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Background: Young children in Sub-Saharan Africa (SSA), particularly those

from resource-limited settings, are heavily burdened by anemia and malaria.

While malaria infected children frequently become anemic (hemoglobin <110

g/L), anemia is a strongly multifactorial disease with many other risk factors

than malaria. Due to the complex and often overlapping contributors to

anemia, it remains challenging to isolate the true impact of malaria on

population level hemoglobin concentrations.

Methods: We quantified the malaria-induced e�ect on hemoglobin

levels in children under 5 years of age, leveraging data from 7,384

twins and other multiples, aged 6 to 59 months, from 57 nationally

representative Demographic and Health Surveys (DHSs) from 23 SSA

countries from 2006 to 2019. The quasi-experimental twin fixed-e�ect design

let us minimize the impact of potential confounders that do not vary

between twins.

Results: Our analyses of twins revealed a malaria-induced hemoglobin

decrease in infected twins of 9 g/L (95% CI -10; -7, p<0.001). The relative risk

of severe anemia was higher (RR = 3.01, 95% CI 1.79; 5.1, p<0.001) among

malaria positive children, compared to malaria negative children. Conversely,

malaria positive children are only half as likely to be non-anemic (RR = 0.51,

95% CI 0.43; 0.61, p<0.001).
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Conclusion: Even after rigorous control for confounding through a twin fixed-

e�ects study design, malaria substantially decreased hemoglobin levels among

SSA twins, rendering themmuchmore susceptible to severe anemia. This e�ect

reflects the population-level e�ect of malaria on anemia.

KEYWORDS

twins, multiples, fixed-e�ect, Sub-Sahara Africa, hemoglobin, DHS, anemia-etiology,

malaria

Introduction

Young children from low- and middle-income countries

frequently suffer from a wide range of health burdens

specific to their under-resourced settings. In Sub-Saharan

Africa (SSA) these often include anemia of multifactorial

origin and endemic infectious diseases such as malaria, where

recent estimates have suggested a prevalence of up to 60%

(Supplementary material S1) (1–4). Childhood anemia (WHO

definition: hemoglobin <110 g/L) has complex etiologies,

including malaria, socioeconomic factors, nutritional deficits

like iron deficiency, genetic disorders such as sickle cell disease,

and other infectious diseases including helminths, intestinal and

respiratory diseases (1, 2, 5, 6). Anemia impairs the cognitive

and physical development of young children, subsequently

reducing educational achievements, labor market opportunities

and, ultimately, perpetuating cycles of poverty by limiting the

potential of young generations to flourish (7–10). Prieto-Patron

et al. (11) estimated the total average cost of iron deficiency

anemia in Cote d’Ivoire alone to exceed 890 million USD

(2.5% of GDP), and 214 700 disability-adjusted life years (11).

Assuming that iron deficiency anemia constitutes only one

quarter to one half of the total anemia burden in SSA, the

projected total costs of anemia (all etiologies) are devastatingly

high (12). Furthermore, according to a recent analysis malaria

might account for up to a third of iron-deficiency anemia cases

in endemic countries (13).

Malaria infections frequently lead to anemia, acutely,

through erythrocyte hemolysis, and in chronic and recurring

forms through persisting bone-marrow depression and

inflammation (14–19). Malaria is caused by the Plasmodium

parasite genus whose species differ in both geographic

distribution and severity of the resulting disease (20, 21).

Globally, more than 95% of annual malaria cases occur in

SSA, partly because it is almost exclusively affected by the

particularly aggressive Plasmodium falciparum (22–24). In

2020 P. falciparum caused over 227 million cases of malaria

in SSA, with 602 000 fatal outcomes out of which 80% were

children younger than 5 years old (24). Despite the clear links

between malaria and anemia, the true impact of malaria on

population hemoglobin levels is obscured by the complex and

often overlapping contributors to anemia.

To bridge this knowledge gap and isolate the impact of

malaria on hemoglobin, we pooled nationally representative

survey data from 23 SSA countries. Mining these datasets

for pairs of twins and higher order multiples (triplets and

quadruplets; for ease of reading henceforth also referred to as

“twins”, Figure 1) offered the opportunity to account for factors

that are only shared between twins and are otherwise nearly

impossible to measure in large trials such as in-utero, perinatal

and early childhood exposures (25, 26). To achieve this level

of control, we adapted an econometric statistical method for

our main analysis, fixed effect regression, to rigorously control

for most of the major risk factors of anemia that are identical

between twins, including temporal and regional constants,

mother-dependent variables, and socioeconomic status (25–29).

