72, 73). However, blaCTX−M−15 seems to
be the most extensive type in isolates of human origin (74). Our
findings pointed out the importance of tracking and monitoring
clinically significant blaTEM gene and blaCTX−M gene-positive
strains and signifying the importance of finding a solution for it.

The study of plasmids facilitates understanding their role
in human and animal health, environmental processes, and
microbiological adaptation and evolution. Plasmids can encode
genes responsible for resistance or virulence emphasizing its
importance in biomedical research (44). In this study, plasmid
profiling was performed for all the 180 ESBL producing E. coli
isolates as most of the ESBLs are primarily plasmid-coded and
can disseminate through horizontal gene transfer between the
same bacteria and even between different species (8). In addition
to this, resistance to antibacterial agents, other than β-lactams,
may also be located on these plasmids at the same time and
can contribute to the dissemination of resistance (75). The gene
transfer process is critical in faecal sludge due to the higher
density of microorganisms and more frequent contact between
them which further facilitates the elevated rate of gene exchange.
Previously, it has been reported that plasmids harboring the
ESBL gene may contain several β-lactamase genes, for example,
CTX-M and TEM (76), and CTX-M was found to be the most
prominent among plasmid-coded β-lactamases (69). According
to the plasmid profile analysis, the majority, 60% (108/180) of
the isolates carried multiple plasmids and minimal similarity
among the plasmid patterns of the isolates pointed to their clonal
diversity. The more plasmids a bacteria contains, the greater
antibiotic resistance is likely to have. It was previously shown
that containing multiple plasmids simultaneously conferred co-
resistance to antimicrobial agents of different groups (77). The
current study also disclosed that a significant number of isolates,
67% (120/180), contained large plasmids ranging from 50 to
211 MDa. Plasmids of these sizes have already been reported to
be self-transmissible which eventually transfer the antimicrobial
resistance determinants to Enterobacteriaceae, remarkably to
Shigella spp. and E. coli (56, 78, 79). Additionally, it has
been reported that plasmids of >120 MDa possess invasive
characteristics for specific gastrointestinal pathogens, like Shigella
spp., and EIEC (80). In our study, 3 isolates possessed plasmids of
that size. Another concern is that conjugative transfer of plasmid
coded ESBL genes has been observed in 16 isolates out of 35 in
our study based on plasmid sizes. Cefotaxime resistance carrying
conjugative plasmids co-transferred several other antibiotic
resistance with different transfer frequencies. These outcomes
suggest that horizontal gene transfer could exacerbate the
current antibiotic resistance situation by accelerating AMR in
environmentally heterogeneous bacterial communities (81). The
conjugal translocation of resistance plasmids was unsuccessful
for a number of isolates. In these isolates, the resistance
gene may be located in plasmids that are non-conjugative or
chromosomally encoded. To figure out where the resistance
genes reside in these isolates, extensive research is required.

In places where enteric infections are endemic, pathogenic E.
coli promotes the prevalence of infectious diseases significantly.

In this study, 24 out of 180 isolates were identified as
diarrhoeagenic pathogens from faecal sludge samples. The
predominant pathotype was ETEC, comprising 75% (18/24) of
the diarrhoeagenic isolates and this finding is in agreement with
previous studies from human pit sludge and stool samples (41,
82). ETEC is responsible for almost 20% of all cases of diarrhea
in children under the age of two (83). This pathotype has already
been found to be prevalent in drinking and environmental water,
and alive after long-standing incubation of water, implying that
water could be a major mode of transmission (84, 85). Other than
ETEC, we also found EAEC, EIEC, and EPEC accountable for
13% (3/24), 8% (2/24), and 4% (1/24) of the pathogenic isolates,
respectively, and interestingly all of them are ESBL positive.
Though it is still unclear, the possible reservoir of EAEC is widely
assumed to be human (86–88). It is suspected that EAEC adopts
the faecal-oral route for transmission as it is often reported as
waterborne or foodborne (89). A high ratio of ESBL in EAEC
has also been reported in recent studies from Iran and China
(90, 91). In addition to the diarrhoeagenic E. coli, 4% (3/156)
of the isolates have been characterized as ExPEC strains. So,
inappropriately treated faecal sludges might result in impending
epidemics, like diarrhoea and other extraintestinal diseases (e.g.,
UTI, meningitis), which necessitates the proper treatment of
faecal sludge before exposure to the environment.

