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Circadian rhythms are a series of endogenous autonomous oscillators that

are generated by the molecular circadian clock which coordinates and

synchronizes internal time with the external environment in a 24-h daily

cycle (that can also be shorter or longer than 24h). Besides daily rhythms,

there exist as well other biological rhythms that have di�erent time scales,

including seasonal and annual rhythms. Circadian and other biological rhythms

deeply permeate human life, at any level, spanning from the molecular,

subcellular, cellular, tissue, and organismal level to environmental exposures,

and behavioral lifestyles. Humans are immersed in what has been called

the “circadian landscape,“ with circadian rhythms being highly pervasive and

ubiquitous, and a�ecting every ecosystemon the planet, fromplants to insects,

fishes, birds, mammals, and other animals. Anthropogenic behaviors have

been producing a cascading and compounding series of e�ects, including

detrimental impacts on human health. However, the e�ects of climate

change on sleep have been relatively overlooked. In the present narrative

review paper, we wanted to o�er a way to re-read/re-think sleep medicine

from a planetary health perspective. Climate change, through a complex

series of either direct or indirect mechanisms, including (i) pollution- and

poor air quality-induced oxygen saturation variability/hypoxia, (ii) changes in

light conditions and increases in the nighttime, (iii) fluctuating temperatures,

warmer values, and heat due to extreme weather, and (iv) psychological

distress imposed by disasters (like floods, wildfires, droughts, hurricanes, and

infectious outbreaks by emerging and reemerging pathogens) may contribute

to inducing mismatches between internal time and external environment, and

disrupting sleep, causing poor sleep quantity and quality and sleep disorders,
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such as insomnia, and sleep-related breathing issues, among others. Climate

change will generate relevant costs and impact more vulnerable populations

in underserved areas, thus widening already existing global geographic, age-,

sex-, and gender-related inequalities.

KEYWORDS

one health, global health, planetary health, sleep medicine, circadian rhythms,

biological timekeeping, chronomedicine

Circadian and other biological
rhythms

Circadian rhythms are a series of endogenous autonomous

oscillators that are generated by the molecular circadian clock

which coordinates and synchronizes internal time with the

external environment in a 24-h daily cycle (that can also be

shorter or longer than 24 h) (1). Besides daily rhythms, there

exist as well other biological rhythms that have different time

scales, including seasonal and annual rhythms (2). Circadian

and other biological rhythms deeply permeate human life, at

any level, spanning from the molecular, subcellular, cellular,

tissue, and organismal level to environmental exposures, and

behavioral lifestyles (1). Humans are immersed in what has been

called the “circadian landscape” (1), with circadian (and other

biological) rhythms being highly pervasive and ubiquitous, and

affecting every ecosystem on the planet, being phylogenetically

widespread, from protists and bacteria to plants, insects, fishes,

birds, mammals, and other animals (2, 3). From an ecological

and evolutionary perspective, circadian and other biological

rhythms are extremely ancient and are hypothesized to enhance

the fitness of the organisms, enabling them to better and more

efficiently use and allocate resources and allowing for proper

internal temporal order (4).

To put it in other words, the universe is written in the

language and alphabet of circadian and other biological

rhythms. Physiological functions as well as physiopathological

dysfunctions (5), disease expression and severity (6),

course/evolution and prognosis (6), and drug action and

effects (in terms of pharmacokinetics and pharmacodynamics)

(7) exhibit variations by time of day (8).

In both humans and animals, biological rhythms are

regulated and fine-tuned by the so-called “inner biological

clock,” which is situated at the level of the suprachiasmatic nuclei

(SCN) of the hypothalamus (9). This neuro-structure projects

to the pineal gland (the so-called “circadian neural message”),

which secretes melatonin in a sequential and pulsatile fashion

(the so-called “circadian humoral message”) (10), both into

the capillary bed within the gland and into the cerebrospinal

fluid of the third ventricle, aided by a number of epithalamic

structures, such as interpinealocyte canaliculi and evaginations

of the posterodorsal third ventricle itself, and via tanycytes

located in the pineal recess and a discontinuous ependymal

lining (11, 12).