Our study aims to isolate the exact malaria-induced

change in hemoglobin levels in endemic settings of

SSA. This is currently of particular relevance as recent

promising malaria-vaccine trials and the consecutive

recommendation of the WHO to vaccine young

children give hope of an imminent improvement of

the malaria burden to endemic countries (24, 30, 31).

Our study will shed light on the potential gains against

anemia secondary to an improved or successful malaria

elimination process.

Methods

Data and variables

We used nationally representative survey data which

are available through USAID’s Demographic and Health

Surveys (DHSs) and Malaria Indicator Surveys (MISs) (DHS

Program, RRID:SCR_000905). During the surveys, trained field

workers conducted extensive interviews, collected biomarkers,

and gathered anthropometric data from a representative

cluster-based sample of households in the respective survey

country (Figure 2). All households and participants receive new

identifiers for each survey, thus the pooled data is strictly cross-

sectional, as it is impossible to trace participants across surveys.

All data and details on the data generation process are freely

available from the DHS website (32).
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FIGURE 1

Eligibility assessment and data processing. We pooled 324,198 children from all available DHS surveys (57 surveys from 23 countries) that

contained hemoglobin and malaria outcomes. We analyzed the data on three di�erent levels: The main descriptive analysis was performed on

all children with complete RDT data (n = 270,961). The main regression model was run on all multiples (n = 7,384), while the subset analyses

were performed on the lowest level for di�erent-sex twins alone (n = 4,314) and same-sex and higher level multiples combined (n = 3,070).

Blind ended boxes show cases that did not meet subset criteria and were not considered in any analysis. Boxes with continued lines show cases

used for analysis.

All surveys from the SSA region that contained hemoglobin

measurements and rapid diagnostic tests (RDT)-based malaria

measurements were eligible for analysis. We downloaded the

survey data using the rdhs (v0.7.1) R package and extracted

the variabes sex, hemoglobin and RDT result for analysis.

Furthermore, we extracted the survey identifier, the household

identifier, the date of birth and the mother identifier to identify

the twin pairs. The datasets were restricted to children with

complete RDT and hemoglobin measurements.

We limited the data to children aged 6–59 months as

younger children typically benefit from pregnancy related IgG-

transfers, i.e., they are still protected by the mother’s immune

system, while older children will have had significantly more

exposure to malaria and begin to develop partial immunity of

their own (26, 33). We further regionally restricted the data to

Sub-Saharan Africa because of its high prevalence of malaria and

almost exclusive endemicity of P. falciparum (22, 23). We used

blood hemoglobin levels as a proxy for anemia in line with the

WHO definition of anemia for children (hemoglobin ≥110 g/L

healthy; 109–100 g/L mild anemia; 99–70 g/L moderate anemia;

<70 g/L severe anemia) (5). Hemoglobin levels were measured

using HemoCue test systems (32).

We used the malaria test results from established RDT

systems to identify the children with parasitemia, understood

as a binary indicator for parasite presence. Unfortunately, there

was no quantitative measurement of parasitemia (i.e., parasite

density) available in the given data. RDTs are frequently used

in remote clinical settings and surveys because they work well-

with minimal laboratory equipment while providing solid and

immediate results on site. The tests detect plasmodium-specific

antigens in a lateral flow system to diagnose malaria (34, 35).

