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Background: This study aimed to develop and validate a nomogram for predicting

mortality in patients with thoracic fractures without neurological compromise and

hospitalized in the intensive care unit.

Methods: A total of 298 patients from the Medical Information Mart for Intensive

Care III (MIMIC-III) database were included in the study, and 35 clinical indicators were

collected within 24 h of patient admission. Risk factors were identified using the least

absolute shrinkage and selection operator (LASSO) regression. A multivariate logistic

regression model was established, and a nomogram was constructed. Internal validation

was performed by the 1,000 bootstrap samples; a receiver operating curve (ROC) was

plotted, and the area under the curve (AUC), sensitivity, and specificity were calculated.

In addition, the calibration of our model was evaluated by the calibration curve and

Hosmer-Lemeshow goodness-of-fit test (HL test). A decision curve analysis (DCA) was

performed, and the nomogram was compared with scoring systems commonly used

during clinical practice to assess the net clinical benefit.

Results: Indicators included in the nomogram were age, OASIS score, SAPS II

score, respiratory rate, partial thromboplastin time (PTT), cardiac arrhythmias, and

fluid-electrolyte disorders. The results showed that our model yielded satisfied diagnostic

performance with an AUC value of 0.902 and 0.883 using the training set and on internal

validation. The calibration curve and the Hosmer-Lemeshow goodness-of-fit (HL). The

HL tests exhibited satisfactory concordance between predicted and actual outcomes

(P = 0.648). The DCA showed a superior net clinical benefit of our model over previously

reported scoring systems.

Conclusion: In summary, we explored the incidence of mortality during the ICU stay of

thoracic fracture patients without neurological compromise and developed a prediction
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model that facilitates clinical decision making. However, external validation will be needed

in the future.

Keywords: intensive care units, nomogram, spinal fractures, prediction model, mortality

BACKGROUND

A spinal fracture is a dislocation or fracture of the vertebrae with
an annual incidence of 26 per 100 000 (1), accounting for∼23.3%
of all trauma patients (2). The most prevalent spinal fractures
occur at the level of the lumber spine, followed by the thoracic
spine (3). Motor vehicle accidents (MVC) and falls from heights
are the most common causes of spinal fracture; the annual
incidence of spinal fracture has increased, with the reported
increase in motor vehicle crashes (4). In China, the incidence rate
of spinal fractures in 2007 was twice that in 2001 (3).

Numerous studies have investigated the long-term prognosis
of spinal fractures using data from large patient populations in
recent years. In patients with thoracolumbar fractures exhibiting
mild symptoms, the visual analog scale (VAS) scores and the
Roland Morris Disability Questionnaire demonstrated poor
results and a poor outcome in 6% of patients 10 years after
non-operative treatment (5). Furthermore, for patients exhibiting
more severe symptoms requiring surgery, only 50% reportedly
return to their original jobs postoperatively (6).

Meanwhile, long-term mortality associated with spinal
fractures is significantly increased in post-traumatic patients
compared to those with no history of trauma (7), especially
in osteoporotic patients (8, 9). It has also been shown that
old age and male gender increase the long-term mortality risk
after thoracolumbar fracture (10). Interestingly, studies have
shown that trauma patients in the ICU have high mortality
rates, as high as 31% (11). Notwithstanding that substantial
progress has been made in trauma advanced life support over
the years, the mortality rates are still high (12). Patients with
concomitant spinal cord injury are more likely than those
without neurological damage to present with multiorgan injury
and die from secondary infection (13). Most importantly, many
patients experience death prior to hospitalization due to severe
spinal cord injuries (14). To the best of our knowledge, the
prognosis of acute severe spine fracture patients in ICU has been
largely unexplored, and current research hot spots still focus on
osteoporosis, bone cement, biomechanical analysis, and so on.
Meanwhile, the interest of intensivists in trauma patients has
mostly focused on rib fractures and pelvic fractures (15–17). Due
to the lack of adequate attention to such patients, a large number
of high-risk patients are not identified in time for admission,
which often leads to poor prognosis and even higher mortality.
Little is currently known about the risk factors of poor prognosis
in ICU patients with thoracic spine fractures, which has resulted
in high mortality rates. Accordingly, we selected this specific
patient population for our study.

