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Coronavirus Disease 2019 (COVID-19) is currently a global pandemic, and

early screening is one of the key factors for COVID-19 control and treatment.

Here, we developed and validated chest CT-based imaging biomarkers

for COVID-19 patient screening from two independent hospitals with 419

patients. We identified the vasculature-like signals from CT images and

found that, compared to healthy and community acquired pneumonia (CAP)

patients, COVID-19 patients display a significantly higher abundance of these

signals. Furthermore, unsupervised feature learning led to the discovery of

clinical-relevant imaging biomarkers from the vasculature-like signals for

accurate and sensitive COVID-19 screening that have been double-blindly

validated in an independent hospital (sensitivity: 0.941, specificity: 0.920, AUC:

0.971, accuracy 0.931, F1 score: 0.929). Our findings could open a new avenue

to assist screening of COVID-19 patients.

KEYWORDS

Coronavirus Disease 2019 (COVID-19), chest CT image, artificial intelligence, imaging
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Introduction

Coronavirus Disease 2019 (COVID-19) remains a global pandemic (1, 2). Early

detection, early diagnosis, early isolation, and early treatment are essential for the

prevention and control of the epidemic. Currently, nucleic acid detection is the most

effective tool for COVID-19 diagnosis. However, early COVID-19 detection is still

challenging: (1) COVID-19 belongs to a class of highly infectious diseases, with a

considerable proportion of patients without obvious clinical symptoms during the onset

of disease (2); (2) the critical shortages of resources, including nucleic acid detection

kits, also limits the early detection of COVID-19; (3) relatively long time for nucleic
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acid extraction and detection, non-standard throat swab

sampling; (4) relatively high detection cost; (5) false negative rate

and limited sensitivity to a certain extent due to relatively low

viral load in the early stage of the disease, non-standard throat

swab sampling, heterogeneities in types of samples, degradation

samples, presence of PCR inhibitors, evolution of the virus,

mutations in the viral genome, etc. (3–5); (6) corresponding

medical waste (6–8).

Besides the coronavirus etiology, epidemiological contact

history, and clinical symptoms, pulmonary imaging, especially

chest computed tomography (CT) imaging, plays a unique

role for COVID-19 diagnosis (9). For early-stage COVID-19

patients, unifocal ground-glass opacities (GGOs) may present

as the main feature, which are most commonly located in the

peripheral and inferior lobe. As the disease progresses, these

unifocal GGO can develop into multiple GGOs and infiltrate the

lungs, while severe consolidation of these lesion may occur in

patients with severe disease (10). Lung CT images can be used

not only for the diagnosis of COVID-19, but also for assessing

the severity of the disease and tracking the lung changes in

patients with COVID-19 who have negative nucleic acid tests

(11). Several earlier studies showed high sensitivity of CT for the

detection of COVID-19, indicating the potential of CT scan in

the screening of COVID-19 (4, 12). Fang et al. confirmed in a

cohort study of 51 patients with COVID-19 that the detection

rate of chest CT for COVID-19 was 98%, while the detection

rate of RT-PCR was only 71% (13). At the same time, their

study showed that pulmonary vascular prominence as a key

feature of COVID-19 can be found in 45–90% of cases. In

another cohort study of 1014 patients, Tao et al. (11). compared

the detection rate of CT and RT-PCR for COVID-19. In all

1014 patients, RT-PCR and chest CT scans were positive in

59 and 88%, respectively. Among patients with a positive RT-

PCR test, chest CT showed a 97% sensitivity for the detection

of COVID-19. Among patients with negative RT-PCR results,

75% had positive chest CT results, and 60–93% of cases had

positive chest CT results before (or at the same time as) the initial

positive RT-PCR result. Before RT-PCR results turned negative,

42% (24/57) of cases showed improvement on follow-up chest

CT scans.

However, the CT image characteristics of COVID-19

patients, especially at early stage, are similar to those

found in other common pneumonia patients, including those

suffering from H7N9 influenza virus pneumonia, mycoplasma

pneumonia, chlamydial pneumonia and bacterial pneumonia

(14), which requires immediate investigation of potentially

underlying characteristics other than the classical ones. Most

recently, several interesting studies used artificial intelligence

(AI) for the early diagnosis and GGO detection of COVID-

19, including PointNet++ (15) and an AI-driven android

application (16), where the former can be used for detection

and quantifying GGOs in CT scans of COVID-19 patients

as well as assessing the severity of the disease, and the latter

provided a novel Android application that detected COVID-

19 infection from chest CT scans using a highly efficient

and accurate deep learning algorithm. Furthermore, neural

search architecture network (NASNet)-based algorithm has been

demonstrated with great potential in a well-designed computer-

aided detection (CAD) system for COVID-19 diagnosis (17).

