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Key points: As of January 2022, the COVID-19 pandemic was on-going,

a�ecting populations worldwide. The potential risks of the Omicron variant

(and future variants) still remain an area of active investigation. Thus, the

ultimate human toll of SARS-CoV-2, and, by extension, the variations in that

toll among diverse populations, remain unresolved. Nonetheless, an extensive

literature on causal factors in the observed patterns of COVID-19 morbidity

and cause-specific mortality has emerged—particularly at the aggregate level

of analysis. This article explores potential pitfalls in the attribution of COVID

outcomes to specific factors in isolation by examining a diverse set of potential

factors and their interactions.

Methods: We sourced published data to establish a global database of

COVID-19 outcomes for 68 countries and augmented these with an array

of potential explanatory covariates from a diverse set of sources. We sought

population-level aggregate factors from both health- and (traditionally) non-

health domains, including: (a) Population biomarkers (b) Demographics and

infrastructure (c) Socioeconomics (d) Policy responses at the country-level.

We analyzed these data using (OLS) regression and more flexible non-

parametric methods such as recursive partitioning, that are useful in examining

both potential joint factor contributions to variations in pandemic outcomes,

and the identification of possible interactions among covariates across

these domains.

Results: Using the national obesity rates of 68 countries as an illustrative

predictor covariate of COVID-19 outcomes, we observed marked

inconsistencies in apparent outcomes by population. Importantly, we

also documented important variations in outcomes, based on interactions of

health factors with covariates in other domains that are traditionally not related

to biomarkers. Finally, our results suggest that single-factor explanations of

population-level COVID-19 outcomes (e.g., obesity vs. cause-specific

mortality) appear to be confounded substantially by other factors.

Conclusions/implications: Our methods and findings suggest that a full

understanding of the toll of the COVID-19 pandemic, as would be central

to preparing for similar future events, requires analysis within and among

diverse variable domains, and within and among diverse populations. While

this may seem apparent, the bulk of the recent literature on the pandemic has

focused on one or a few of these drivers in isolation. Hypothesis generation
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and testing related to pandemic outcomes will benefit from accommodating

the nuance of covariate interactions, in an epidemiologic context. Finally, our

results add to the literature on the ecological fallacy: the attempt to infer

individual drivers and outcomes from the study of population-level aggregates.

KEYWORDS

COVID, pandemic, health policy, statisticalmethods, obesity,machine learning, health

economics, lifestyle factors

Motivation and background

The trajectory of the COVID-19 pandemic is still evolving,

and is unlikely to be fully understood and elaborated until

history and hindsight confer clarity and render their verdicts—

which may take many years. Even so, the great variation in

reported COVID-19 cause-specific mortality rates1 around the

world has precipitated a vast and still burgeoning literature that

posits a variety of “likely” causes for such variation. Some of

these proposed associations may yet prove obsolete when the full

country-specific human costs of the pandemic are updated and

enumerated. It is the nature of this work, that efforts to examine

cause and effect at this juncture are “snapshots,” fixed in time,

even as the target—the ultimate toll of the pandemic in lives lost

and harmed—remains in motion.

However, some salient associations2 have been suggested

[e.g., (1)]. Among these, there appears to be a consistent, strong,

and biologically plausible link between obesity and adverse

COVID-19 outcomes [e.g., (2)]. The bulk of the COVID-19

cause-specific mortality toll in the United States appears to

be associated with the broader, and related matter of poor

cardiometabolic health and to issues of health inequality [e.g.,

(3)]. A number of authors have asserted similar associations,

often taken as attributions, with respect to a number of countries

and regions [e.g., (4, 5)].

While direct associations between certain biological

factors and COVID-19 outcomes may provide a comfortable

explanation for variation in pandemic outcomes, the matter

appears to be far more nuanced normatively.

1 Ideally, we would like to know the fatality rate across cases. However,

to do so, we would require the number of “cases” in the denominator.

For to a variety of reasons that have been well documented (sub-

population reporting disparities, the availability of at-home tests, etc.) this

denominator is not well reported. For this reason, we have focused on

cause-specific mortality, which is plausibly directionally consistent and is

also likely to exhibit errors that that are orders of magnitude less severe.

2 Note that, for reasons that will become obvious, throughout this

article we use the terms “association” and “covariates” rather than causal

terms such as “cause” and “drivers”.