Unfortunately, the data did not contain reliable information

on potentially confounding causes of anemia such as iron status,

coinfections or genetic disorders.
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FIGURE 2

Distribution of hemoglobin across all children in all included surveys (n = 270,961). Countries are color-coded, surveys with years are given on

the y-axis. Hemoglobin concentrations are given in g/L on the x-axis. AO, Angola; BF, Burkina Faso; BJ, Benin; BU, Burundi; CD, Côte d’Ivoire;

CM, Cameroon; GH, Ghana; GM, Gambia; GN, Guinea; KE, Kenya; LB, Liberia; MD, Madagascar; ML, Mali; MW, Malawi; MZ, Mozambique; NG,

Nigeria; RW, Rwanda; SL, Sierra Leone; SN, Senegal; TG, Togo; TZ, Tanzania; UG, Uganda. Survey year is set when the survey was begun, some

surveys crossed over into the following years.
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Data preparation

The flowchart illustrates the process of data preparation and

eligibility assessment (Figure 1). The eligibility criteria of SSA-

region, hemoglobin and RDT-results were met by 57 surveys

from 23 countries, spanning a time frame from 2006 to 2019

(Figure 2).

Since there was no predefined twin-identifier in the given

data, we manually constructed a twin-identifier variable from

the country code, survey year, cluster identifier, household

identifier, mother identifier and date of birth (century month

code) of the child, thus ensuring that only twins and higher

order multiples shared a common indicator. The resulting main

dataset contained 7,384 monozygotic and dizygotic twins with

complete data and was used in the analysis of the main model.

With the given data it is not possible to exclusively identify

monozygotic twins. Instead, we approached a selection of

monozygotic twins by creating a subset excluding twin pairs

with differing sex and all multiples (same-sex and different-

sex alike), to maximize the probability of genetic similarity

(36). This subset of same-sex twins included 4,314 individuals

out of which 1,320 (30.6%) will likely be monozygotic. We

provide a more in depth explanation of this approach in the

Supplementary material S2.

Statistical analysis

We first described the overall patterns in the population

structure of all children and of the twin subsets to enable

easier comparison between the groups and assess the

representativeness of the twins.

We further added a visual analysis of the hemoglobin

distributions among all children for each included survey and

created prevalence maps for anemia and malaria for the most

recent survey in every country (Supplementary material S1).

We used only the twins and sex-subsets for the inferential

analysis, not the pooled data of all children. For each of

the three regression datasets (main, same-sex, different-sex) we

constructed a linear twin-fixed effect regression model. Each

of the models estimated the expected difference in hemoglobin

of twins with parasitemia compared to those without, with a

separate intercept for each pair of twins. In more descriptive

terms, the model considers a twin pair as a single entity,

where the individual siblings within a twin pair represent two

simultaneous measurements of the same entity in two different

exposure-states (25, 28). The quasi-experimental objective was

to analyse the parasitemia-associated hemoglobin change in two

counter-factual realities of one child (as represented through a

twin pair). The twin pairs that did not differ in parasitemia status

could not be used to estimate the hemoglobin change, however

they provided power to the overall analysis. This approach is

increasingly popular in epidemiologic research and allowed us to

minimize the impact of potential confounders that do not vary

between twins, including most relevant risk factors of anemia

(27, 29). The formula for the main model is provided with the

Supplementary material S3.

We adjusted our main and different-sex models for sex and

the twin fixed-effect, the same-sex model for the twin fixed-

effect only. All variables that did not vary between twins, such

as country, age, test method, etc. were perfectly colinear with the

twin-fixed effect and were therefore excluded from the statistical

model (28).We further added subset analyses for each individual

country and stratified by age group to account modulating

effects of these factors (Supplementary material S4).

The quasi-poissonmodels are four separate extensions of the

main model structure that allowed us to estimate the malaria

effect on the relative risk of mild or worse (<110 g/L), moderate

or worse (<90 g/L) and severe anemia (<70 g/L). These analyses

illustrate in a more tangible way the consequences that are

implied in the malaria-induced hemoglobin reductions. All

analyses were performed using R version 4.0.2. We extracted,

cleaned and analyzed the data with the help of the following r

packages (rdhs 0.6.3; plm 2.2.4, fixest 0.8.3).

Results

An overview of the demographic composition of

the datasets used for analysis is provided in Table 1.