And many other deep learning related systems for COVID-

19 detection and diagnosis were summarized in (18). In this

study, we developed and validated chest CT-based imaging

biomarkers (IBs) for early stage COVID-19 patient (i.e., mild

and moderate) screening and differential diagnosis combining

Artificial Intelligence (AI) and clinical findings on vascular

changes in the lung regions of COVID-19 patients within a

system biology approach, which could open a new avenue

to assist early stage screening of COVID-19 patients. The

major advantages of our imaging biomarkers reside in two

folds as follows: (1) they provide robust, accurate and cost-

effective COVID-19 screening, which can significantly alleviate

the shortage of clinical resources, including both nucleic acid

detection kits and experienced radiologists; and (2) they provide

a non-invasive diagnostic tool that enables world-wide scalable

practical applications. We expect that our imaging biomarkers

will be of great significance to reduce the workload of clinicians

and to assist in differential diagnosis of COVID-19 from

other diseases.

Materials and methods

Data collection

The chest CT images in this case-control study were

collected from Wuhan Third Hospital (hospital A) and

Hubei Provincial Hospital of Traditional Chinese Medicine

(hospital B). The inclusion criteria for COVID-19 patients

were: (1) patients were diagnosed and confirmed through

nucleic acid test from January 2020 to March 2020; (2)

patient were with mild or moderate disease status, where the

severity was classified according to the Coronavirus Disease

2019 (COVID-19) diagnosis and treatment guideline (trial

version 7) (19) issued by the National Health Commission

of the People’s Republic of China. In addition, both patients

with community acquired pneumonia (CAP) and healthy

participants (with no obvious abnormalities in chest CT images)

were randomly collected from aforementioned two hospitals

and used as control groups in training and validation cohorts,

independently. The inclusion criteria for control group were: (1)

patients who were diagnosed with lung infection on imaging

and clinical basis a few months before the onset of the

epidemic; (2) patients without severe diseases of respiratory

system, cardiovascular or cerebrovascular systems; (3) patients

without mental illness or cognitive impairment. This study

has been approved by the institutional review board (IRB) of
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participating hospitals, and been performed according to the

required guidelines.

Imaging protocol for CT chest

Chest CT exams from Hubei Provincial Hospital of

Traditional Chinese Medicine were randomly performed with

two different scanners: (1) GE Optima 660 CT (GE Healthcare,

Milwaukee) and (2) uCT 530 (United imaging, Shanghai), with

tube voltage for both scanners at 120 kVp and reconstruction

thickness at 0.625 and 1.5mm, respectively. While, CT exams

fromWuhan Third Hospital were performed with GEDiscovery

CT750 HD (GE Healthcare, Milwaukee) with tube voltage

at 120 kVp and reconstruction thickness at 0.625mm. No

intravenous contrast agents were used during scanning in

both hospitals.

Vasculature-like structure enhancement

Blood vessels in lung form tubular structures and the

corresponding vasculature-like signal is recognized and

enhanced using iterative tangential voting (ITV) (20) within

pre-segmented lung regions in 3D, where ITV enforces

the continuity and strength of local linear structures and

the 3D lung segmentation is achieved via level-set method

(21). Specifically, each 3D chest CT image is resampled into

isotropic image space (voxel size = 1.5 × 1.5 × 1.5mm)

with SimpleITK (version 1.2.4), followed by ITV operating

on the isotropic chest CT image gradient information with

sigma set to be 0.5 and 1.0 on training and validation

cohorts, respectively, to accommodate the technical difference

across hospitals.

Imaging biomarker detection and
visualization

We developed an unsupervised feature learning pipeline

based on Stacked Predictive Sparse Decomposition (Stacked

PSD) (22) for discovery of underlying 3D characteristics from

the “vasculature-like signal” space derived by ITV. Given

V=[v1,. . .,vN] as a set of 3D “vasculature-like signal” (N), the

formulation of the imaging biomarkermining pipeline is defined

as follows.

minB,Z,W,G ||V − BZ||2F + ||Z − Gσ (WV)||2F + λ1||Z||1

s.t. ||bi||
2
2 = 1, ∀i = 1, . . . , h

where B= [b1,. . .,bh] is a set of imaging biomarkers to be

mined (h). Z= [z1,. . .,zN] is the sparse biomarker abundance

matrix; W is the auto-encoder for efficient and effective

extraction of sparse biomarker abundance matrix (Z) from

“vasculature-like signal” (V); G = diag(g1, .., gh) is a scaling

matrix with diag being an operator aligning vector, [g1, .., gh],

along the diagonal; σ (·) is an element-wise sigmoid function;

λ1 is the regularization constant to ensure the sparsity of

Z, such that only a subset of imaging biomarkers will be

utilized during the reconstruction of original “vasculature-

like signal.”