It is essential to develop a prediction model based on routine
clinical and laboratory parameters to ensure that it can be easily
implemented during clinical practice. It has been established that
nomograms can provide evidence-based and personalized risk

estimates and contribute to clinical management and prognosis
evaluation (18–21). This study aimed to develop a prediction
model to predict mortality during the ICU stay of thoracic
fracture patients without neurological compromise based on the
Medical Information Mart for Intensive Care III (MIMIC-III)
(22) clinical database.

MATERIALS AND METHODS

Data Source
Our data were derived from the MIMIC-III database, a
database established and open source by the Massachusetts
Institute of Technology (MA, USA) containing information
on more than 58,000 patients that attended the Beth Israel
Deaconess Medical Center. We completed a web course
offered by the National Institutes of Health (NIH) and were
granted access to the MIMIC-III database (certification number:
42442549). The data were extracted from the MIMIC-III
database using structure query language (SQL) with pgAdmin4
PostgreSQL 9.6.

Study Population
Structured Query Language (SQL) with PostgreSQL (version
9.6 University of California, Berkeley) was used to extract
information associated with each patient’s unique HADM_ID
from the MIMIC-III database. Through International
Classification of Diseases 9th Edition (ICD-9) code = 8,052, we
obtaining 381 patient. For patients with multiple admissions, we
retained information only on the patient’s first admission to the
ICU. Patients with missing data >20% for laboratory tests (n =

5) and ital signs (n= 1) were excluded. Finally, 298 patients were
included in the study (Figure 1).

Clinical Variables and Definition
Using the patient’s HADM_ID and ICUSTAY_ID as described
above, we extracted the following data: demographics, vital
signs, laboratory tests, comorbidities, and scoring systems.
Among these, demographics included age and gender; vital
signs included heart rate (HR), systolic blood pressure (SBP),
diastolic blood pressure (DBP), mean blood pressure (MBP),
respiratory rate (RR), temperature, SpO2, bicarbonate; laboratory
tests included blood urea nitrogen (BUN), chloride, creatinine,
glucose, hemoglobin, potassium, platelet, partial thromboplastin
time (PTT), prothrombin time (PT), sodium, white blood
cell (WBC), red blood cell (RBC); comorbidities included
congestive heart failure, cardiac arrhythmias, liver disease,
coagulopathy, fluid-electrolyte disorders, hypertension, renal
failure, obesity, chronic pulmonary; scoring systems include
scoring systems included simplified acute physiology score II
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FIGURE 1 | Workflow of the study. MIMIC-III, Medical Information Mart for Intensive Care III; ICU, intensive care unit; LASSO, least absolute shrinkage and selection

operator; AUC, area under the curve; HL test, Hosmer-Lemeshow goodness-of-fit test; DCA, decision curve analysis.

(SAPS II), sequential organ failure as severity (sofa) score,
oxford acute severity of illness score (OASIS), and the Glasgow
coma scale (GCS). Indicators with >20% missing data were
removed, such as height, weight, calcium; A deletion was also
made for some complications that were not present in all
patients, such as peptic ulcer, lymphoma, metastatic cancer. All
the variables mentioned above were collected within 24 h of
patients’ admission.

Statistical Analysis
We used the median and interquartile range to express
continuous variables, while Wilcoxon’s rank-sum test was
selected for comparison between two groups; The categorical
variables were expressed as frequency and proportion. Chi-
square tests or Fisher’s exact test was chosen for inter-
group comparison according to the situation. We selected the
bootstrap method for internal validation based on the number
of patients, in accordance with the transparent reporting of
a multivariable prediction model for individual prognosis or
diagnosis (TRIPOD) guidelines (23). We used the neighbor

interpolation method in the MICE R package (24) to fill in
missing data. Then, the least absolute shrinkage and selection
operator (LASSO) expression was used for screening predictors
of mortality (25). For the cross-validation results, we selected
lambda=min to determine the final candidate variables (26, 27).
The multivariate logistic regression model was established using
these variables, and multicollinearity was evaluated by variable
inflation factors (VIF). The area under the receiver operating
curve (AUC), sensitivity and specificity were used to evaluate
the model’s performance. The Youden index determined the best
cutoff point. Finally, the nomogram was plotted using the R
package “regplot.” The calibration C index (bootstrap resampling
1,000 times) (28), the calibration curve (relationship between
observation probability and prediction probability), Hosmer-
Lemeshow goodness of fit test (HL test), and brier score were
used to evaluate the degree of consistency between observed and
predicted outcomes. Decision curve analysis (DCA) was used to
assess the net clinical benefit (29). All statistical analyses were
completed using R language (version 3.6.3); a p < 0.05 was
statistically significant.
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TABLE 1 | Baseline characteristics of in-hospital death and survival groups.

