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Parthenium hysterophorus L. is a vigorous plant species with cosmopolitan

distribution. It can uptake considerable quantities of heavy metals from the soil

and accrue these metals in its di�erent tissue. The use of chelating agent i.e.,

Ethylenediaminetetraacetic acid (EDTA) can boost up metal uptake capacity.

Pot experiment was performed to evaluate phytoextraction potential of P.

hysterophorus for lead (Pb) and cadmium (Cd) with and without the aid of

EDTA chelator. Shoot length, weight of root and shoot (both fresh and dry),

leaves number, and chlorophyll contents of P. hysterophorus got reduced with

an increase in metal uptake. The results revealed the highest concentration

of Cd in shoot without and with EDTA was 283.6 and 300.1mg kg−1,

correspondingly. Increase in Pb concentration was also boosted up by the

EDTA from its maximum concentration in shoot 4.30–9.56mg kg−1. Generally,

Pb and Cd concentrations were greater in shoots of P. hysterophorus than the

roots regardless of EDTA in the treatments. EDTA also impacted positively the

accumulation of essential ions K+, Na+, and Ca+2 in P. hysterophorus. The

capacity of P. hysterophorus to accumulate Pb and Cd found to be increased

with EDTA in the soil. Bringing metals level in the soil in accordance to the

WHO standards can improve the ecosystem as well as public health.
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phytoextraction, Parthenium hysterophorous, cadmium, lead, EDTA, soil remediation,
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Introduction

Heavy metals or potentially toxic elements have become a

great risk to environmental safety due to continuous agricultural

practices, industrial expansion and a rise in the population.
Heavy metals do not decompose and as a result, they continue

to build up in the environment (1). Application of fertilizers,
sewage sludge, urban traffic, chemical emissions from industries

andmining processes are the examples of anthropogenic sources

(2). These appliances are responsible for increasing heavy metal

concentrations in soil (3, 4). Heavy metals in agricultural lands

and natural resources may pose a threat to public health

due to their potential access to food chains (5–8). Constant

application of pesticides and chemical fertilizers may build up

the number of heavy metals in the soil (9, 10). Dry and wet

waste residues from various point sources such as the steel

industry, metal refineries, metal smelters, cement industries,

and foundries also increase heavy metals to the soils. But

mainly the combustion from engines using lead (Pb) improved

petrol is liable for major production of Pb in soils adjacent

to roads. According to some recent studies, vehicle exhausts

are the biggest sources of Pb and Cd in the environment

(11, 12).

Pb is a potentially toxic heavy metal above the permissible

limits. Apart from public sewage sludge and leaded gasoline, it

also results from mining, oils, paints, and unstable materials. Pb

is widely used in many industrial applications as a tetraethyl

Pb [(CH3CH2)4 Pb], a longtime motor gasoline ingredient

and a current stabilizer to certain petroleum, producing the

most common heavy metal contaminants in the soil (13, 14).

Increase in lead pollution contributes to soil toxicity and also

disturb microbial diversity (15–17). According to the U.S.

Environmental Protection Agency, 207,000 Pb-contaminated

regions in the U.S. includingmillions of farms need to be cleaned

(18). This dangerous pollutant could be taken up via plants

and reaches the body by consumption of contaminated plant

products and gathered in different organs. In severe cases, it may

cause human mortality (19). Cd is an extremely cancer causing

material that can trigger dangerous responses even in minute

quantities (20). Cd can be taken up by plants and ultimately it

gets transferred into the food chain (5). Like Pb, Cd also comes

from both manmade and natural resources and has a major

impact on the disruption of environmental quality. Road traffic

could be a big source of Cd in adjacent areas as Cd on large scale

is used in lead-acid batteries (12).

Many remediation techniques have been devised so far

to handle the contaminated soils (21–23). In addition to

traditional techniques of soil purification; phytoextraction is

suitable for severely contaminated sites, while phytostabilization

is widely used to remediate slight heavy metal contaminated

soils (3, 24, 25). Phytoextraction is one of the phytoremediation

type, in which the absorption and collecting of metals occur

into plant aerial parts from polluted soil. Using plants that

could bear a high level of heavy metals is crucial. Chelating

substances have been used in metal contaminated soils as

decontaminants to boost up phytoextraction lately (26). The

cost of phytoextraction could be more than 10 times lower

per hectare than standard soil remediation methods such

as thermal soil remediation, air sparging and encapsulation.