Example 1: Obesity vs. COVID-19 cause-

specific mortality

The implications of obesity for health seem to be

both conditional and non-linear. In affluent countries,

individual obesity tends to be associated with relative

indigence, limited nutritional options, economic insecurity,

and resource scarcity. In contrast, in relatively indigent

countries, individual obesity is often associated with

affluence, food security, economic security and reduced

physical labor; and resource access [e.g., (6)].

The simple interaction in the Example between the two

factors, one biological and one socioeconomic, is only an

illustrative case of a much broader set of analytic challenges.

It demonstrates a simple example of one of a much larger

collection of subtle statistical associations on which our

collective knowledge of the impact of public health policies and

interventions rests.

As a result, in many cases, coarse initial findings that provide

simple explanations (and sound-bites) for the relationship

between lifestyle factors and COVID-19 outcomes, may become

strained, or at least less compelling, when examined more

fulsomely in the context of additional real-world factors.

In the data we examined, which includes a sampling of

measures and metrics from a variety of fields both within and

outside of epidemiology, it was not uncommon for several of

factors of interest to exert influences on, and also be influenced

by, one ormore of the others. Policy responses, for example, may

reflect many different phenomena, from political inclinations to

simple resource availability to the timing of the spread of the

pandemic to more remote regions. Resource availability may in

turn suggest variations in access to acute medical care. And so

on, since variations in baseline health, variations in nutriture

and food security, and many other factors are often intertwined

and self-reinforcing.

We argue that understanding the “causal” factors that

drive variable COVID-19 cause-specificmortality andmorbidity

counts around the world (however these are measured and

wherever those tallies conclude), requires careful consideration

of not just one or two prominent predictor covariates (such

as obesity or hypertension) in isolation, but rather the analysis
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of constellations of covariates and interactions both within the

health domain and from (nominally) exogenous sources such as

economics, public policy and civil engineering.

In this article, we offer a preliminary perspective on

such pandemic research. Our objective is to demonstrate,

through examples, that a “view from altitude” that considers

an inventory of domain specific covariates, and employs

both traditional statistical methods and more flexible machine

learning techniques, can provide a much richer perspective

on COVID-19 outcomes that is also less prone to error. In

contrast, it can highlight that the data may not be sufficient to

support an hypothesis or assertion. Our results suggest caution

in interpreting research that suggests simple, univariate or

linear relationships among the variables studied and COVID-

19 outcomes. We provide examples of a number of potential

concerns in drawing conclusions from cursory analyses of

pandemic data, and explore the implications for achieving a

more reliable and nuanced understanding of cause and effect.

Importantly, in this article, we do not posit any associations

between specific covariates and population outcomes. Rather,

we present several stylized results, based on real data, to

demonstrate the challenges in doing just that, particularly when

the data is observed at the population level.

Methods

Data

In total, we compiled data on 68 nations spanning a range

of geographic regions. We drew on disparate sources (what we

termed base datasets) to compile the data used in this analysis.3

In all cases, the data was collected from public sources. All of

these sources reported data at the domicile (country) level.

To form a common data set (the composite data set),

we integrated data from these different sources, many of

which used bespoke naming conventions, terminology, binning

units of analysis, and aggregation methodologies over different,

sometimes overlapping, time periods. In addition, because some

of the data items (e.g., the policy response of a particular

country at a particular time) were textual in nature, we

developed a number of internal conventions for mapping

text descriptions to consistent discrete labels. We also created

mappings between analogous categories in different data sets

(e.g., for covariates tied to age groups, where age groups might

be defined differently).

The base data sets fell loosely into six broad categories:

• Epidemiological outcomes;

• Health and lifestyle behaviors and markers;

3 We are grateful to Natalie Nordenfelt for extensive support in

gathering our data from disparate sources.

• Measures of national-level economic activity;

• Demographic information relating to each country’s

population composition;

• Proxies for the robustness of each country’s national

infrastructure; and

• Indicators of national policy responses to COVID-

19 along a number of dimensions (travel,

gatherings, etc.).

The final composite data set included data on: COVID-19

case- and cause-specific mortality-rates; population-level

health statistics (obesity, hypertension, etc.); national economic

indicators (unemployment, median income, etc.); demographic

information including population density (age cohorts, etc.);

proxies for national- and health-infrastructure and connectivity

(hospital beds per capita, life expectancy, international

travel, etc.).

We augmented these with information on national policy

measures, which we coded to create consistent labels. These

additional fields included coded data on the speed and stringency

of various national pandemic response policies, including

those relating to: COVID-19 testing; contact tracing; travel

restrictions; social gathering restrictions; workplace closure

mandates; school closure mandates; and shelter in place/stay

home orders.