Variable Total (n = 298) Survival (n = 270) Death (n = 28) P-value

Age, years 53.50 [35.00, 72.00] 50.00 [32.25, 68.00] 76.50 [66.25, 80.00] <0.001

Female, n (%) 103 (34.6) 89 (33.0) 14 (50.0) 0.111

HR, beats/min 146.50 [74.25, 219.75] 145.50 [75.25, 220.75] 149.00 [71.50, 200.75] 0.744

SBP, mmHg 120.22 [111.13, 133.15] 121.19 [111.81, 134.21] 109.43 [102.06, 118.81] <0.001

DBP, mmHg 63.33 [57.08, 70.51] 64.40 [57.75, 70.83] 58.86 [53.31, 63.82] 0.019

MBP, mmHg 80.25 [73.24, 87.63] 81.04 [74.10, 88.55] 74.01 [70.58, 77.88] 0.001

RR, breaths/min 17.84 [15.88, 20.95] 17.65 [15.79, 20.63] 20.75 [17.42, 23.28] 0.001

Temperature, ◦C 37.00 [36.56, 37.41] 37.05 [36.60, 37.43] 36.66 [36.16, 37.36] 0.041

PO2, mmHg 97.85 [96.41, 99.05] 97.87 [96.41, 99.07] 97.54 [96.65, 98.99] 0.714

Bicarbonate, mmol/L 23.00 [21.00, 26.00] 24.00 [21.00, 26.00] 21.00 [17.75, 24.00] 0.007

BUN, mg/dl 15.00 [12.00, 20.00] 15.00 [12.00, 20.00] 16.00 [14.00, 24.25] 0.174

Chloride, mEq/L 107.00 [103.00, 109.75] 106.00 [103.00, 109.00] 108.50 [101.00, 112.75] 0.129

Creatinine, mg/dL 0.90 [0.70, 1.10] 0.90 [0.70, 1.10] 0.90 [0.70, 1.20] 0.955

Blood glucose, mEq/L 136.00 [113.00, 161.00] 134.00 [112.00, 160.75] 147.50 [133.00, 172.50] 0.066

Hemoglobin, g/dl 12.35 [11.00, 13.78] 12.40 [11.12, 13.80] 10.90 [9.17, 13.33] 0.01

Platelet, K/µL 221.50 [175.00, 282.75] 224.00 [182.00, 288.00] 178.50 [135.75, 239.25] 0.003

Potassium, mEq/L 4.10 [3.80, 4.50] 4.10 [3.73, 4.40] 4.15 [3.80, 4.90] 0.519

PT, s 13.30 [12.50, 14.50] 13.30 [12.50, 14.38] 15.05 [13.18, 18.05] 0.002

PTT, s 26.30 [23.83, 29.80] 26.05 [23.72, 29.20] 33.50 [27.42, 43.73] <0.001

RBC, m/µL 4.00 [3.59, 4.47] 4.02 [3.63, 4.49] 3.75 [2.92, 4.26] 0.005

Sodium, mEq/L 140.00 [138.00, 142.00] 140.00 [138.00, 141.00] 141.00 [136.00, 142.25] 0.413