Phytoextraction can be implemented in all locations where

soil and weather are appropriate for plant development (27).

However, the capability of a plant to accumulate metals from

the soil depends upon plant species and their growth habits. The

plants selected for phytoextraction should have a rapid growth

rate, more production of bio-mass, hyperaccumulater of heavy

metal, broadly spread, stem to shoot translocation, toleration

of toxic heavy metal impacts, pathogen and pest resistance,

welladapted to environmental circumstances, simple to grow

and harvest, and do not attract herbivores to prevent entering

the food chain (28, 29).

One such plant is Parthenium hyterophorus L. This plant

is preferred because of its rapid expansion and inedibility to

herbivores. P. hysterophorus belongs to family Asteraceae, also

recognized as congress grass, is an annual herb, invasive weed

found across Pakistan and the world. It has been established

to perform a fundamental function in the accretion of toxic

metals particularly in contaminated sites (30). P. hysterophorus

has a very high potential for remediating soils polluted with Cd

and Pb (11). Phytoextraction employing P. hysterophorus is a

cost-effective and possible remedy for the cleanup of Cd and

Pb polluted soils. In Pakistan, this weed is scattering in harsh

environments, despoiled areas, rocky crevices, across waterways,

roads, and railway lines. It has also been recently identified in

cultivated land.

While chelating substances are used as decontaminants

in polluted soils to smooth the process of phytoextraction.

Previous knowledge confirms the use of artificial metal chelates

like EDTA in soils improved Pb uptake with the help of

plants (31). EDTA produces soluble metal EDTA complexes,

due to its strong affinity toward heavy metals, assisting in

the solubility of soil metals and therefore improving metal

accessibility to plants (32). However, EDTA is generally known

for its excellent property of metal absorption in soil, but it is also

toxic to some species and inhibits their growth. Additionally,

EDTA has a weak biodegradation rate and stays for long time

in environment (33). EDTA is so far the most proven and

successful chelator for removing hazardous metals from soil

(34). Some studies previously used phytoremediation for some

other metals with or without using EDTA as a phytochelator,

or they used some other plants/microbes as phytoremediators

(35–38). It was hypothesized that the EDTA is the most potent

chelator in lowering Pb and Cd bioaccessibility in soil (34).

Both of these metals as well as P. hysterophorus are commonly

found in the soils along roads. Keeping this information in

mind, we aimed to study the metal uptake capability of this

fast-growing weed (P. hysterophorus) with the help of EDTA
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TABLE 1 Treatments used in set-1 and set-2.

Sets Treatments Pb

(mg kg−1)

Cd

(mg kg−1)

EDTA

(mmol kg−1)

Set-1 T0 — — —

T1 1,000 — —

T2 2,000 — —

T3 2,000 — 5

T4 1,000 200 5

Set-2 T0 — — —

T1 — 200 —

T2 — 400 —

T3 — 400 5

T4 1,000 250 5

chelator. This study used P. hysterophorus for the first time for

its phytoremediation capabilities in combination with chelator

(EDTA). Our objectives are (1) to use Pb and Cd simultaneously

with EDTA to evaluate the phytoextraction potential of P.

hysterophorus, whether the use of EDTA has any impact in

decontaminating these metals by P. hysterophorus and (2) assess

the effect of these combinations on growth and functioning of

the plant.

Materials and methods

Experimental design

Clay pots of 30 cm in diameter were used in this Completely

Randomized Designed (CRD) experiment. A total of 30 pots,

filled with soil from Botanical Garden of GCWUS, were used

in two sets of treatments assigning 15 pots for each treatment

set. Ten kilograms of pure and dried sandy loam soil was

filled up in each experimental pot. Seeds of P. hysterophorous

were gathered from plants growing in non-contaminated areas

and each container had ten seeds. P. hysterophorous doesn’t

require a lot of water to flourish due to its wild nature thus,

tap water is provided twice a week in accordance with the

plant’s requirements. The temperature at the time of seed sowing

was 36/20◦C (day/night) and 24/12◦C at the harvesting time

period. After plant germination 2 sets of treatments each with

3 replicates were applied to the soils in the pots in 2 weeks

(Table 1).