Details on the sources and conventions we used in

assembling our dataset can be found in Appendix D of the online

supplemental information.4

Statistical analysis

The primary analytical tools we applied in this research

were common statistical routines (i.e., OLS, hypothesis tests,

etc.); and basic so-called “machine learning” tools [i.e., CART,

a prototypical recursive partitioning algorithm, described

in (18)]. These tools are readily available in both open

source and commercial software packages. We performed our

analysis using the R platform (19) and the rpart package

(20).

It is notable that in each of their domains, OLS and CART

are among the most widely known and widely used algorithms

for estimating multivariate models from empirical data. One

reason for this is that they are also representative of the simplest

approaches in their respective classes.

Our objective was not to build the best predictive models, or

for that matter, to build even good predictive models, but rather

to try to describe relationships among the various candidate

factors in our study.

4 Briefly, depending on the informationwewere seeking, we drew from:

(7–17), and the associated datasets.

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1010011
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Stein and Katz 10.3389/fpubh.2022.1010011

Alternative models and covariates would likely yield

different results than those we show, and more sophisticated

analytical approaches would similarly produce different results.

Some of the effects we report could well be diminished,

though others might be amplified. But the two methods we

have selected are often used “out of the box” in a large

proportion of the published literature on the causes of COVID-

19 health outcomes. More specifically, the marginal value of

more sophisticated model forms is unclear, given the issues in

data that we describe.5

We do not describe either approach in detail, though most

readers will be familiar with OLS [a detailed treatment may be

found in (22, 23); or other standard texts].

However, some readers may not be as familiar with CART,

a class of statistical estimation techniques called recursive

partitioning algorithms. Briefly, this type of algorithm produces

a tree structure that has been optimized (based on a given

objective function) to ensure that each conditional split in the

tree results in the maximum amount of differentiation between

the original data and the two subsets resulting from splitting

the original data. A tree structure is obtained by recursively

splitting the data, starting with the full data set, and then splitting

each resulting subset, and then splitting each of those, until

some stopping criterion has been met. Those readers seeking

additional technical detail on the CART algorithm may find

more extensive discussions in e.g., (24–26).

Results/examples

Since our objective is not to construct a theory of

COVID-19 drivers, we will present our results as a series of

examples that illustrate various of the key propositions we hope

to communicate.

“First-order” relationships

Because of its prevalence in the published literature to date,

in the first portion of this study, we focused on the relationship

between national obesity rates and COVID-19 cause-specific

mortality rates for 68 countries, first independently of other

covariates, and then jointly with them.

Example 2: Obesity vs. COVID-19 cause-specific

mortality (cont.)

We explore in more detail the point made in the

introduction: that there are often more complex

interactions among, and stratifications within, the

5 See the Discussion section and references therein. For amore general

pedagogical perspective, see, Hand (21).

relationship between obesity rate and other common

national-level health measures.

Figure 1A plots national obesity rates against COVID-

19 cause-specific mortality rates, for 68 countries. The

line line represents a linear mapping, which is the result

of estimating an additive model using OLS. From this

linear perspective, the relationship looks fairly strong and

monotonic.

But note that in the very highest obesity rate regions of the

plot (i.e., 30% obesity and higher), all empirical data points

are consistently much lower than the expected (predicted)

values of COVID-19 deaths, implied by the linear model.

Furthermore, the fit of the linear model for cases in which

the obesity rate is between 20 and 30% seems to be very far

from many of the real observations.

Now consider Figure 1B, where we show a non-linear

relationship from a model estimated using loess (solid line),

a form of non-linear local regression (27), along with the

linear model’s estimates (dashed line). The loess fit suggests

a more nuanced relationship between obesity and COVID-

19 deaths. This relationship appears to be neither linear

nor monotonic. For low obesity rate countries, those with

obesity rates of 15% or lower, the non-linear model agrees

directionally with the linear model, suggesting a positive

relationship between obesity and cause-specific mortality.

However, this model also suggests the opposite relationship

for high obesity countries (as obesity rises, the associated

cause-specific mortality rates decrease).6

This example highlights the one of the challenges in

finding “simple” explanations for the dynamics of COVID-

19 cause-specific mortality rates. Furthermore, while COVID-

19 outcomes do seemingly vary in tandem with biological

markers, such as obesity rate, outcomes also appear to vary, at

the population level, with other non-biological factors such as

infrastructure; demographics; and policy responses.