Demographic summaries of each survey are provided in

the Supplementary materials S5, S6. Across all surveys, most

children (62.9%) suffered from at least mild anemia (Hb

<110 g/L). The prevalence of anemia was higher in plasmodium

positive children than in negative ones (82.4 vs. 56.2%)

(Supplementary material S7). The average hemoglobin across

the included surveys decreased marginally but statistically

significant over time (2006–2010: 106 g/L, 2015–2019: 103

g/L; unpaired T-test: p<0.001). The pooled prevalence of

plasmodium parasitemia also remained largely constant between

survey years (2006–2010: 18.4%, 2015–2019: 18.8%; two

proportions Z-test: p = 0.002). The distribution of hemoglobin

in each survey is shown in Figure 2. In total 547 (14.89%) of

the total 3,679 twin pairs had disconcordant parasitemia status,

which was leveraged for the fixed-effect model. Finally, there

was no statistically significant difference in the hemoglobin

distributions of same-sex and different-sex twins in a two

sample unpaired T-test (95% CI -0.7; 0.9, p= 0.808).

The main model, adjusted for sex and the twin fixed

effect, showed a 9 g/L (95% CI -10; -7, p<0.001) hemoglobin

decrease in children with positive RDT compared to their

RDT-negative twins. Female sex increased hemoglobin by

2 g/L (95% CI 1; 3, p<0.001). The main model outcome

and the outcomes for each separate country analysis are

illustrated in Figure 3, the age subset analysis is appended to the

Supplementary materials S4, S8.
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TABLE 1 Demographic and health characteristics of the study populations, separately for each level of analysis.

All children All twins Same-sex twins Mixed-sex twins

Total 270,961 (100) 7,384 (100) 4,314 (100) 3,070 (100)

Sex (%)

Male 136,710 (50.5) 3,594 (48.7) 2,066 (47.9) 1,528 (49.8)

Female 134,251 (49.5) 3,790 (51.3) 2,248 (52.1) 1,542 (50.2)

Age

0–11 months 29,073 (10.7) 883 (12) 533 (12.4) 350 (11.4)

12–23 months 59,577 (22) 1,678 (22.7) 993 (23) 685 (22.3)

24–35 months 59,593 (22) 1,597 (21.6) 936 (21.7) 661 (21.5)

36–47 months 61,685 (22.8) 1,587 (21.5) 884 (20.5) 703 (22.9)

48–59 months 61,033 (22.5) 1,639 (22.2) 968 (22.4) 671 (21.9)

Multiples (%)

Twins 7,308 (2.7) 7,308 (99) 4,314 (100) 2,994 (97.5)

Triplets 72 (0) 72 (1) - 72 (2.3)

Quadruplets 4 (0) 4 (0.1) - 4 (0.1)

Malaria (%)

Negative 201,524 (74.4) 5,445 (73.7) 3,233 (74.9) 2,212 (72.1)

Positive 69,437 (25.6) 1,939 (26.3) 1,081 (25.1) 858 (27.9)

Anemia (%)

Hb a,b 103 (17) 101 (18) 101 (18) 101 (18)

No anemia 100,542 (37.1) 2,453 (33.2) 1,435 (33.3) 1,018 (33.2)

Mild anemia 116,268 (42.9) 3,094 (41.9) 1,803 (41.8) 1,291 (42.1)

Moderate anemia 44,763 (16.5) 1,500 (20.3) 881 (20.4) 619 (20.2)

Severe anemia 9,388 (3.5) 337 (4.6) 195 (4.5) 142 (4.6)

Malaria positives by anemia (%)

No anemia 12,242 (12.2) 362 (14.8) 196 (13.7) 166 (16.3)

Mild anemia 30,371 (26.1) 821 (26.5) 454 (25.2) 367 (28.4)

Moderate anemia 20,915 (46.7) 583 (38.9) 337 (38.3) 246 (39.7)

Severe anemia 5,909 (62.9) 173 (51.3) 94 (48.2) 79 (55.6)

Anemia by malaria status (%)

No malaria 113,224 (56.2) 3,354 (61.6) 1,994 (61.7) 1,360 (61.4)

Malaria 57 195 (82.4) 1,577 (81.3) 885 (81.9) 692 (80.7)

Column one represents is based on data from all children from all included surveys. Column two is based on data from all twins in the main regression model. Columns three and four are

based on the subset regression analyses for same-sex and different-sex twin pairs, respectively. Based on the demographics, twins are representative for all children in the data. Percentages

might not add up to 100 due to rounding to the first decimal.
aGiven as mean (standard deviation); bunit [g/L]; Anemia severity categories are based on hemoglobin levels in g/L. No anemia (≥110 g/L), mild anemia (90–109 g/L), moderate anemia

(70–99 g/L), severe anemia (<70 g/L).