Morphological attributes

Morphological parameters were studied in the laboratory

after the collection of plant samples three months after the

FIGURE 1

(a) Plants at seedling stage, (b) post treatment growth of

seedlings, and (c) collection of plants for further processing.

application of treatments. Their visuals attributes are given in

Figure 1. Each plant sample was measured in terms of its height

(cm), shoot length (cm), and root length (cm) with the help of

a meter rod. Using digital balance, root and shoot fresh weights

were measured in grams and the data were recorded. For dry

weights, firstly, samples of shoots and roots have been dried for

three days at 72◦C in an oven. The dry weights of these samples

were measured. Similarly, the total number of leaves in each

pot was measured and the leaf area in each pot was measured

following below formula:

Leaf area = (Length×Width/Total no. of leaves).

Determination of photosynthetic
pigments

The method of Arnon (39) was followed for the

determination of photosynthetic pigments. Leaf samples

were collected separately from each pot in triplicates. In total

0.2 g of fresh leaves of each sample were taken and ground

well separately. Then the grounded samples were mixed up

with 80% of acetone. Ten milliliter of each plant triplicates

were made by mixing 80% of acetone and were placed in a

dark place in the laboratory for 48 hours. Then the samples

were run on a centrifuge machine to collect the supernatant

which was then analyzed in a spectrophotometer (Hitachi,

Model U2001, Tokyo, Japan). The absorbance of solution was

measured at 480, 645, and 663 nm for carotenoids, chlorophyll
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a, and chlorophyll b, respectively. The following formulae

were used:

Carotenoids
(

mg/g f. wt.
)

= [Acar / EM] × 1000

Total Chl.(mg/gf.wt.) = [20.2(O.D. 645)− 8.02(O.D. 663)]

× V/1000×W

Chl.a(mg/gf.wt.) = [12.7(O.D. 663)− 2.69(O.D. 645)]

× V/1000×W

Chl.b(mg/gf.wt.) = [22.9(O.D. 645)− 4.68(O.D. 663)]

× V/1000×W

Acar = O.D. 480+ 0.114(O.D. 663)

− 0.638(O.D. 645)

V = Volume of the sample

EM = 2500

V = Volume of the sample.

Determination of heavy metals and ions

Heavy metals (Cd and Pb) and ions such as Na, K, and

Ca concentrations in root and shoot samples were determined

using the following procedure. Plant samples were collected and

dried in an oven for three days at 72 ◦C, and then the dried-

out material was ground into a powder with a pestle and mortar.

For acid digestion, 0.2 g of dried material was taken in 100ml

sized beakers, and 20ml of pure nitric acid was added and

heated to 250◦C on a hot plate. These beakers were removed

from the hot plate and cooled down, when 10ml of the solution

remained then 10ml of perchloric acid was added to these

beakers and again heated on the hot plate until the contents

became clear and fumes stopped evolving completely. Beakers

were cooled down and filtered using filter papers (Whatman

No. 2) and poured the solutions into cleaned sample bottles

separately. Distilled water was added to each sample to make up

a 100ml solution. This extract was used for the determination

of heavy metals and ions (40). Following acid digestion of

the extracted samples, Atomic Absorption Spectrophotometer

(Model: Perkin Elmer Analyst 100) was used to measure Na, Cd,

and Pb concentrations, whereas flame photometer was used to

measure Na and K concentrations (Model: Flame photometer

410, CORNING).

Translocation factor

A plant’s ability to translocate heavy metals from roots

to shoots and leaves was measured by its translocation factor

(TF). Meanwhile, the shoot/root bioconcentration factors,

translocation efficiency, and removal efficiency were calculated

using these formulas (41, 42).

TF = the ratio of metal concentration in the shoot/metal

concentration in the root.

Statistical analysis

The results were statistically examined using SPSS

computer software’s one-way analysis of variance (V 23).

Non-significant was defined as a P-value greater than 0.05.

The connection between Pb and Cd Translocation Factors

in two sets of treatments was determined using a linear

regression test.

Results and discussion

Determination of metals

P. hysterophorus accumulated higher concentration of Pb

and Cd (p < 0.001) in roots and shoots (Tables 2, 3). The

pattern of Pb and Cd accumulation was greater in the shoots

than in the roots in all treatments (Figure 2). The maximum

concentration of Pb was recorded in T4 in shoots as well as

in roots (Figures 2A,B). In the case of Cd in set-2, maximum

concentration (854.0 ± 25.2) was recorded in shoots in T3

(Figures 2C,D). However, T2 and T3 of set-2 show slight

difference to each other, they differed highly significantly

from the T0 though. In treatments T3 and T4, the improved

accumulation of Pb and Cd in set-1 and set-2 respectively could

be attributed to the addition of EDTA in these metal treatments.