Besides central clocks, there exist peripheral oscillators

(“peripheral circadian clocks”) (13), which include

cardiometabolic, endocrine, immune, and reproductive

systems (14). The precise relationship between central and

peripheral oscillators has to be elucidated yet, but, briefly,

two major competing models exist: the “master-slave”

model (15) and Albrecht’s “orchestra” model (16–18). In

the former model, the circadian network is hierarchically

organized and the synchronization power is entirely in the

power of the master clock (the “central pacemaker”), with

“subordinate peripheral oscillators” being relatively insensitive

to external/environmental cues. In the latter model, the central

clock behaves as the orchestra conductor, with each peripheral

clock behaving as an orchestra member and being able to play

its own instrument synchronizing with the conductor as well

as independently.

There is a considerable degree of individual variability

in circadian rhythms, which can be investigated by a

series of biomarkers, including sleep-wake patterns (19),

body temperature cycles (20, 21), hormonal (22) and blood

pressure (23) fluctuations, and gene activation, regulation,

translation, and expression patterns (24–28), and microbiota

oscillations (29–31). These are the gatekeepers of biological

rhythms.

The sleep-wake cycle can be measured and expressed

as “circadian typology” or chronotypes, also known as

morningness-eveningness, which are distributed normally on

a continuum (32), enabling the categorization of individuals

into three major groups: namely, (i) morning chronotype,

(ii) evening chronotype, and (iii) neither chronotypes (or

intermediate chronotype). Individuals belonging to the former

chronotype are known as “larks,” being more likely to wake

up in the early morning and preferring to go to sleep

in the early evening, thus exhibiting a diurnal preference.

Individuals belonging to the latter chronotype are known

as “owls,” and tend to wake up later in the morning and

go to sleep later in the evening, displaying a nocturnal

preference (32, 33).

Utilizing large datasets, big data, and artificial intelligence

can enable capturing the “chronobiome,” which can be defined
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as the collection and analysis of individual physiological traits

in a 24-h rhythmic pattern to embrace the complexity and

temporal dimension (time-dependence) of deep phenotyping

(34) under free-ranging conditions (35). Technological

advancements, including multiscale “omics” and remote

sensors, offer new unprecedented opportunities to explore new

knowledge domains (36).

Among the different circadian rhythms, sleep, as a light-

related and regulated circadian rhythm, will be overviewed in

the next section.

Sleep

Far from being a mere, passive “state of neural inactivity,”

sleep is a vital, multi-factorial, and complex series of

neurophysiological events, which involve several interacting and

cascading processes at the level of the central nervous system

(37). High-quality, refreshing sleep is of paramount importance

for daily proper functioning (37), since it regulates homeostasis,

repair mechanisms, synaptic strength (38–40), and removal of

potentially harmful interstitial metabolic waste products from

the brain intima (41). According to the “synaptic homeostasis

hypothesis” (SHY), sleep is the “price to pay” for ensuring brain

dynamic plasticity, consolidation of learning, and readiness to

learn new things the day after. Replenishing and cleansing of

the brain is another essential role of sleep, which occurs through

convective fluid transport (a process known as “glymphatic

clearance”) (41, 42). Of note, unsurprisingly, brain glymphatic

and lymphatic fluid flows are under circadian control (43).

Sleep represents approximately one-third of our life (44) and

is observed as well in all species of living organisms on the

planet, including reptiles, amphibians, fishes, birds, and other

animals, like Homo sapiens (44). As for circadian and other

biological rhythms, also sleep has an ancient origin (45). The

master clock regulates the sleep-wake cycle, shaped by circadian

rhythms and planet rotation (46). As such, sleep is influenced

by circadian processes as well as by other biological rhythms,

such as seasonality: sleep tends to be longer in cold seasons

(winter) and shorter in warm/hot seasons (summer), potentially

due to increased day length and/or increased temperature. Of

note, these effects are particularly pronounced in children and

in the elderly, as well as in members of preindustrial societies, or

in the absence of artificial light (47).

Leveraging big data analytics can enable capturing the

“sleepome,” which can be defined as “the dissection of differences

and oscillations in sleep dynamics and architecture at the

individual level” (48), paving the way for “precision sleep

medicine” (49). This approach and related techniques can be

applied also at the community and population level, even

though there are very few nationwide studies, relying on large

datasets. Even fewer studies have explored the link between

seasonality/local weather and sleep using objective, continuous,

unobtrusive measurements (47). For instance, Mattingly et al.

(47) have quantitatively assessed the sleep habits of a sample

of 216 individuals across the United States over four seasons.

The strongest seasonal effect could be detected for sleep duration

and wake time, with a more marked effect in spring. A modest

effect in terms of sleep duration could be described as related to

day length (with less sleep correlating with longer days, between

the winter and summer solstice). Increased outdoor temperature

was found to be associated with later bedtimes and wake times.