The first constraint: ||V−BZ||2F, penalizes the reconstruction

error of original “vasculature-like signal” (V) with imaging

biomarker (B) and the corresponding sparse biomarker

abundancematrix (Z); the second constraint: ||Z− Gσ (WV)||2F,

penalizes the approximation error of sparse biomarker

abundance matrix (Z) with the auto-encoder; the third

constraint: ||Z||1, penalizes the sparsity of the biomarker

abundance matrix, which helps ensure the utilization/activation

of dominant biomarkers during the learning process. The

optimization of biomarker pipeline (22) was an iterative

process involving ℓ1 − minimization (23) and stochastic

gradient descent. Specifically, in this study, we used single

network layer with 256 dictionary elements (i.e., patterns) at

a fixed patch size of 20 × 20 × 20 voxels and a fixed random

sampling rate of 100 3D patches, where the patch size was

optimized against reconstruction error and cross-validation

performance on training set (Supplementary Figure 15). After

training, Stacked PSD reconstructs vasculature-like structures,

at given locations, as a combination of pre-trained patterns,

with the reconstruction coefficients as the abundance of the

corresponding patterns. In training cohort, 8 of 256 patterns

were identified with significant correlation with COVID-19

(FDR < 0.05) through cross-validation (training sample rate:

0.8; bootstrap 100 times). The Out of Bag Error (OOB error) was

used to measure the prediction error of model on the training

set. At last, these 8 significant patterns (i.e., imaging biomarkers)

were utilized to build the random forest classification model

for COVID-19 screening. A double-blind study was designed

and implemented to validate this pre-built model in an

independent hospital with three steps: (1) vasculature-like

structure enhancement: apply ITV on the isotopically rescaled

3D CT chest scan; (2) imaging biomarker extraction: apply

Stacked PSD with pre-identified imaging biomarkers on

“vasculature-like signal” space derived from step (1); and (3)

double-blind COVID-19 screening: apply the pre-built random

forest model on the abundance of pre-identified imaging

biomarkers extracted from validation cohort. Visualization of

these imaging biomarkers was created in 3D space using ITK-

Snap (version 3.8.0), Python (version 3.7.0), Matplotlib (version

3.1.2), Blender (version 2.82) and Three.js (version r115 on

GitHub). Snapshots of the three-dimensional visualization were

used to generate two-dimensional visualization that overlays

with the original CT scans.
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Performance comparison between 3d
imaging biomarkers and experienced
chest radiologists

We invited two experienced chest radiologists to

independently and blindly assess the CT images in our

validation cohort, who have 8 and 10 years of clinical imaging

diagnosis experience, respectively. And both radiologists have

more than 2 months of intense and continuous diagnosis

experience of COVID-19 in Wuhan, China. Specifically,

de-identified and randomized chest CT images were given

to the chest radiologists and their diagnosis were achieved

according to their chest CT based clinical practice during

COVID-19 diagnosis. Sensitivity and specificity were utilized

for performance comparison, with nucleic acid test results as

the ground-truth.

Statistical analysis

The difference in vasculature-like signals and abundance

of individual imaging biomarker among different groups

were assessed by Mann-Whitney non-parametric test, and

association between signatures and COVID-19 were evaluated

by logistic regression. The importance of individual imaging

biomarker during COVID-19 screening was assessed by random

forest package (version 4.6-14) in R (version 3.6.1). Principle

component analysis (PCA) and heatmap were performed in

R (version 3.6.1) and MATLAB (version 2012b), respectively.

The screening performance was characterized with sensitivity,

specificity and area under the ROC curve (AUC). Calibration of

the screening model was characterized with Hosmer-Lemeshow

test in R (version 3.6.1).

Results

Study population characteristics

The flowchart of participant selection in our case-control

study was illustrated in Figure 1. The characteristics of cohorts

are summarized in Table 1. A total of 419 participants were

included in this study. The cohort (n = 116) from Hospital A

served as training set, the cohort (n = 303) from the Hospital B

as a double-blind validation set (Figure 2). The median ages of

participants in training and validation cohorts were 42 (range:

14–76) and 51 (range: 15–89), respectively. There were 53

(45.7%) females and 63 (54.3%) males in training cohort, and

161 (53.1%) females and 142 (46.9%)makes in validation cohort.