Antibiotic susceptibility profile analysis revealed that all the
pathogenic isolates were multidrug-resistant. The increased ratio
of multidrug-resistant E. coli among ESBL positive isolates
suggests that resistance to other antibiotic classes is being co-
selected. Similarly, previous studies reported MDR organisms in
faecal and sewage sludge samples (41, 65, 66, 68, 70). The most
frequently used antibiotics in Bangladesh are cephalosporins
and penicillins (92), which explains the reason for the isolates
being resistant to cephalosporins and penicillins. Surprisingly, a
significant number of isolates, 77.8% (21/27), remained resistant
to cefepime, a fourth-generation cephalosporin. Furthermore, a
high percentage of them has shown resistance to the quinolone
class. This could be due to the excessive use or misuse of
antibiotics which are commonly sold and distributed across the
country (93, 94). We also observed that 100% (27/27) of the
isolates were sensitive to one of the carbapenems (meropenem)
and aminoglycoside (amikacin, gentamicin) groups. On the
contrary, 26% (7/27) of the isolates were found intermediate
to imipenem, which indicates a fear of being resistant to that
antibiotic shortly if awareness is not raised immediately.

In the present study, genetic fingerprint patterns have been
explored for 27 ESBL producing pathogenic E. coli isolates
using ERIC-PCR. The constructed dendrogram has grouped
the isolates into 7 clusters at 70% similarity. The genetic
association was demonstrated in the cluster where most isolates
are distributed, though they were isolated from different FSTPs
at different times. Nine pathogenic isolates clustered together
despite having differences in their pathotypes, collection time and
sites suggesting their genetic linkage. This finding is similar to the
previous reports where genetically diverse E. coliwas found in the
environment (95–97). This genetic variation could be due to the
mutation when they persist in the host and the environment (98).

The present study was limited to only three sampling
rounds, thus extensive investigation is required for a better
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understanding of the actual scenario. Moreover, we could not
conduct any experiment to know the migration of ESBL- E.
coli and transmission of resistance genes to the surrounding
environment. Whole-genome sequencing of the pathogenic
MDR ESBL E. coli isolates would enlighten the mechanism of
antibiotic resistance and transmission dynamics.

We found plasmid containing ESBL E. coli in most of
the samples and confirmed that all the pathogenic E. coli to
be multidrug-resistant. High prevalence of MDR pathogenic
commensal E. coli is associated with a higher risk of infections,
higher costs, longer hospital stays, prolonged stays in ICU,
severe primary disease and frequent administration of antibiotics
etc. Improper handling and disposal of the effluents and
sludge of treatment plants into inappropriate sites may also
compromise public health by contaminating the land, water
supplies, or recreational waters, and facilitating the spread of
microorganisms and resistance genes into the environment. All
of this evidence is highly concerning because the horizontal
transfer of resistance genes may worsen the situation and
eventually outbreaks may origiante from environmental samples
or contaminated food and water sources. Quick actions are
needed to restrict the development of resistance in the
environment. For preventative reasons, optimum treatment
should be given preference considering the degree of resistant
pathogens introduction into the environment. Future research
should be conducted to establish a standardized approach for
detecting ESBL E. coli in faecal sludge. Unnecessary antibiotic
therapies must be avoided, and unregulated therapies should
be limited. Effective control measures are strongly suggested
for the protection of public health to prevent pathogenic E.
coli contamination of food and water bodies coming from
faecal sludge.
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