WBC, K/µL 14.35 [10.50, 18.30] 14.25 [10.50, 18.25] 15.05 [11.45, 19.15] 0.541

Congestive heart failure, n (%) 20 (6.7) 18 (6.7) 2 (7.1) 1

Cardiac arrhythmias, n (%) 43 (14.4) 33 (12.2) 10 (35.7) 0.002

Hypertension, n (%) 8 (2.7) 7 (2.6) 1 (3.6) 1

Chronic pulmonary, n (%) 34 (11.4) 30 (11.1) 4 (14.3) 0.849

Renal failure, n (%) 10 (3.4) 9 (3.3) 1 (3.6) 1

Liver disease, n (%) 7 (2.3) 6 (2.2) 1 (3.6) 1

Coagulopathy, n (%) 14 (4.7) 10 (3.7) 4 (14.3) 0.04

Obesity, n (%) 11 (3.7) 9 (3.3) 2 (7.1) 0.623

Fluid-electrolyte disorders, n (%) 61 (20.5) 48 (17.8) 13 (46.4) 0.001

OASIS 32.00 [26.00, 38.00] 31.00 [25.00, 37.00] 41.00 [36.75, 47.25] <0.001

GCS 15.00 [14.00, 15.00] 15.00 [14.00, 15.00] 15.00 [14.00, 15.00] 0.331

SOFA 3.00 [1.00, 5.00] 2.00 [1.00, 4.00] 6.00 [3.75, 8.25] <0.001

SAPSII 28.00 [19.00, 37.00] 26.50 [18.00, 35.00] 46.00 [37.75, 52.25] <0.001

HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; RR, respiratory rate; BUN, blood urea nitrogen; PT, prothrombin time; PTT,

partial thromboplastin time; RBC, red blood cell; WBC, white blood cell; SAPSII, simplified acute physiology score II; SOFA, sequential organ failure; OASIS, oxford acute severity of

illness score; GCS, Glasgow coma scale.

RESULTS

Patient Characteristics
Two hundred and ninety eight patients were finally included
in the study, with an average age of 53.5 years. 34.6% (n =

103) were female, with a mortality rate of 13.6% while male
patients accounted for 65.4% (n = 195), with a mortality rate
of 7.2%. Table 1 compares the differences in characteristics
between the in-hospital death group and the survival group.
Compared with the survival group, patients in the death group
were older, had lower body temperature and blood pressure,
faster respiratory rate, and lower bicarbonate. Meanwhile, lower
hemoglobin and platelet counts were observed in the death

group, while PT and PTT values were relatively higher, indicating
poor coagulation function. The OASIS, SOFA, and SAPS II scores
were significantly higher, with a higher prevalence of cardiac
arrhythmias, coagulopathy, and fluid-electrolyte disorders.

Characteristics Selection and
Development of a Nomogram
Out of 35 variables, seven remained in the lasso logistic regression
model based on the binomial deviance minimum criteria (ratio
5:1) (Figure 2). The final seven variables included in the
multivariate logistic regression, were: age (OR: 1.02; 95%CI 0.99–
1.06), OASIS score (OR: 1.08; 95%CI 1.00–1.17), SAPS II score
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FIGURE 2 | Clinical variables were selected using the lasso logistic regression model. (A) Tuning parameter (λ) selection using LASSO penalized logistic regression

with 10-fold cross-validation. (B) LASSO coefficient profiles of the radiomic features.

(OR: 1.03; 95% CI 0.98–1.08), RR (OR: 1.07; 95% CI 0.94–1.20),
PTT (OR: 1.08; 95%CI 1.03–1.13), cardiac arrhythmia (OR: 1.44;
95%CI 0.43–4.62), and fluid-electrolyte disorders (OR: 4.40; 95%
CI 1.62–12.54) (Table 2). Based on this model, we constructed
a nomogram to predict mortality in ICU patients with thoracic
spine fractures without neurological injuries (Figure 3).

Apparent Performance of the Nomogram
and Web Calculator
Our model yielded an AUC value of 0.902 (95% CI 0.849–0.959),
with a C-index of 0.883 after 1,000 bootstrap resampling internal
validations. According to the Youden index, the optimal cutoff
value was 18.45%, with a sensitivity and specificity of 0.870
and 0.786, respectively (Figure 4). Meanwhile, the calibration
curve showed a good fit during internal validation (Figure 5),
while the HL test showed that our predicted and observed
values were close (P = 0.648); The Brier score was 0.0543

and 0.0623 after bootstrap correction. The ROC values of the
scoring systems SAPS II and OASIS incorporated into the
regression were 0.856 and 0.837, respectively, suggesting that
our model exhibited better predictive performance than scoring
systems commonly used clinically. To facilitate clinical use, we
constructed a web calculator (https://ouyyjlueducn.shinyapps.io/
dynnomapp/) based on the model.