Circadian disruptions and sleep
disturbances

Master and peripheral clock disruption, circadian

misalignment/desynchrony, and disturbances of sleep-

wake homeostasis can result in severe cardio-metabolic,

immunological, neurological, neuro-immunological

dysfunctions, and neurodegenerative diseases, increasing

as well cardiovascular risk factors (1).

Sleep-related issues generate a relevant burden–both

epidemiological and clinical–(50) in the nowadays post-

modern, around-the-clock, 24/7 society (51) characterized

by excessive working hours, rotating night shift working

(52), and social jet lag (53). Besides increased workload,

technological innovations and advancements, including the

advent of electricity, light emitting diode (LED) technology,

and artificial light at night (54), as well as societal changes,

including industrial and post-industrial revolutions (55–58)

have considerably compressed and shortened the length of

sleep. Also, the way of sleeping has considerably changed,

shifting from “segmented sleep” (known also as divided sleep or

biphasic/polyphasic sleep) to “consolidated sleep” (sleeping in a

consolidated block) (55–58).

All this has resulted in chronic sleep deprivation and in

the insurgence of a relevant burden in terms of morbidity

(cardiovascular disorders, obesity, and metabolic syndrome,

among others) (59).

The effect of the new information and communication

technologies (ICTs) on the sleep schedule (and, in particular,

the sleep-wake cycle) is even more marked. Light emitted from

screens of smartphones and mobile devices (including tablet

computers) is, indeed, believed to disrupt the users’ circadian

rhythm, with some recent investigations showing that the usage

of social networking sites may also impact social cognition,

reflective functioning, and job performance, among others (60–

62). Underlying biological mechanisms include the emission

of blue light from cell phone screens, which restrains the

production of melatonin (63).

The increasingly widespread availability of ICTs and their

ubiquitous and pervasive nature have led to rising rates of

nomophobia (anxiety and psychological distress related to “no

mobile phone phobia”) (64), internet addiction (65), and other
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digital addictive behaviors, including internet-based addictive

behaviors and addictive use of social media and social networks

(66), which have been found to be associated with sleep issues,

including insomnia (67–69).

All this has significant economic implications in terms

of increased related (either direct or indirect) costs (70),

which is even more relevant considering that the rate of

disturbances of the circadian system, including circadian

disruptions, misalignment and desynchrony, social jetlag, and

chronodisruption, has been steadily increasing in the last years

(71). For instance, a recent systematic review and meta-analysis

pooling together 1.1 million people (individual participant

data analysis from 200,358 people from 36 studies from the

Netherlands, 471,759 people from the United Kingdom, and

409,617 people from the United States) (72) found that one

in four people slept fewer hours than recommended. Adults

reported more poor sleep quality and insomnia than short sleep

duration; sleep issues did not exhibit geographic differences,

with the exception of insomnia, being more commonly reported

in the United States. In terms of subjective measurements (self-

reported sleep times, quality, and efficiency), women reported

lower values than men, which was disconfirmed by objective

measurements (actigraphy), which showed opposite trends.

Another interesting finding from the study is that it was able to

document a progressive decline in sleep duration.

Climate change and its drivers

Global climate change is a change in climate that

cannot be explained by taking into account natural climate

variability. Anthropogenic factors, including encroachment

and the burning of coal and oil, on the contrary, explain

a large amount of global climate change, from rising sea

levels to snow melting and other profound changes affecting

weather patterns. Human behaviors have gradually warmed the

earth’s temperature and increased the levels of atmospheric

heat-trapping gases, affecting every ecosystem, fragmenting

natural habitats, impacting freshwater supplies, and exerting

detrimental effects on animal and human health and well-being.

In the last decades, profound societal phenomena, including

gentrification and rapid, wild urbanization together with

population explosion and demographic changes, have deeply

modified our lifestyles (73). Approximately more than half of

humanity dwells in urban areas and settlements, with this figure

being expected to significantly increase up to two-thirds of the

global population by 2050. For instance, in North America,

at the beginning of the 20th century, less than half of its

population lived in urban areas, this percentage had doubled

at the beginning of the new century and it can be anticipated

that it will further rise in the coming decades. As beautifully

stated by Teresa Coady, “the history of human settlement is

the history of climate change” (74, 75). As such, to “make cities

and human settlements inclusive, safe, resilient and sustainable,“

as the eleventh “Sustainable Development Goal” (SDG-11) of

the United Nations (UN) ambitiously declares and has been

reaffirmed during the 2016 UN “Habitat III” Conference on

Housing and Sustainable Urban Development in Ecuador (the

so-called “New Urban Agenda”), is becoming more and more

imperative (76, 77).