Training cohort contained 47 (40.5%) COVID-19 patients, 20

(17.2%) healthy and 49 (42.2%) CAP patients, while validation

cohort had 153 (50.5%) COVID-19 patients, 60 (19.8%) healthy,

and 90 CAP (29.7%) patients.

FIGURE 1

The flowchart for the selection of the participants.

Vasculature-like structure enhancement

Inspired by recent findings on vascular changes in

lung tissue of COVID-19 patients, including vascular

congestion/enlargement, small vessels hyperplasia and

vessel wall thickening (24–26), we hypothesize that, compared

with healthy and CAP patients, COVID-19 patients have

significantly more vascular changes in the lung. Therefore, we

built a machine learning pipeline on enhanced vasculature-like

structures formed by blood vessels to discover underlying

characteristics from chest CT of early stage COVID-19 patients.

Specifically, the vasculature-like structure was recognized and

enhanced with ITV (20) in both training and validation cohorts

as a pre-processing step. Interestingly in training cohort, the

mean vasculature-like signal (i.e., the average intensity of

vasculature-like structures recognized and enhanced by ITV in

lung region) reveals significant differences (p < 0.05) between

healthy, CAP and COVID-19 patients (Figure 3B). Examples

of vasculature-like structure enhancement are illustrated in

Figures 4A–D and Supplementary Videos 1–3 for COVID-19,

CAP, and healthy cases, respectively. These findings are not

only consistent with the clinical observations (24–26), but

also leads to remarkable differentiation between COVID-19

and non-COVID-19 groups in training cohort [AUC = 0.721

(95% CI (0.536, 0.861)), Supplementary Figure 1, blue curve]

with logistic regression. Altogether, it encourages us to identify

imaging biomarkers from the “vasculature-like signal” space to

assist accurate early stage COVID-19 screening.
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TABLE 1 Characteristics of participants included in this study.

Variables Training Validation

COVID-19 Healthy CAP P-value COVID-19 Healthy CAP P-value

(n = 47) (n = 20) (n = 49) (n = 153) (n = 60) (n = 90)

Age ∼ Median [Min, Max]

53.0 [31.0, 74.0] 29.0 [14.0, 50.0] 37.0 [16.0, 76.0] <0.001 64.0 [20.0, 89.0] 41.0 [19.0, 67.0] 38.0 [15.0, 85.0] <0.001

Gender

Female 24 (51.1%) 7 (35.0%) 22 (44.9%) 0.477 81 (52.9%) 37 (61.7%) 43 (47.8%) 0.247

Male 23 (48.9%) 13 (65.0%) 27 (55.1%) 72 (47.1%) 23 (38.3%) 47 (52.2%)

GGO

No 6 (12.8%) 20 (100%) 33 (67.3%) <0.001 12 (7.8%) 60 (100%) 55 (61.1%) <0.001

Yes 41 (87.2%) 0 (0%) 16 (32.7%) 141 (92.2%) 0 (0%) 35 (38.9%)

Consolidation

No 43 (91.5%) 20 (100%) 26 (53.1%) <0.001 123 (80.4%) 60 (100%) 46 (51.1%) <0.001

Yes 4 (8.5%) 0 (0%) 23 (46.9%) 30 (19.6%) 0 (0%) 44 (48.9%)

COVID-19, Coronavirus Disease 2019; CAP, community acquired pneumonia; GGO, ground-glass opacities.

FIGURE 2

A graphic illustration of the study design. A case-control study was designed to identify chest CT-based imaging biomarkers for COVID-19

patient screening. Biomarker discovery and biomarker-based predictive model construction were conducted using the data from Hospital A

(training cohort), which were validated in Hospital B (validation cohort) with the double-blind design.

Imaging biomarker detection and
COVID-19 screening

Next, we applied Stacked PSD (22) on the “vasculature-

like signal” space from training cohort. Two hundred

fifty-six dictionary elements were learned and optimized,

where 8 of them have significant positive correlations

with COVID-19 (FDR < 0.05, Supplementary Tables 1,

2, Supplementary Figures 2, 3). These eight COVID-19-

relevant signatures (i.e., imaging biomarkers, Figure 2 3D CT

Imaging Biomarkers panel, and Supplementary Figures 4,

5) allow the construction of multispectral staining in

the entire lung region (Figure 3A), which is further

demonstrated in 3D (Supplementary Videos 4–6) and 2D

(Supplementary Videos 7–9) animations. The 8 imaging

biomarkers clearly separate COVID-19 patients from others in

training cohort by PCA (Figure 3C) and clustering (Figure 5A)

analysis, where each individual biomarker has significantly

different abundance between COVID-19 patients and others

(Figure 5B). Finally, we built a random forest classification
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FIGURE 3