Our findings are consistent with prior studies, which indicated

that EDTA had a considerable influence on the accumulation

of Cd and Pb in plants (43, 44). A past study according to

our findings reported that when the concentration of 0.25mM

EDTA was increased, fast absorption of Pb occurred in the shoot

(45). One dosage of 10 mmol EDTA kg−1 enhanced. Ni, Cd,

and Pb uptake in Brassica rapa and also increased their TF as

there was a significantly larger concentration of these metals in

upper plant parts as compared to the non-treated ones (46). The

chelate-assisted phytoextraction technique appears to be more

effective than a strategy for cleaning up Pb-contaminated soils

that relies on the natural potential of some wild plant species

(47, 48), these results have shown positive correlation with our

study. The metal absorption with EDTAwas also consistent with

the findings of Madrid et al. (49), who found that EDTA was

particularly effective at mobilizing metals from soil to the plant

and can promote root-to-shoot translocation. Similarly, Turgot

discovered in an investigation that 0.1 g/kg EDTA boosted

total shoot: root translocation (50). According to (51), the

addition of EDTA at rates of 2.5 or 5.0 mmol kg−1 considerably

raised metal concentrations in plant shoots. High biomass

plants may be useful for phytoextraction of heavy metals

when exposed to large concentrations of chelate-solubilized
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TABLE 2 ANOVA of various attributes of P. hysterophorus in response to Set-1 of treatments.

Source of variance df R
o
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th

S
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t
le
n
g
th

R
o
o
t
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S
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o
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t
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W
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t
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N
o
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f
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L
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ea

C
h
lo
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p
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l
a

C
h
lo
ro
p
h
yl
l
b

T
o
ta
l
ch
lo
ro
p
h
yl
ls

C
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o
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s

C
al
ci
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m

(r
o
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)
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m
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)
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o
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m

(r
o
o
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)

P
o
ta
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m

(s
h
o
o
ts
)

S
o
d
iu
m

(r
o
o
ts
)

S
o
d
iu
m

(s
h
o
o
ts
)

P
b
(r
o
o
ts
)

P
b
(s
h
o
o
ts
)

Treatments 4 20
.8
8*
*

23
4.
4*
**

0.
68
4*
*

37
.9
7*
**

0.
07
6*
**

0.
60
2*
**

14
3.
4*
**

0.
03
3n

s

0.
18
4n

s

0.
04
3*

0.
40
4n

s

0.
47
9*
**

12
.1
5
**
*

20
.8
8*
**

56
31
**
*

3.
72
1*
**

12
56
**
*

17
20
**
*

18
.5
9*
**

39
.2
3*
**

Error 10 3.
03
0

11
.8
2

0.
11
0

1.
42
5

3.
96
8

0.
00
1

9.
46
6

0.
01
0

0.
08
1

0.
01
1

0.
14
9

0.
03
4

0.
06
4

0.
03
4

49
40

35
46

10
20

46
66

0.
08
3

0.
18
3

*** , P<0.001; ** , P<0.01; * , P<0.05; ns, P>0.05.

TABLE 3 ANOVA of various attributes of P. hysterophorus in response to Set-2 of treatments.

Source of variance df R
o
o
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W
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W
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C
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a

C
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l
b

T
o
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l
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h
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C
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n
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s
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m
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o
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)

C
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m
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h
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o
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)
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m
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o
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)
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o
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iu
m
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)

S
o
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m
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o
o
ts
)

S
o
d
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m
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h
o
o
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)

C
d
(r
o
o
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)

C
d
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(s
h
o
o
ts
)

Treatments 4 19
.4
9*
*

23
7.
6*
**

0.
85
1*
*

45
.3
2*
**

0.
08
2*
**

0.
60
7*
**

14
8.
5*
**

0.
04
8*
*

0.
36
9*
**

0.
07
8*
*

0.
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9*
**

0.
62
4*
**

27
.5
9*
**

11
1.
3*
**

2.
67
6*
**

82
08
**
*

12
56
**
*

14
91
3*
**

21
90
.0
**
*

32
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**
*

Error 10 2.
25
0

1.
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6

0.
07
7

1.
04
7

2.
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3

0.
00
5

9.
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3

0.
00
4

0.
02
8

0.
01
1

0.
05
8

0.
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9

1.
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5

0.
05
13

36
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33

10
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00
0

14
.6
3
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2.
9

*** , P<0.001; ** , P<0.01; * , P<0.05; ns, P>0.05.

materials (51). In calcareous soils, EDTA gradually increases the

mobility of Cd and Pb (52). EDTA-enhanced metal absorption

by plant roots has already been documented in several prior

studies (53–55).