We adjusted the second, the same-sex model, for the twin

fixed effect only and found a malaria-induced hemoglobin

decrease of 9 g/L (95% CI -11; -7, p<0.001). Based on the

Weinberg rule we estimated that a third of the same-sex data

set are monozygotic twins (Supplementary material S2). The

monozygotic twins thus weigh more heavily in the same-sex

model than in the main model data where the monozygotic

twins likely represent around one fifth.

The third, the different-sex model, was adjusted for the

twin fixed effect and sex and included only those twins

who were definitely dizygotic. We found a 8 g/L (95%

CI −10; −6, p<0.001) hemoglobin reduction induced by

plasmodium presence among the different-sex twins. The effect

of parasitemia in the different-sex model is thus marginally

smaller than the effect of the main and same-sex model

(Supplementary material S9).

Based on the main model we also conducted a quasi-

poisson regression with anemia severity as binary outcomes.

In this model series plasmodium positive children where at

higher relative risk of mild anemia or worse (Hb<110 g/L),

(RR = 1.28, 95% CI 1.2; 1.36, p<0.001), moderate anemia or

worse (Hb<90 g/L), (RR = 1.76, 95% CI 1.49; 2.08, p<0.001)

and severe anemia (Hb<70 g/L), (RR = 3.01, 95% CI 1.79;

5.1, p<0.001). At the same time, their “risk” of being healthy
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FIGURE 3

Analysis of the malaria e�ect on hemoglobin, overall e�ect and country specific e�ects. Each bar represents the result of a subset-analysis that

used all surveys of a given country (blue). The errorbars represent the corresponding 95% confidence intervals. The bottom row (red) shows the

outcome of the main pooled analysis across all twins from all surveys in all countries. The continuous dark red vertical line is the extension of

the main pooled analysis result. The dashed line is the line of no e�ect. The table to the right adds the exact regression results for every country

with 95% confidence intervals and p-values.

(Hb≥110) was reduced (RR= 0.51, 95% CI 0.43; 0.61, p<0.001).

The outcomes of the quasi-poisson regression are illustrated in

Supplementary material S10.

Discussion

Our models consistently demonstrated a malaria-induced

reduction in hemoglobin when comparing plasmodium-infected

children to their healthy twin counterparts and confirmed

that malaria substantially impacts population-level hemoglobin.

Plasmodium presence was associated with a 9 g/L hemoglobin

decrease among all twins and among the same sex twins. Among

the different-sex twins the parasitemia-associated hemoglobin

decrease was marginally smaller. Since the anemia severity

groups are distinguished by steps of 20 g/L hemoglobin, the

effect sizes are large enough to be clinically relevant, particularly

if considering that our calculations are based on cross-sectional

data. This is also illustrated in the poisson regression, where

children with parasitemia are only about half as likely to be

non-anemic and three times more likely to be severely anemic

than their plasmodium-negative peers. The slightly larger effect

of the same-sex model in comparison to the different-sex model

might point toward a relevant genetic predisposition, e.g.,

sickle cell anemia, G6PD-deficiency or thalaessaemias (13, 37).

However, the hemoglobin difference between the groups is

neither statistically significant nor clinically relevant.

To our knowledge, this is the first large scale twin study on

the impact of malaria on anemia. It complements an extensive

body of research on the clinical impact of malaria on individual,
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and, to a lesser extent, on population hemoglobin. Previous

research has described the population impact in a wide range

from -13 g/L (WHO, 2019 malaria report), to a marginal

-1 g/L among adults in a regional setting in south-east Asia

(38, 39). In vivo studies have described the course of anemia

during a plasmodium infection in adults with a sharp initial

drop of -15 g/L hemoglobin followed by a rapid recovery to

a plateau of -5 g/L (40). Korenromp et al. found successful

malaria control strategies to improve population hemoglobin

in children by 7 g/L (41). Our point estimate is located at the

center of the range described in the literature and we confidently

attribute this to the strict control for confounding in our

modeling approach. The sex-associated hemoglobin difference

is not backed well by current literature. Normally, we would

expect to see a difference at the onset of puberty, not in children

younger than five. However, sex dependent differences in early

childhood have been recently described by Fulgoni et al. and

are in line with our previous findings in Burkina Faso (42,

43). The high prevalence of anemia among malaria-negative

children is within the expected expected range given the regional

circumstances and has been previously described in other large

studies (4, 44, 45).