Chest CT-based imaging biomarkers accurately predicts COVID-19. (A) Representative examples for 3D multispectral imaging biomarker

visualization in COVID-19, CAP and healthy samples. (B) The boxplot shows di�erences in the vasculature-like signals among healthy,

community acquired pneumonia (CAP), and COVID-19 patients in the training cohort. The p-values were obtained by the non-parametric

Mann–Whitney test. (C) PCA of 8 imaging biomarkers in the training cohort. Twenty healthy participants (green dots), 49 CAP patients (blue

dots), and 47 COVID-19 patients (red dots). The p-values were obtained from permutational multivariate analysis of variance (PERMANOVA). (D)

The boxplot shows di�erences in the vasculature-like signals among healthy, community acquired pneumonia (CAP), and COVID-19 patients in

the validation cohort. The p-values were obtained by the non-parametric Mann–Whitney test. (E) PCA of 8 imaging biomarkers in the validation

cohort. Sixty healthy participants (green dots), 90 CAP patients (blue dots), and 153 COVID-19 patients (red dots). The p-values were obtained

from permutational multivariate analysis of variance (PERMANOVA). (F) Screening performance of signal-based model, imaging

biomarker-based model, and two COVID-19 experienced radiologist on validation cohort.

model for COVID-19 screening based on these imaging

biomarkers within training cohort [the OOB error = 3.26%,

95% CI (1.09–6.52%); AUC = 1.000, 95% CI (0.982, 1.000);

Sensitivity = 1.000, 95% CI (0.800, 1.000); Specificity = 1.000,

95% CI (0.930, 1.000); F1 score = 0.966, 95% CI (0.923,

1.000); accuracy = 0.964, 95% CI (0.900, 1.000); precision

= 1.000, 95% CI (0.875, 1.000); Supplementary Figure 1, red

curve]. Additionally, we show that each individual imaging

biomarker contribute differently during screening, where IB-

163 played the most important role (Supplementary Figure 1b),

with the best single biomarker performance [AUC =

0.893, 95% CI (0.842, 0.953), Supplementary Figures 1c, 6,

Supplementary Table 3].

Double-blind test of imaging biomarkers
in validation cohort

The vasculature-like structure enhancement process

was applied onto validation cohort, followed by biomarker
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FIGURE 4

Illustration of representative CT image and the corresponding vasculature-structure enhancement and multi-spectral staining in COVID-19,

CAP and healthy samples. (A) Representative examples for 3D multispectral imaging biomarker visualization (3D animations are provided by

Supplementary Videos 4–6); (B) Representative 2D CT images; (C) Corresponding 2D vasculature-structure enhancement (enhancement for

entire chest CTs are provided by Supplementary Videos 1–3); (D) Corresponding 2D multi-spectral staining (2D multi-spectral staining for entire

chest CTs are provided by Supplementary Videos 7–9).

extraction. As seen in training cohort, we observed the

distinction of mean vasculature-like signal between different

groups (Figure 3D). The logistic regression model pre-built

on training cohort with mean vasculature-like signal led

to accurate prediction in validation cohort (AUC = 0.942,

Figure 3F, blue curve). The combination of 8 pre-identified

imaging biomarkers also clearly separates the COVID-19

patients from others in validation cohort (Figures 3E, 5C),

where each individual biomarker consistently revealed

significantly different abundance (Figure 5D). Excitingly,

we found the pre-built random forest model based on

pre-obtained imaging biomarkers predict COVID-19 with

excellent sensitivity (0.941), specificity (0.920), accuracy (0.931),

precision (0.939), F1 score (0.929), and AUC (0.971), which is

competitive with two COVID-19 experienced chest radiologists

(Figure 3F): radiologist A (sensitivity = 0.915; specificity

= 0.977, accuracy = 0.944, precision = 0.898, F1 score =

0.946, radiologist B (sensitivity = 0.975; specificity = 0.950,

accuracy = 0.974, precision = 0.973, F1 score = 0.973). In

addition, the competitiveness is further demonstrated using

bootstrapping strategy (100 iterations, 80% sampling rate) on

various performance metrics between imaging biomarkers and

two radiologists (Supplementary Figure 7). Furthermore, the

Hosmer-Lemeshow test suggested no departures from perfect fit

on both training (p = 0.867) and validation (p = 1.000) cohorts

(Supplementary Figure 8).