Planetary health

Human health and well-being depend on the well-being

of the planet including both living and nonliving systems. In

other words, planetary health can be defined as “the health

of human civilization and the natural systems on which it

depends” (78, 79). According to the Rockefeller Foundation-

Lancet commission, planetary health is “the achievement of

the highest attainable standard of health, well-being, and

equity worldwide through judicious attention to the human

systems—political, economic, and social—that shape the future

of humanity and the Earth’s natural systems that define the

safe environmental limits within which humanity can flourish”

(78, 79).

Planetary health can be conceived as the application of

the “one health” concept on a global scale, in which there is

a strong interconnection between humans, animals, and the

surrounding environment.

The impact of climate change on
sleep: The e�ects of the rise in
temperature

Anthropogenic behaviors, including urbanization and

expansion of heat islands, have been producing a cascading and

compounding series of effects, including detrimental impacts

on human health, including mental health and cognitive

functioning (80, 81). However, the role of climate change on

sleep and sleeping habits has not been yet comprehensively

explored. In the present review paper, we wanted to offer

a way to re-read/re-think sleep medicine from a planetary

health perspective.

Climate change represents a major global stressor impacting

the fitness of living beings and organisms, partially due

to the interference of the adaptive associations between

endogenous (either central or peripheral) clocks and

temperature. Endogenous temperature represents, indeed,

an important Zeitgeber (a biological timekeeping cue), which

regulates human sleep (82). There is a strong coupling between

endogenous temperature and sleep, as hypothesized by the

“energy allocation function of sleep” theory (83), according

to which energy expenditure is finely regulated and generally

conserved. Moreover, there is a correlation between the
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maximal rate of core body cooling, duration of wakefulness,

and sleep onset, with sleep propensity peaking closely to the

minimum of the core body temperature rhythm (84, 85).

Climate change is relevant to sleep medicine from a planetary

health perspective in that environmental (outdoor ambient)

temperature impacts endogenous (body) temperature. In

particular, it is during sleep that humans become more sensitive

to fluctuations of the environmental (outdoor ambient)

temperature, especially if the values range outside of the

“thermoneutral zone” (84, 85). Hypothalamic regions, in

particular, the preoptic area, act as thermoregulatory centers

receiving temperature-related inputs from the core body via

hypothalamic receptors and from the environment via skin

receptors. The human body’s thermoregulatory system is

sophisticated enough to regulate and fine-tune thermogenic

and heat-dissipative processes in tissues, from vasculatures to

muscles, brown adipose tissue, and skin, keeping endogenous

temperature relatively constant, fluctuating around a set-point,

to counterbalance environmental temperature deviations

(84, 85).

Obradovich et al. (86) have utilized data from 765,000U.S.

survey respondents from 2002 to 2011, and coupled them

with nighttime temperature data, finding a correlation between

increases in nighttime temperatures and the number of self-

reported nights of insufficient sleep. This association was more

marked during summer time and lower socio-economic status

respondents and the elderly were disproportionately impacted.

Näyhä et al. (87) assessed the rate of heat-related

complaints and symptoms in the Finnish population,

sampling four thousand and seven men and women aged

25–74 years from the National FINRISK 2007 study. The

ranges of thermal comfort declined with age. About 80%

of the respondents complained of heat strain in warm

weather, with sleep disturbances being reported in 32% of

cases (the prevalence increased with age and was higher

among women).

Whilst the previous studies have utilized self-reported

measurements (86, 87), Milnor et al. (88) have linked

billions of repeated sleep measurements from sleep-tracking

wristbands consisting of more than 7 million sleep records

from 68 locations to local daily meteorological data.

After adjusting for confounding factors at the individual,

seasonal, and time-varying level, the rise in temperature

values, which is particularly relevant at night, erodes sleep

duration, delaying its onset, and resulting in insufficient

sleep. Limited evidence of human sleep adaptation to

hotter temperatures could be found. Sex- and gender-

specific effects could be described, with females being more

impacted than males. Populations from low- and middle-

income countries (LMICs) were also affected, along with the

elderly. According to a forecasting analysis, by 2,099, climate

change is anticipated to contribute to 50–58 h of sleep loss

per person-year.