Our study benefits from several strong innovations. It draws

data from a large, representative sample of children in SSA,

the region where the greatest gains against malaria have been

made and yet much remains to be done. Additionally, from this

representative sample we identified a very large number of twins

as a basis for our fixed effect statistical model, controlling for

most relevant confounding that is shared between twins (25, 28).

Our study has several limitations. Firstly, the nature

of cross-sectional data is vulnerable to certain types of

bias. This includes survival bias, where children with severe

anemia are likely treated in clinics to receive intensified

medical care and therefore cannot be included in the

surveys (20). We expect survival bias to modify our results

toward a more conservative estimation. Furthermore, the

manual construction of the twin identifier could possibly

introduce classification bias, where a child with an absent

or deceased twin sibling is not correctly identified as

a twin.

Secondly, we decided to use RDT result as our indicator

for malaria status, rather than microscopy although microscopy

is considered the gold standard. We made this choice because

the RDTs most effectively reflect the diagnostic situation in

SSA. RDTs are used in most DHS surveys, are a staple

in clinical settings of rural Africa where microscopy is

frequently not feasible and have very similar sensitivity and

specificity (46, 47). The downside of RDTs is that they are

susceptible to false positives, particularly in the presence

of rheumatoid factor and in latent malaria infections (48–

50). Some RDTs have been shown to remain positive in

children for up to 30 days even after an infection is under

immune system or medical control (51). Since the included

survey time span ranges from 2006–2019, the quality of

deployed RDTs will likely have improved over the years

(52). The reliance on RDTs that developed over time, the

different test models and target-antigens used, pose a risk of

systematic measurement erros that can’t be fully addressed

through the study design as the error rates might vary

between surveys.

Thirdly, we were not able to exclusively identify

monozygotic twins within the given data set. This is important

because the genetic relationship of dizygotic twins is roughly

that of regular siblings, therefore our main model does not

control for genetic differences that might vary between twins

and still cause anemia, e.g., sickle-cell anemia trait. However,

the twin fixed-effect approach is superior to a mother- or

household-fixed-effect approach because it controls for all

temporal and regional covariates that are associated with the

twin birth, including in-utero and perinatal exposures, the

mother’s education, location of birth, age of the child, early

childhood exposures etc (26). Similarly, the models lack explicit

control for coinfections and malnutrition which were not

covered in the data but might differ between twins. However,

since these potential confounders are likely not systematically

linked to the malaria status, their impact on the final results

should be limited. Nevertheless, future surveys will hopefully

address these gaps in the data to enable a clearer picture on

anemia in the study populations.

The burden of anemia and malaria to SSA countries is

substantial (53). However, the combined risks of malaria and

anemia put affected children in a double-jeopardy situation

where those that survive the acute infection frequently suffer

anemia with corresponding detriments to development and

increased infectious disease susceptibility (54, 55). In the long

run, this close interaction can perpetuate cycles of poverty where

anemia diminishes a child’s chances at future upward social

mobility and their future offspring will therefore be exposed

to poverty, malaria, and anemia again. Hence, successfully

combating malaria reduces the burden of anemia and proffers

critical secondary benefits for the health and development

of children and, ultimately, the economic stability of their

countries. These benefits do not seem to be as far out of reach

anymore as a first malaria vaccine gives hope of improved

success in decreasing the burden of malaria and secondary to

that, the burden of anemia (31).

In conclusion, we were able to demonstrate the substantial,

malaria-induced reduction of population hemoglobin in one

of the largest studies of SSA twins to date, while rigorously

controlling for almost all confounders that are relevant to

anemia and malaria. Since malaria’s impact on hemoglobin

reflects up to the population level it can be reasonably assumed

that malaria delays development of individuals, regions, and

entire countries. The work on eradicating malaria remains

valuable, particularly those efforts that target the high risk group

of young, anemic children. These programs should be extended
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rather than neglected, despite the current difficulties in the

global political and health landscape.
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