Clinical Practice
DCAof the nomogramwas performed (Figure 6). The blue curve
in the figure represents that all the patients received intervention,
the straight purple line represents that none patients receive the
intervention, and the red curve represents the clinical benefit
of our model. For our model, when the predicted probability
threshold was set to 0.065%, the net clinical benefit was 9.39%.
Our results showed that our model had a superior net clinical
benefit than the OASIS and SAPS II scoring systems.
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TABLE 2 | Multivariate regression model based on LASSO regression results.

Variables Multivariable logistics model

Coefficients OR (95%CI) P-value

Age 0.02334 1.02 (0.99–1.06) 0.1627

OASIS 0.074 1.08 (1.00–1.17) 0.069

SAPSII 0.03004 1.03 (0.98–1.08) 0.2284

RR 0.06601 1.07 (0.94–1.20) 0.288

PTT 0.07398 1.08 (1.03–1.13) 0.0028

Cardiac arrhythmias 0.36681 1.44 (0.43–4.62) 0.5394

Fluid-electrolyte disorders 1.48207 4.40 (1.62–12.54) 0.0041

OASIS, oxford acute severity of illness score; SAPSII, simplified acute physiology score II; RR, respiratory rate; PTT, partial thromboplastin time.

FIGURE 3 | Nomogram to predict the risk of in-hospital mortality in patients with thoracic spine fractures without neurological injury in the ICU. PTT, partial

thromboplastin time; RR, respiratory rate; SAPS II, simplified acute physiology score II; OASIS, oxford acute severity of illness score. ** means p < 0.01.

DISCUSSION

Fractures have become a major public health problem in most

countries (30), especially spine fractures, which account for
approximately 46% of spinal injuries in severe trauma (31,

32). In this regard, patients that sustain spine fractures have

the poorest functional prognosis and potential to return to
work (33). Although many studies have discussed the long-
term prognosis of spinal fractures, to the best of our knowledge,
this is the first study to investigate the mortality risk of spinal
fracture patients without neurological impairment. The injury
severity score (ISS) has previously been used to guide the risk
stratification of trauma patients; however, some studies have
pointed out that this scoring system was not reliable (34) since
it did not consider the characteristics of patients with spinal
trauma. We summarized the related works in Table 3. Previous
methods of classifying spinal trauma have been most relevant

in guiding surgical treatment (35), and commonly include the
Trauma and Injury Severity Score (ISS) and the New Trauma and
Injury Severity Score (NISS). However, none of these assessment
methods take into account the individual spinal trauma patient,
and our work fills a gap in the risk stratification of patients with
severe spinal trauma. After internal validation of the model, we
found that the predictions of the model were in good agreement
with the actual results. More interestingly, the constructed model
had better discrimination and net clinical benefit compared to
the previously used OASIS and SAPSII systems. Also, based
on the reviewers’ comments, we have done more work. To
facilitate clinical use, we constructed a web calculator (https://
ouyyjlueducn.shinyapps.io/dynnomapp/) based on the model.
In summary, we provide an easy-to-use model for this group
of patients, which can identify high-risk patients early, take
appropriate interventions early, and reduce poor prognosis and
in-hospital mortality.
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FIGURE 4 | Receiver operating characteristic curve of the nomogram. AUC,

area under curve; OASIS, oxford acute severity of illness score; SAPS II,

simplified acute physiology score II.

With the rapid development of computer technology in recent
years, the combination of machine learning technology and
medical practice has become amajor trend (19–21, 26, 27). Along
with the continuous innovation of convolutional algorithms,
from LeNet by Lecun et al. (36) to ResNet by He et al. (37),
computer-aided decision making through imaging has become
a hot topic in medical research, such as prediction of BMI by
facial image features to predict BMI (38) and fundus images
to predict diabetic retinopathy (39). In addition, the prevalence
of electronic medical records and the establishment of large
medical databases have also provided the basis for research on
clinical problems, and the combination with machine learning
has shown remarkable performance in predicting the occurrence
and prognosis of diseases (40, 41). Unfortunately, however, there
is still a lack of research in the current field for our patient
population. It is therefore necessary to develop an easy-to-use
and reliable tool to inform clinical practice. In the present study,
we established a nomogram consisting of seven predictors: age,
OASIS score, SAPS II score, RR, PTT, cardiac arrhythmias,
fluid-electrolyte disorders. Multiple indicators used during the
validation process, including AUC, calibration curve, HL test
and DCA, indicated that our nomogram yielded satisfactory
prediction results.