The impact of climate change on
sleep: The e�ects of environmental
pollution

Climate change has been related to a wide array of major

forms of environmental pollution, including soil and radioactive

contamination, air, water, noise, light pollution, and thermal

pollution, among others.

Concerning air pollution, according to a recently published

systematic review of the literature (89), synthesizing 22

articles from 2010 to 2019, across the life course (from early

childhood to adulthood and elderly) and a wide span of

populations and locations (from North America to Europe and

Asia), a positive association between environmental exposures,

including exposure to ambient and indoor pollutants, such as

particulate matters (PM) and gaseous components (like nitrogen

dioxide, NO2, and ozone, O3), and poor sleep quality was

reported. The youth was disproportionately impacted, with

increased respiratory sleep issues and adverse sleep-related

outcomes, whereas adults exposed to air pollutants were more

likely to report sleep-disordered breathing issues. Mechanisms

underlying can be disparate affecting the central ventilator

centers to other neuroanatomic functional structures, as well

as the upper airways (90). Several sleep disturbances have been

associated with pollution, including chronic sleep deprivation

(91) and obstructive sleep apnoea (OSA) syndrome (92),

among others.

The impact of climate change on
sleep: The e�ects of emerging and
re-emerging infectious diseases

Climate change, increased temperatures, and natural

disasters are closely (either directly or indirectly) connected

with emerging and re-emerging infectious diseases (ERIDs)

(93), such as the still ongoing “Coronavirus Disease 2019”

(COVID-19). In the case of vector-borne infectious diseases

(like malaria, dengue, and viral encephalitides), climate change

can, indeed, directly impact disease transmission dynamics by

shifting the vector’s geographic range, enhancing reproductive

and biting rates, and shortening the pathogen incubation

period (92). Climate change can have also indirect impacts,

by displacing entire populations, causing massive human

migration, damaging health infrastructures, putting strain

on the delivery of healthcare provisions, and on agriculture

as well, generating food insecurity, favoring malnutrition,

and increasing human susceptibility to infectious agents (94).

Increased susceptibility to infections could also occur via

ultraviolet radiation-induced immune dysregulation (94).

In the aftermath of natural hazards and disasters, such as

floods, due to potential sewage contamination of floodwaters,
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there is a high risk of infections caused by agents such

as Escherichia coli, Campylobacter, Amoeba, Cryptosporidium,

and Giardia lamblia. Vector-borne (especially mosquito-borne)

infections can develop as well (95).

According to a recently published systematic review

and meta-analysis (96), synthesizing two hundred and fifty

studies, totaling 493,475 participants from 49 countries,

the COVID-19 infectious outbreak posed a dramatically

high burden of sleep disturbances, with a pooled rate

computed at 40.49%, disproportionately affecting people

with COVID-19, the elderly and frail, vulnerable individuals,

children and adolescents, healthcare workers, and special

populations with healthcare needs. The impact was particularly

relevant during the COVID-19-induced restrictions,

compared with the periods when the strictures were lifted.

Sleep disturbances and circadian disruptions have been

described also in previous infectious outbreaks, including

influenza, poliomyelitis, Ebola, Zika, Nipah, and other

coronaviruses (97).

Finally, it should be noted that sleep exerts an immune-

supportive function, in that it has been found to promote

host defense against infections as well as inflammatory insults.

Sleep regulates and fine-tunes both innate and adaptive

immunity (98, 99). Sleep issues, and in particular, chronic

sleep deprivation, have been related to impairments of both

innate and adaptive immune parameters. This can potentially

result in a chronic inflammatory state and significantly

increase the risk of contracting a wide range of pathologies,

such as cardiometabolic, oncological, neurodegenerative, and

autoimmune/autoinflammatory diseases (99). Moreover, this

chronic inflammatory state increases, in turn, the susceptibility

to other infections (99, 100).