Case study

We further examined the capability of our imaging

biomarkers with misdiagnosed cases by our participating

radiologists, where a COVID-19 patient (female, 65 years old,

Figure 6A), and a CAP patient (male, 21 years old, Figure 6E)

were included. Due to the lack of typical abnormality (Figure 6C,

both experts misdiagnosed the COVID-19 patient. Meanwhile,

the CAP patient showed subtle misleading characteristics

(i.e., GGO) in the upper lobe of both lungs (Figure 6G, red

arrows), and led to false positive decision by one of the experts.

Obviously, in real-world clinical practice, chest CT based early

screening of COVID-19 can be challenging for both clinical

experts, and typical-abnormality-driven end-to-end AI systems,

due to either lack of typical abnormality in COVID-19 cases

or presence of misleading characteristics in non-COVID-19

cases. In contrast, our imaging biomarkers provided both

perceptual (Figure 6B vs. Figure 6F, Supplementary Video 10

vs. Supplementary Video 11; Figure 6D vs. Figure 6H,

Supplementary Video 12 vs. Supplementary Video 13) and
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FIGURE 5

Chest CT-based imaging biomarkers provide consistent and significant distinction between COVID-19 patients and others across hospitals. (A)

Heatmap of the relative abundance of imaging biomarkers shows distinct clusters with respect to COVID-19 and non-COVID-19 groups in

training cohort; (B) Individual imaging biomarker shows significantly higher relative abundance in COVID-19 patients in training cohort; (C).

Heatmap of the relative abundance of imaging biomarkers shows distinct clusters with respect to COVID-19 and non-COVID-19 groups in

validation cohort; (D) Individual imaging biomarker shows significantly higher relative abundance in COVID-19 patients in validation cohort.

quantitative (Figure 6I) distinctions (except for IB-88) for these

ambiguous cases, and therefore enables accurate screening

with high confidence (Figures 6A,E; over 96% confidence for

both cases).

Further comprehensive justification of
the robustness of imaging biomarkers

We (1) switched the role of two hospitals with Hospital

B as training cohort and A as validation cohort [sensitivity:

0.957, specificity: 0.841, accuracy: 0.888, precision: 0.951, F1

score: 0.892 and AUC: 0.961 (95% CI (0.932, 0.994))]; and

(2) combined two cohorts for cross-validation with random

training sample rate at 80% and 100 bootstrap iterations

[Supplementary Table 4, Supplementary Figure 9; sensitivity:

0.950 (95% CI (0.875, 1.000)), specificity: 0.977 (95% CI

(0.909, 1.000)), accuracy: 0.953 (95% CI (0.909, 0.995)),

precision: 0.973 (95% CI (0.902, 1.000)), F1 score: 0.951 (95%

CI (0.903, 0.994)) and AUC: 0.980 (95% CI (0.937, 0.999))],

which further demonstrated the robustness of our imaging

biomarkers. Also, we performed age-group-wised (<60 and

≥60 years old) study (27) on combined cohorts to evaluate

the age impact on our imaging biomarkers. As shown in

Supplementary Table 5, age was comparable between the two

groups both in training and validation set in ≥60 years old

groups. It is clear that (Supplementary Figure 10), for all

signatures (except IB-88), (1) within all age groups, the imaging

biomarker has significantly higher abundance in COVID-19

patients; (2) across age groups, the imaging biomarker has

significant higher abundance in category (COVID-19, <60

years old) than in category (non-COVID-19, ≥60 years old).

Additionally, correlation analysis (Supplementary Table 6,

Supplementary Figure 11) revealed (1) statistically non-

significant (FDR > 0.05) “poor correlation” (28) between

age and single/imaging biomarkers within COVID-19 group;

and (2) three statistically significant (FDR < 0.05) “poor/fair

correlation” (28) between age and (IB-3, IB-61, and IB-166)

within Non-COVID-19 group. Also, we investigated the

abundance of imaging biomarkers between age groups on both

training and validation sets (Supplementary Figure 12), and

confirmed that most biomarkers were significantly different

between COVID-19 and non-COVID-19 age groups on both

training and validation sets, except for IB-61, IB-88 and
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FIGURE 6