As seen in Table 1, significant differences in coagulation
markers PT, PTT, and coagulopathy were found between the
death and the survival groups, especially PTT, which was an
important predictor of mortality. Trauma-induced coagulopathy
(TIC) has been reported to play an important role in trauma
healing (42), and an increasing body of evidence suggests that

uncontrolled hemorrhage is a preventable cause of death in the
early stages after injury (43–45), which has been reported to
be as high as 40–80% (46). The incidence rate of TIC often
correlates with the severity of tissue injury (47) since tissue injury
releases a large number of damage-associated molecular patterns
(DAMPs), which promote multiple inflammatory pathways and
thereby affect coagulation (42). Endothelial dysfunction has been
reported to participate in TIC (48), and plasma samples from
severely injured patients on admission exhibited increased levels
of syndecan-1, which correlated with increased activated protein
C (APC), prolonged PTT, and elevated epinephrine levels (49).
Furthermore, platelet defects and dysfunction are also important
contributors to TIC (50). In our study, even though the platelet
count in the deceased group was still within the normal range,
a significant decrease was observed (Table 2), suggesting an
association between a relatively low platelet count and increased
mortality, consistent with previous studies (51, 52). Similarly,
a prospective study demonstrated that 91% of patients with
severe injuries had platelet dysfunction despite normal platelet
counts (53).

The most common arrhythmia in patients with chest trauma
or surgery is atrial fibrillation, often associated with longer
ICU stay and higher mortality (54). On the one hand, most
patients with pre-existing atrial fibrillation receive anticoagulant
therapy. When combined with previously described coagulation
dysfunction, fatal bleeding can result from small traumas (55).
On the other hand, patients with new-onset atrial fibrillation have
higher in-hospital mortality than patients with previous atrial
fibrillation (56) reportedly. The mortality among patients with
arrhythmia in our study group was 23.3% (n = 10/43), much
higher than that of patients without arrhythmia. Moreover, a
significant difference in the number of patients with arrhythmia
was found between the survival and death groups (P < 0.01).

It is widely acknowledged that the onset of arrhythmias is
highly correlated with electrolyte disturbances (54). Many studies
have demonstrated that electrolyte disturbances and vertebral
fractures are associated with higher mortality, while elderly
patients with fractures are more likely to have hyponatremia (57–
59). Interestingly, in our study, albeit patients in the deceased
group were much older than those in the survival group, no
significant difference in sodium levels was found between the two
groups. However, our study also confirmed higher mortality in
patients who develop fluid-electrolyte disorders, emphasizing the
need for early and effective fluid management in this subset of
patients (60).

An analysis of nationwide patients with vertebral fractures
in Japan revealed that advanced age is a significant risk factor
for complications (OR 1.38) (61). We consistently found that
advanced age patients were more likely to experience in-hospital
death, which may be associated with sarcopenia (62), poor
nutritional status (63), and development of fluid-electrolyte
disorders, as mentioned earlier. However, we found that gender
was not a relevant factor for in-hospital death in our study, which
was inconsistent with the literature. This discrepancy could be
accounted for by the fact that the subjects of our research were
ICU patients, which were critically ill, while gender had more
influence in long-term prognosis (10).
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FIGURE 5 | Calibration curves of the predicted nomogram. The dashed line represents the original performance, and the solid dashed line represents the

performance during internal validation by bootstrapping (B = 1,000 repetitions). Results of the Hosmer-Lemeshow test demonstrate that the P-value was 0.648.

FIGURE 6 | DCA for our model, OASIS and SAPS II. The y-axis measures the net benefit. DCA, decision curve analysis; OASIS, oxford acute severity of illness score;

SAPS II, simplified acute physiology score II.