Determination of ions

The ionic concentrations of K, Na, and Ca increased in

roots and shoots with EDTA as compared to without EDTA

treatments other than the control in both sets. In comparison

to the control, T1 had the greatest fall in K level in both roots

and shoots (Figures 3A,B). An increase in K in T3 and T4

compared to T1 might be related to EDTA in these treatments.

In the case of Ca, T3 and T4 (with EDTA) showed maximum

concentration whereas T1 and T2 (without EDTA) showed

less concentration of Ca in the roots and shoots of both sets

(Figures 3C,D). Nutrient ions take a vital role in cell turgor,

plant development, and metabolism. Generally, lower growth

rates in plants are caused by the deficiency of K inside the cells.

The cytosolic roles played by the K cannot be fulfilled by other

cations; hence a certain portion of plant biomass contains K

(56). Ca ions are taken in by plants via non-selective channels

in the cell membranes of their root systems. These non-specific

channels also permit other divalent and some monovalent ions

to pass through them (57). Ca is an important cell signaling

component and helps the plants to get over various stresses such

as temperature shock, changes in nutrient status, mechanical

stimuli, pathogen attack, and drought (58). A lot of studies

have reported the reduction in the concentration of K and

Ca ions with increased concentration of Pb and Cd in the

environment (59, 60). However, some studies, in accordance

with our results, have reported an increase in plant K andCa ions

in the application of EDTA as compared to treatments where

EDTA was not given (61).

The concentration of Na increased in both shoots and

roots after applying treatments (Figures 3E,F). Na concentration

in roots and shoots was found to be maximum in T4 when
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FIGURE 2

Heavy metals in P. hysterophorus under the e�ect of various treatments; (A) Pb concentration in P. hysterophorus shoot, (B) Pb concentration in

P. hysterophorus root, (C) Cd concentration in P. hysterophorus shoot, and (D) Cd concentration in P. hysterophorus root.

compared to the T0. Thus, the results showed that in the

presence of the EDTA plant ionic concentration increases as

compared to the treatments where EDTA was not applied.

Pb and Cd concentrations have reportedly been linked to an

increase in Na concentration in P. hysterophorus.

We determined considerably high values of TF for both

metals in both sets of treatments (Figure 4) which shows the

extremely high capacity of P. hysterophorus to translocate these

metals from roots to shoots. We could not find a significant

correlation between TFs of P. hysterophorus for Pb and Cd.

But generally, the TF of P. hysterophorus for Cd was greater

than Pb. Sorghum and alfalfa have been reported to extract the

heavy metal, and transfer them to the upper part and the value

of translocation factor increases as the samples as treated with

EDTA (62).

Morphological attributes

The fresh and dry weight of shoots and roots decreased

significantly (P < 0.001) after the application of treatments in

both sets (Figures 5A,B and Tables 2, 3). In set-1, a minimal

difference in fresh weight of shoots and roots was found in

T2 when compared with the control (Figures 5C,D). Shoot

and root lengths of P. hysterophorous were also found to be

affected, minimum and maximum reductions in shoot lengths

of set-1 and set-2 were found in T2, respectively (Figures 5E,F).

However, in set-2, T3 had the greatest reduction in root length,

followed by T2. The height of the plant got decreased and

showed a stunted appearance. The lowest number of leaves and

maximum leaf area of the plant were seen in T4 compared

to all the treatments other than the control in both sets
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FIGURE 3

Mineral ions (K, Ca, and Na) contents in P. hysterophorus under the e�ect of various treatments in two sets. (A) K concentration in P.

hysterophorus in set-1, (B) K concentration in P. hysterophorus in set-2, (C) Ca concentration in P. hysterophorus in set-1, (D) Ca concentration

in P. hysterophorus in set-2, (E) Na concentration in P. hysterophorus in set-1, and (F) Na concentration in P. hysterophorus in set-2.