Examples of misdiagnosed cases by participating chest radiologist(s). (A) Characteristics of the COVID-19 patient and the corresponding

diagnosis (chest radiologists)and screening (imaging biomarkers) results; (B) 3D multi-spectral staining of the COVID-19 patient (3D animation

can be found in Supplementary Video 10); (C) Representative CT image slice of the COVID-19 shows no typical abnormity related to COVID-19,

which led to the false negative decision of both chest radiologist; (D) the corresponding 2D multi-spectral staining of the selected CT image

slice (2D animation of the entire CT scan can be found in Supplementary Video 12); (E) Characteristics of the CAP patient and the corresponding

diagnosis and screening results; (F) 3D multi-spectral staining of the CAP patient (3D animation can be found in Supplementary Video 11); (G)

Representative CT image slice of the CAP patient shows the typical while subtle image characteristics (GGO, marked by red arrows) of the

COVID-19 in the upper lobe of both lungs, which led to the false positive decision by one of the chest radiologists; (H) The corresponding 2D

multi-spectral staining of the selected CT image slice (2D animation of the entire CT scan can be found in Supplementary Video 13); (I) Relative

abundance of imaging biomarkers di�erentiate the COVID-19 from CAP patient.

IB-248, potentially due to the limited sample numbers in

each age group. In addition, we showed that the prediction

model built upon our 8 biomarkers and patient age yielded

statistically identical performance compared to the original

prediction model with our 8 biomarkers only on training

cohort (Supplementary Table 7, Supplementary Figure 13; p

> 0.05; 100 bootstrap iterations with random training sample

rate at 80%), which was further confirmed by the quantitative

evaluation of these two pre-built models on validation cohort

(Supplementary Table 8, Supplementary Figure 14). These

evidences indicate that age does not impact our imaging

biomarker nor the corresponding screening model.

Potential underlying molecular and
biological mechanisms

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection triggers a reverse host immunity response,

followed by propagation of the virus especially to the ACE2

rich organs, among which lungs remain to be the mostly

affected organ resulting in severe respiratory disease in

many individuals. Also, the unrestrained immune response

triggers lung inflammation with unfavorable outcomes, where

reactive oxygen species (ROS) are key signaling molecules

with an important role in the progression of inflammatory

disorders (29). Recent studies on SARS-CoV-2 revealed the

potential molecular and biological mechanisms strikingly

similar to what have been seen in pulmonary vascular disease

development, including inflammation, hypoxia, oxidative

stress, and DNA damage, that contribute to the promotion

of endothelia dysfunction, vascular leak, and pulmonary

microthrombi (30–36). Furthermore, SARS-CoV-2 leads to

cytokine outburst, including IL-6, IL-1b, IL-2, IL-10, and

monocyte chemoattractant protein-1 (MCP-1), which are also

associated with vascular dysfunction and vascular disease such

as atherosclerosis, abdominal aortic aneurysm, varicose veins

and hypertension (37). Consequently, the SARS-CoV-2-related

disease (COVID-19) revealed significant effects on the lungs

and the pulmonary vasculature. In addition to parenchymal

abnormalities, pulmonary microthrombi, ventilation-perfusion

mismatch, and hypoxemia are also observed which are
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due to disseminated intravascular coagulation, endothelial

dysfunction, and impaired hypoxic pulmonary vasoconstriction.

Importantly, our findings are consistent with these molecular-

and biological-driven effects on pulmonary vasculature, which

provides the underlying molecular and biological mechanism

for our imaging biomarkers. Furthermore, our study indicates

that these molecular and biological effects on pulmonary

vasculature exist and can be quantitative captured even at

the early stage of COVID-19. With above molecular and

biological potentials, we believe our imaging biomarkers could

help assess the severity as well as the treatment outcome of

COIVD-19 patients.

Discussion

In this study, we developed and validated chest CT based

3D imaging biomarkers for early stage COVID-19 screening.

We suggest, compared to healthy and CAP patients, COVID-

19 patients may have significantly more vascular changes in lung

tissue (24–26), which leads to the discovery of robust imaging

biomarkers for early stage COVID-19 screening. Our double-

blind validation across hospitals and CT scanners confirms

(1) the hypothesis on the quantitative difference of vascular

changes among COVID-19 and non-COVID-19 groups; (2) the

robustness and effectiveness of our imaging biomarkers in real-

world clinical settings with considerable technical variations;

and (3) the competitiveness with COVID-19 experienced

chest radiologists. Detailed case study further demonstrates

the capability of our imaging biomarkers especially for

ambiguous cases, which is common during early-stage COVID-

19 screening. Further comprehensive evaluation suggests our

imaging biomarkers are independent from hospital (batch

effect free) and age (independent value). In addition, the

robustness and effectiveness of our vasculature-related imaging

biomarkers attribute to the effects of COVID-19 on the

lungs and the pulmonary vasculature, including pulmonary

microthrombi, ventilation-perfusion mismatch and hypoxemia,

which are resulted from the potential mechanisms of SARS-

CoV-2, including inflammation, hypoxia, oxidative stress, and

DNA damage, that contribute to the promotion of endothelia

dysfunction, vascular leak, and pulmonary microthrombi.