Example 3: Interactions among obesity, life-expectancy

and hypertension. Figure 2 shows the joint association,

by country, of three factors: obesity rate, median age, and

rate of hypertension. The same relationships are shown

from four different perspectives. Each point represents one

country’s data, and the size of each point is proportional to

a country’s COVID-19 death toll/100K.

From the figure, it is clear that there is substantial structure

in the data and that there may be strong relationships

among these three factors. Furthermore, there may well be

potential causality and/or conditionality effects. However,

6 We also note, however, that while the loess fit is better for the high

obesity rate cases, it does only marginally better on the 20–30% cases

than did the linear model.
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FIGURE 1

Exhibits for examples 1 and 4: The relationships between obesity rate and other measures of interest. [top left] (A) example 1, a (linear)

relationship between obesity rate and national-level COVID-19 cause-specific mortality rates, [top right] (B) example 2, a (non-linear)

relationship between obesity rate and national-level COVID-19 cause-specific mortality rates, [bottom left, right] (C,D) example 4, timing of

COVID-19 policy response speed for those countries with low vs. obesity.

because the factors shown in Figure 3 are all health-

related, a tendency among some authors is to frame

these relationships representing a common directional

consistency among these coarse measures of overall health,

and to thus select the measure most useful for expository

purposes, e.g., obesity.

Of course, covariance does not preclude causal influence,

and might instead indicate a multiplicity of causal pathways,

both direct and indirect. There are many reasons, as noted

throughout this paper, that obesity is quite plausibly linked to

adverse COVID outcomes, which would suggest an ostensibly

“direct” path of causality. Obesity is also a risk factor for

hypertension (28). To the extent hypertension exacerbates

COVID outcomes, and to the extent obesity and hypertension

overlap at the population level, the two “risk factors” may

each exert both independent and inter-dependent influences on

outcomes. These, in turn, are further complicated by treatment

responses, themselves affected by factors of resource availability.

Obesity-associated hypertension may either be well controlled,

or poorly controlled, depending on to social and economic

factors rather than biological ones.

To accommodate this observation, and as the

current pandemic has highlighted, the potential for

causality/conditionality attribution extends beyond overlapping

health markers.

In the next several examples, we extend this approach to

also consider markers from other domains. Unsurprisingly,

in these settings, COVID-19 outcomes are also associated

with differences in policy interventions, economics and

infrastructure, and demographics, at the country level.

Example 4: The relationship between obesity and

pandemic policy timing

Consider Figures 1C,D, which bring into relief the

marked differences in policy response timing among those

countries with lower obesity rates and those with higher

rates. Each bar represents the percentage of countries in

the sample that began the respective pandemic intervention

policy before a COVID-19 case was determined.
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FIGURE 2

The relationship between obesity rate, Life expectancy, and national hypertension rate (size proportional to COVID-19 deaths/100K).

This analysis suggests that a country that could plausibly be

considered to have a lower obesity rate was 1.6 times more

likely to have started COVID-19 testing before observing

its first COVID-19 case; and about twice as likely to have

implemented some form of social distancing policy within

7 days of the first case being observed.

One can imagine a number of reasons for this discrepancy.

For example, if lower obesity-rate countries were clustered

in geographies far removed from the initial outbreak

of the pandemic, these countries may have had more

lead-time to devise and plan a response. Or, it might

be the case that lower-obesity rate countries are less

densely populated, which could curtail transmission; or

that those countries have smaller populations, making the

rollout of health policy easier; or one or more entirely

different explanations.

Example 4 demonstrates a key point: from the data given it

is difficult to state convincingly whether (a) COVID-19 death

rates are primarily driven by (or even necessarily related to)

either policy or obesity, (b) they are driven by both jointly, or

(c) they are driven by some third latent factor. Said differently, if

we wish to assert that a country’s national-obesity rate is a driver

of COVID-19 cause-specific mortality based on a univariate

analysis, we should also be willing to accept that countries with

low obesity rates were more vigilant than those with higher

obesity rates, even though the risks to the population is believed

to be higher in more obese nations.7

7 Thus, for example, this would undermine, to some extent, an

argument that: high-obesity lead to higher COVID-19 cause-specific

mortality, which then lead to quicker pandemic policy response.
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FIGURE 3

(Top row) Relationships between COVID-19 deaths/100K and: Obesity rate, life expectancy, median income and median age. (Bottom Row)

bivariate relationships, size proportional to COVID-19 deaths/100K.