Compounding and cascading e�ects
of global and planetary sleep
medicine

Shifts in global food systems (with increasing exposure

to high-energy processed food and drinks) and low physical

activity have resulted in substantial rises in the obesity rate

(101). Some scholars have observed that the “trend for

shorter sleep duration has developed over the same time

period as the dramatic increase in the prevalence of obesity”

(102). There is a close relationship between the “obesity

pandemic” and sleep disturbances, with overweight and obese

individuals being at higher risk for sleep issues and individuals

with sleep disturbances being at higher risk for developing

metabolic impairments, as well (101, 102). Overweight and obese

subjects can present defective diet-induced heat regulation and

thermogenesis (103), and they may be, as such, more susceptible

to deviations in normal temperature values caused by climate

change and other planetary emergencies. Less or altered adaptive

thermogenesis can lead to less physical activity, and to the

production of a higher carbon footprint (104).

Climate change, in turn, is linked to rising rates of

obesity and other metabolic impairments (104). Climate change

increases, indeed, food insecurity and results in the adoption of

unhealthy nutrition lifestyles and malnutrition (104, 105). For

instance, according to the “Global Burden of Disease” (GBD)

initiative, approximately one-fifth of the global burden of type

2 diabetes was attributable to air pollution, and more specifically

PM2.5 exposure (106).

Further developments stemming
from planetary sleep medicine:
Precision and digital planetary sleep
medicine

If looking at sleep issues from a planetary health perspective

can help advance the field, on the other hand, interventions need

to be targeted, informed, and driven by locally relevant data–we

call this “precision planetary sleep medicine.”

Moreover, the utilization of digital health devices and the

“Internet of Things” (IoT), such as smartphone apps and smart

home thermostats, could be leveraged to pave the way for a

“digital planetary sleep medicine” (107). However, IoT may

work only in middle- and high-income countries. Low-income

countries may not have the infrastructure for this technology

(108). As such, alternate ways of reaching inhabitants here

are needed.

In vivo planetary sleep medicine:
Current challenges and future
prospects

So far, evidence of the impact of climate change on human

health and, more specifically, on sleep issues and circadian

disturbances has been collected and assessed from in-laboratory

investigations and ecological studies, where in vivo studies

are lacking. There is, as such, the need to develop protocols

for the realistic and feasible implementation of high-quality

studies (109).

Moreover, a closer collaboration across fields and disciplines,

involving physicians (and, in particular, neurologists,

neurophysiologists, sleep specialists, neuropsychologists,

and neuroscientists), biologists, climatologists, ecologists,

and social and behavioral scientists, as well as other scholars,

is warranted. Community and policymaker engagement is

fundamental to ensure that necessary steps are undertaken in

order to more precisely quantify the global burden of sleep

issues attributable to climate change, and counteract or mitigate

against the impacts generated by climate change (110). These
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interventions should be multi-component, holistic, integrated,

and shaped according to a gender-, equity-, inclusion, and

diversity- (GEID)-sensitive lens.

Potential implications of planetary
sleep medicine and practical
recommendations

The increased global burden of circadian disruptions and

sleep disturbances may significantly impact individual, and

population physical and mental health and well-being. Chronic

sleep deprivation, daytime fatigue, and excessive sleepiness can

lead to a higher risk for workplace accidents, injuries, and

even fatalities. Sleep deprivation can affect cognitive processing

and reaction time, as well as job performance, productivity,

task management, and meeting goals. In several industrial

sectors, poor sleep quality and decreased alertness are not only

health concerns, but also safety issues, impacting pilots, truck

drivers, shift workers, medical residents, and other healthcare

workers (111).

As such, scientists worldwide call for immediately

starting to reduce and eliminate reliance on fossil fuels,

transitioning to clean energy resources like renewable energies

(including wind and solar energy, as well as tidal energy,

hydroelectric energy, and, more in general, hydropower,

geothermal energy, bioenergy, and biofuels). This is the

only way we can significantly reduce carbon emissions,

which represent the main cause of climate change. Besides

clean energy resources, other paths to sustainability and the

achievement of carbon neutrality and net-zero greenhouse gas

(GHG) emissions include (i) shift toward electrification

of transportation and buildings and energy efficiency

improvements (including the so-called “decoupling,” to

avoid inefficient utility spending), (ii) energy conservation

measures, (iii) economic-financial measures such as carbon

taxes, (iv) more equitable balancing of human well-being and

per capita energy use and allocation, (v) cap and trade systems,

(vi) the “carbon capture, utilization, and sequestration/storage”

(CCUS) emissions reduction technology that can be applied

across the energy system, by efficiently capturing carbon

dioxide, utilizing it as a resource to create valuable products,

and storing it, and (vii) nuclear power development and

deployment (112).