For example, the structure of our best performing single

imaging biomarker: IB-163 (Figure 2), potentially resembles the

phenomenon related to vascular leak.

Specifically, our demonstrated screening capability was

built upon biomedical evidence, robustness, interpretability,

scalability, and accuracy to maximize its clinical impact.

Different from many existing end-to-end solutions (38), our

work was realized by seamless integration of the blood-

vessel-related clinical insights within an highly compact and

scalable unsupervised learning framework with feed-forward

biomarker extraction strategy involving only element-wise non-

linearity andmatrixmultiplication (22), which helped alleviating

challenges due to the (1) absence or subtle typical abnormal

characteristics in chest CT especially for early stage COVID-

19 patients; (2) presence of misleading characteristics in chest

CT from non-COVID-19 cases; and (3) requirement of large

training cohort and excessive computational resources by many

end-to-end AI models. Subsequently, it enables the discovery of

robust biomedical-relevant imaging biomarkers effectively from

a small training cohort (n = 116), and thereafter scalable [∼50 s

via Matlab with Intel(R) Xeon(R) CPU E5-2630 v3], superior

and stable screening performance.

The major limitation of our study is the exclusion

of non-image information, including clinical symptoms and

laboratory findings, which are valuable for COVID-19 diagnosis

(39, 40). However, given (1) our current focus on imaging

biomarker development and validation, and (2) the nature

of biomarker detection and utilization (different from end-

to-end AI systems), it is straightforward to combine non-

image information with our imaging biomarkers to realized

multi-modality screening capability via scalable techniques (e.g.,

random forest). Additionally, the CAP patients included in

this study were from patients with pneumonia before the

outbreak, which were clinically diagnosed (based on imaging

findings) and treated with empirical drugs. Therefore, like

many retrospective studies (38, 39, 41), the CAP patients

cannot be classified according to specific pathogens, which

requires a future prospective study. Chest CT scan also has

certain shortcomings: first, similar to RT-PCR, chest CT scan

also has certain false negative rates when the viral load is

relatively low. Second, lung CT imaging is relatively expensive

compared to RT-PCR testing, which may limit its use in less

developed areas. Third, if the lung CT scan environment is

not sufficiently disinfected, it may cause cross-infection among

the tested persons. In the early stage of this epidemic, due to

the high false negative rate of RT-PCR and the long return

time of the test results, the chest CT scan has made up for

the shortcomings of RT-PCR, and a large number of patients

have been timely diagnosed, isolated and treated (42, 43). Even

with the improvement of RT-PCR detection technology, chest

CT still remains useful for auxiliary diagnosis and assessment of

disease severity and prognosis (44–47), as well as for its potential

screening capability in consideration of the possible variation

of the virus during RT-PCR test. We also realized that the

accessibility of CT scannermay potentially impact the utilization

of our findings. However, given the (1) the demonstrated clinical

implications; and (2) the prognostic potential of our imaging

biomarkers combining with clinical information, we strongly

believe the potential of our study in providing a valuable

alternative besides nucleic acid toolkit for early-stage COVID-19

screening with world-wide impact.

To summarize, COVID-19 epidemic is a world-wide threat

(48), consuming the medical resources in some countries
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(49). Facing the short supply of nucleic acid detection kits

in many countries, most chest CT based computational

studies were built upon typical abnormity in an end-to-end

fashion, which can suffer due to the lack/subtle amount of

such typical characteristics in early stage COVID-19 patients,

or even misleading characteristics in others. To overcome

these challenges, we identified robust imaging biomarkers

from vasculature-like signal in chest CT scans for accurate

early stage COVID-19 screening with major advantages as

follows: (1) they provide robust, accurate and cost-effective

COVID-19 screening, which can significantly alleviate the

shortage of clinical resources, including both nucleic acid

detection kits and experienced chest radiologists; and (2) they

provide a non-invasive diagnostic tool that enables world-wide

scalable practical applications. Our merits originate from the

system biology approach, and thus provide important clinical

insights/knowledge that is beyond existing clinical practice as

well as the capability/scope of many existing end-to-end AI

systems. As future work, our imaging biomarkers may (1) be

combined with non-image information to improve screening

performance; and (2) facilitate the prediction of COVID-19

patients’ prognosis and clinical outcome at early stage.
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