We may further pursue this line of inquiry across other

domains as well.

Example 5: Obesity Rate, Life Expectancy, Median

Income and Median Age

In Figure 3, we plot a number of relationships

between COVID cause-specific mortality and

other factors. The top of Figure 3 shows the

relationships between a country’s COVID-19 cause-

specific mortality rate and several demographic and

economic factors, along with a linear model fit to

the data.

Taken as a whole, each of the four plots in the top

row of the figure suggest a linear relationship between

COVID-19 death rates and the second factor, even

though the factors are generally from quite different data

generating processes (health, health-demographics,

and economics). In addition, it appears that the

general pattern of the scatterplots is similar across

covariates (with the possible exception of that for

median income).

The second row of Figure 3 examines combinations of

the factors in the first row in a bivariate context, and

scales each point so that it’s size is proportional to the

COVID-19 death rate for a country. Note how the point

FIGURE 4

Univariate tree model the relationship between lead-time to the

implementation of a national testing policy, given obesity rate.

sizes (COVID-19 cause-specific mortality rates) are often

mixed for the same value of a factor. For example, a

number of the smallest points (relatively low COVID-

19 cause-specific mortality rates) are associated with the

highest levels of obesity. These plots suggest again that in

general, each of the factors may be associated, but perhaps

not linearly.8

8 We present the estimates of series of nested linear models in

Supplementary Table 1 of supplemental information.
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Higher-order relationships

Given the many possible interactions and candidate

explanatory variables, we found it useful to “scan” for

interactions and conditional behavior using tree-based models

estimated using CART.

To fix ideas, Figure 4 shows a very simple tree that provides

similar insight into the relationship between policy response

speed and a country’s national obesity rate as was also shown in 2.

Thismodel uses the obesity rate directly to estimate the lead-time

between the start of a specific policy, and the first COVID-19

case identified in that country. Thus, positive numbers imply

that the policy was started after the first case was identified, while

negative numbers imply the policy was started before the first

case was identified.

This tree suggests that

• When the obesity rate for a country is below 25% (left

branch), the country implemented a national testing policy,

on average, about 9 days before the first local case was

observed; this “low-obesity” group represented about 66%

of all countries in the data.

• When the obesity rate for a country is > 25% (right

branch), the country typically began COVID-19 testing

seven days after the first case was observed.

Thus, these results conform, in direction, with those

observed earlier.

We now move on to more complex examples involving

interactions and relationships.

Example 6: COVID-19 Cause-specific mortality and

multiple health factors

We fit a tree-based model using only the covariates in the

health marker group to estimate COVID-19 cause-specific

mortality, by country. The resulting tree-basedmodel (after

pruning) is shown in Figure 5.

The analysis suggests that the lowest cause-specific mortality

rates occurred in countries with obesity rates that were

either below 18% or above 28.9%. This is consistent with the

loess analysis presented earlier.

If we ignore the rightmost node, which represents only a

small number of countries, the highest cause-specific mortality

rates are observed for countries in which:

• The obesity rate is intermediate (between 18 and 28.9%)

• The senior populations tend to be smaller as a proportion of

total population

• The annual per capita meat consumption is less than about

100kg/person, and

• The hypertension rate is relatively high.

One can imagine exploring whether this clustering might

be related to overall low nutritional quality, to the degree of

development, etc.

Note that if obesity were truly a linear, isolated (i.e., the

only) “cause” of adverse COVID-19 outcomes, then the rate of

COVID-19 cause-specific mortality would generally be expected

to rise with the rates of obesity in a linear, consistent, dose-

responsive manner.

Interestingly about 20% of all countries reported relatively

high obesity rates, but fairly low rates of hypertension. These

countries experienced low COVID-19 cause-specific mortality

rates despite high obesity. These interactions suggest a number

of areas of research on these joint behaviors and/or markers.

In Appendices B,C (supplemental information) we provide

additional examples that examine policy responses and national

demographics, respectively.

Example 7: COVID-19 and a cross section of

multidisciplinary markers

After completing single domain analyses, we examined the

impact of including a sampling of covariates from each of

the domains in a single, multidisciplinary model (Figure 6).

In this analysis, similar good outcomes (i.e., low rates of

COVID-19 cause-specific mortality per 100K) and bad

outcomes (i.e., high rates of COVID-19 cause-specific

mortality) can be observed along diverse branches of the

tree, highlighting the confounding and interactions among

the variables and their underlying drivers.