Due to its simplicity and ease of observation, the respiratory
rate is one of the indicators traditionally used for the
early identification of high-risk patients after trauma (64).
A respiratory rate >20 was an important indicator in new
evaluation criteria for trauma patients (65). Consistently, we
found that tachypneic patients with a respiratory rate within 24 h
of admission are more likely to experience in-hospital mortality
and require early intervention. Two severity scoring systems,
SAPS II and OASIS were also included in the prediction model of
this study. At present, much controversy surrounds the predictive
accuracy of these two scoring systems in orthopedic trauma

patients (66, 67). In our present study, both scoring systems were
integrated into our nomogram. The ROC plots showed that our
model outperformed these two scoring systems in discrimination
(Figure 3). At the same time, DCA exhibited greater net clinical
benefit than these two scoring systems (Figure 5).

There are still limitations that need to be considered. First,
these data were from a public database spanning 2007–2014.
Therefore, the model needs external validation from different
medical Institutions. Second, because missing data is >20%
in the dataset, there is a lack of some important clinical
parameters. Finally, although nomogram is already widely used
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TABLE 3 | The summary of the previous related work.

ID Title Author Journal Public date

1 Thoracic spine fracture in the panscan era Remy Bizimungu et al. Ann Emerg Med 2020 Aug

2 Early risk stratification of in hospital mortality following a ground

level fall in geriatric patients with normal physiological parameters

Nasim Ahmed et al. Am J Emerg Med 2020 Dec

3 Mortality and cause of death in patients with vertebral fractures: a

longitudinal follow-up study using a national sample cohort

Hyo Geun Choi et al. Spine (Phila Pa

1976)

2020 Mar

4 Predicting survival in older patients treated for cervical spine

fractures: development of a clinical survival score

Darryl Lau et al. Spine J 2019 Mar

5 Long-term post-traumatic survival of spinal fracture patients in

northern Finland

Ville Niemi-Nikkola et al. Spine (Phila Pa

1976)

2018 Dec

6 Spinal fractures in older adult patients admitted after low-level

falls: 10-year incidence and outcomes

Randeep S. Jawa et al. J Am Geriatr Soc 2017 May

7 Height loss in older women: risk of hip fracture and mortality

independent of vertebral fractures

Teresa A. Hillier et al. J Bone Miner Res 2012 Jan

8 Mortality and incident vertebral fractures after 3 years of follow-up

among geriatric patients

H. C. van der

Jagt-Willems et al.

Osteoporos Int 2013 May

9 Predicting in-hospital mortality in elderly patients with cervical

spine fractures: a comparison of the Charlson and Elixhauser

comorbidity measures

Mariano E. Menendez

et al.

Spine (Phila Pa

1976)

2015 Jun

10 Characteristics and outcomes of hospitalized patients with

vertebral fragility fractures: a systematic review

Terence Ong et al. Age Aging 2018 Jan

11 Mortality after vertebral fractures in a Japanese population Yuzo Ikeda et al. J Orthop Surg

(Hong Kong)

2010 Aug

12 Is radiographic vertebral fracture a risk factor for mortality? Daniel W. Trone et al. Am J Epidemiol 2007 Nov

13 Long-term morbidity and mortality after a clinically diagnosed

vertebral fracture in the elderly–a 12- and 22-year follow-up of 257

patients

R. Hasserius et al. Calcif Tissue Int 2005 Apr

14 Incidence of acute care complications in vertebral column fracture

patients with and without spinal cord injury

D. J. Fletcher et al. Spine (Phila Pa

1976)

1995 May

in clinical practice to aid medical decision making, we want to
further simplify the work and expand the scenarios in which
it can be used. Therefore, in the future we hope to package
predictive tools into applications for mobile devices, wearables,
or personal computers.

CONCLUSION

Our study found that age, OASIS score, SAPS II score, RR,
PTT, cardiac arrhythmias, and fluid-electrolyte disorders are
predictors of mortality during the ICU stay of thoracic fracture
patients without neurological compromise. A multiple logistic
regressionmodel and a nomogramwere developed and validated.
During clinical practice, this nomogram could help physicians
screen high-risk patients, make optimal use of resources, and
decrease the occurrence of death in this patient population.
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