(Figures 5G,H). EDTA seemed to have a positive impact on

shoot/root fresh and dry weights in T3 and T4 compared

to T2 in set-2 in accordance with the results obtained by

Kanwal et al. (63). Sudan grass and sweet sorghum grow and

produce more biomass when EDTA is used as a treatment

in soil (64, 65). The (EDTA + Cd) combined treatments

applied to P.hysterophorous have significantly increased plant

growth and biomass, these results also showed a positive

correlation with Hayat et al. (66). EDTA treatment boosted plant

growth, yield, chlorophyll content, gas exchange properties and

photosynthetic parameters, by increasing antioxidant enzyme

activity, and it also increased metal absorption in Brassica

napus. (67). Another study also showed that sorghum plants

grew more quickly and absorbed more nutrients when treated

with metal-EDTA chelate (68). Chen et al. (69) also reported

higher soybean leaf mass in the presence of EDTA under Cd

stress condition.

FIGURE 4

Linear correlation between translocation factors of Pb and Cd in

P. hysterophorus.

Past research has also reported that plants exposed to Pb and

Cd toxins have reduced root and shoot growth, as well as lower

weight (11, 12). The increasing amount of Pb in plants is shown
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FIGURE 5

Morphological attributes of P. hysterophorus in two sets of treatments. (A) root dry weight, (B) shoot dry weight, (C) root fresh weight, (D) shoot

fresh weight, (E) root length, (F) shoot length, (G) number of leaves, and (H) leaf area.
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FIGURE 6

Chlorophyll pigments in P. hysterophorus under the e�ect of various treatments in two sets.

to cause visual phytotoxic effects on plants such as chlorosis

and necrosis, which results in a reduced number of, leaves (70).

Reduced root weight of soybean and dry biomass in Parthenium

were noted as a result of Cd toxicity (44, 69). Reduced plant

growth is a common symptom of metal toxicity. Heavy metal

uptake happens in plants through the ion transporters in cell

membranes that are meant to transport nutrient ions thereby

restricting the normal metabolic activities of the plants and

hampering their growth (59, 71).

Physiological attributes

Chlorophyll a, chlorophyll b, total chlorophyll content,

and carotenoids all decreased as metal intake increased. The

effect of different treatments on chlorophyll contents is highly

significant in both sets (Tables 2, 3). Chlorophyll a and b

showed a decreasing trend from T1 to T3, but then their

increase in T4 showed a positive impact EDTA had in this

treatment along with metal in both sets (Figure 6). Similarly,
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carotenoids also showed the same trend in both sets. Similar

results were obtained by other researchers as well (63, 72–

75). Results are also in accordance with the Hayat et al.

(66) stated that EDTA treatment raised chlorophyll content

and improved plant physiology. EDTA in plants considerably

enhanced plant chlorophyll content and gas exchange properties

(67). The application of EDTA considerably increased the levels

of chlorophyll a, b, total chlorophyll, and carotenoid content in

the leaves of B. Napus L (63).

Chlorophyll contents are the most important biomolecules

in plant cells as photosynthesis and productivity depend upon

their concentration (76) noticed the direct and significant effect

of heavymetals uptake on proline synthesis while a 4% reduction

in chlorophyll content was seen in all the resistant/indicator

species of heavy metal polluted regions. Heavy metals reduce

chlorophyll contents in plants in the vicinity of leather industries

of Sialkot, Pakistan (1). Various studies have shown that Cd and

Pb have deleterious effects on plant chlorophyll concentration

which ultimately lead to reduced photosynthetic rate and

strength of the plants (5, 61, 77–79).

Conclusions

It is concluded that the Cd and Pb concentrations in

shoots and roots of P. hysterophorus were substantially high.

The capacity of P. hysterophorus to accumulate Pb and Cd

was shown to be increased with the addition of EDTA to

the soil. Morphological attributes of P. hysterophorus such as

shoot/root length, fresh and dry weights, leaf count, and leaf

area were adversely impacted by the toxic effects of Pb and

Cd, however, EDTA was found to be having a positive impact

by helping P. hysterophorus in overcoming the negative effects

of heavy metals. Similarly, the same trend was recorded for

photosynthetic pigments. Ions i.e. K and Ca got reduced in Pb

and Cd treatments, But EDTA in T3 and T4 helped in restoring

the amount of these ions in P. hysterophorus. Na concentration,

however, in all of the treatments except the control, was found to

be significantly higher. We conclude that P. hysterophorus can

uptake and accumulate high concentrations of Cd and Pb and

this ability can be enhanced by the application of EDTA in the

soil. We recommend using this highly proliferating plant species

for remediation of Pb and Cd contaminated soils, but further

research is required in this regard in the natural environment

and for some other metal types. Decreasing the toxic level of

heavy metals in the soil in accordance to the WHO standards

can improve the ecosystem as well as general public health that

is the prime objectives of scientists.
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