Planetary crises, like the still ongoing COVID-19

pandemic and the war between Ukraine and Russia, have

shown the importance of these achievements and how

individuals, communities/populations, and the entire

ecosystem are interconnected at the planetary level.

COVID-19 has, indeed, dramatically and profoundly

impacted the mechanisms underlying secure and stable

energy supply chains (namely, procurement, generation,

transmission, distribution, and demand), slowing progress

toward universal energy access, with the war adding

further setbacks.

Moreover, we must recommend educational campaigns

for health care providers, decision- and policy-makers as

well as the general public in many middle- and low-

income countries, educating about the importance of sleep

and sleep hygiene. Sleep is often ignored in these regions

of the world and sleep medicine is thought to be a

luxury of the rich, whilst sleep is instrumental in ensuring

human life.

Conclusions

In conclusion, the history of sleep and biological rhythms

is the history of mankind and of the planet. Sleep (or

sleep-like states), circadian (sleep-wake cycle), and other

biological rhythms, have ancient phylogenetic roots, deeply

permeating and orchestrating virtually all the ecosystems of

the planet. Anthropogenic behaviors have been interfering

with such biological events, undermining planetary health.

Climate change, through a complex series of either direct or

indirect mechanisms, including (i) pollution- and poor air

quality-induced oxygen saturation variability/hypoxia (113), (ii)

changes in light conditions and increases in the nighttime,

(iii) fluctuating temperatures, warmer values, and heat due

to extreme weather (114), and (iv) psychological distress

imposed by disasters (like floods, wildfires, droughts, hurricanes,

and infectious outbreaks/ERIDs–such as water, food-, vector-

borne diseases and zoonotic spillovers) (94), may contribute

to inducing mismatches between internal time and external

environment, and disrupting sleep, causing insomnia, and

sleep-related breathing issues. Climate change is expected to

pose a marked burden in terms of circadian impairments

and sleep disturbances, generating relevant costs (115), and

impacting more vulnerable populations from underserved

areas and territories, thus, widening already existing global

geographic inequalities, and age-, sex- and gender-related

disparities (116–118).
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internet-based addictive behaviours during coronavirus pandemic. Curr Opin
Psychiatry. (2022) 35:324–31. doi: 10.1097/YCO.0000000000000804

67. Jahrami H, Abdelaziz A, Binsanad L, Alhaj OA, Buheji M, Bragazzi NL,
et al. The association between symptoms of nomophobia, insomnia and food
addiction among young adults: findings of an exploratory cross-sectional survey.
Int J Environ Res Public Health. (2021) 18:711. doi: 10.3390/ijerph18020711

68. Lin CY, Potenza MN, Ulander M, Broström A, Ohayon MM, Chattu
VK, et al. Longitudinal relationships between nomophobia, addictive
use of social media, and insomnia in adolescents. Healthcare. (2021)
9:1201. doi: 10.3390/healthcare9091201

69. Jahrami H, Rashed M, AlRasheed MM, Bragazzi NL, Saif Z, Alhaj O,
et al. Nomophobia is associated with insomnia but not with age, sex, BMI,
or mobile phone screen size in young adults. Nat Sci Sleep. (2021) 13:1931–
41. doi: 10.2147/NSS.S335462

70. Streatfeild J, Smith J, Mansfield D, Pezzullo L, Hillman D.
The social and economic cost of sleep disorders. Sleep. (2021)
44:zsab132. doi: 10.1093/sleep/zsab132

71. Chattu VK, Manzar MD, Kumary S, Burman D, Spence DW, Pandi-
Perumal SR. The global problem of insufficient sleep and its serious public health
implications. Healthcare. (2018) 7:1. doi: 10.3390/healthcare7010001

72. Kocevska D, Lysen TS, Dotinga A, Koopman-Verhoeff ME, Luijk MPCM,
Antypa N, et al. Sleep characteristics across the lifespan in 11 million people from
the Netherlands, United Kingdom and United States: a systematic review and
meta-analysis. Nat Hum Behav. (2021) 5:113–22. doi: 10.1038/s41562-020-00965-x

73. Villefranque N, Hourdin F, d’Alençon L, Blanco S, Boucher O, Caliot C, et al.
The “teapot in a city”: a paradigm shift in urban climate modeling. Sci Adv. (2022)
8:eabp8934. doi: 10.1126/sciadv.abp8934

74. Coady T. Rebuilding Earth: Designing Ecoconscious Habitats for Humans.
Berkley, California, USA: North Atlantic Books.
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