Discussion

Among the salient pandemic findings to date,

cardiometabolic disease and obesity have emerged as

strong predictors of adverse outcomes, along with age

at an individual level. At a population level, however,

the influence of obesity and cardiometabolic disease

appear to vary with factors in other domains, notably

local economics, national demographics, public policies,

and politics.

We assembled a database containing a selection of such

covariates that not only spanned reporting domains, but that

also spanned populations around the globe. We analyzed

this data using linear and non-linear regression techniques

and recursive partitioning algorithms, in order to enumerate

associations both among independent covariates and COVID-

19 outcomes, and among the independent covariates themselves.

We found that the apparent “explanations” for COVID-19

cause-specific mortality rates across countries shifted with

respect to a complex array of covariate interactions, and that

simple explanations remain stubbornly elusive.
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FIGURE 5

Tree model fit using only health-related markers as covariates and COVID-19 cause-specific mortality (deaths / 100K) by country as the target.

Variables in final model: rt_obesity, national obesity rate; ann_meat_consump_kg, average number of kilograms of meat consumed per capita;

pct_sr_citz, percentage of population classified as senior citizens; rt_hypertension, percentage of population classified as having hypertension.

Our methods and findings suggest that a full understanding

of the toll of the COVID-19 pandemic, necessary to prepare and

defend better against similar future events, requires an analysis

both within and among diverse covariate domains, and within

and among diverse populations. Fundamentally, hypothesis

testing related to pandemic outcomes must be attentive to

covariate interactions, and respectful of epidemiologic context.

Of note, obesity tracks with indigence in affluent countries and

with affluence in indigent countries, and thus might covary

with factors that increase, or decrease, vulnerability to adverse

COVID outcomes (e.g., access to clinical care).

Related studies have attempted to explore potential causes

that may have impacted the rates of COVID-19 cases and/or

cause-specific mortality in a country, such as the association

between COVID-19 deaths and prevalence of obesity in a

population [e.g., (29)]. However, these studies remain mostly

anecdotal and often ignore both the statistical limitations of the

data and analysis, as well as other potential explanations (beyond

linear or univariate relationships), that might more realistically

describe the data, given the confounding of the other factors.

Our goal in compiling our dataset was not to assert a

causal relationship between a specific (single) covariate and

COVID-19 prevalence and cause-specific mortality. Rather, we

have attempted to examine the possible interconnectedness of

multiple covariates and their associations with the prevalence

of COVID-19 in a country and to demonstrate why testing

hypotheses about these relationships using aggregate data can be

fraught. Indeed, the very presence of confounding factors often

made it particularly difficult to interpret uni- and multivariate

analytical results from even simple linear models (such as those

estimated with OLS).

Implications

Taken in full, our analysis has a number of implications

for advancing the understanding of the COVID-19 pandemic

and its aftermath, as well as for epidemiological research

more broadly.
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FIGURE 6

COVID-19 cause-specific mortality (deaths/100K) in association with a variety of factors from di�erent domains. Variables in final model:

rt_obesity = national obesity rate, ann_meat_consump_kg = average number of kilograms of meat consumed per capita soc_gath = social

gathering policy n_population = population of country, idx_agglomeration_50K, agglomeration index (59K). Social gathering policy key; fst, fast;

slw, slow; vslw, very slow; t, tight policy, m, moderately tight policy, l, loose policy; nn, no policy.

The analysis reveals that teasing out the apparent influence

of even the most salient predictor covariates, especially at the

population rather than individual level, can be challenging due

to the influence of and interactions among many of these, which

can vary dramatically with context.

Specifically, at the population level, the impact of obesity

and cardiometabolic disease on COVID-19 cause-specific

mortality rates can plausibly vary with economic development

and robustness; demographics such as age distributions; the

robustness and sufficiency of national infrastructure and

resources; access to acute medical care; and political and policy

structures and approaches.9

9 We are expressly not making any assertions about the relationship

between, e.g., national infrastructure and COVID-19 cause-specific

mortality (though this is also evident in some cases). Rather our analysis

suggests that these relationships themselves aremediated by covariations

and interactions among many of the factors we examined.

Indeed, even the sign of the effect of a covariate may

change in different settings for structural (rather than

numerical stability) reasons. While there appears to be

evidence of a positive relationship at the population

level between obesity rates and COVID-19 cause-specific

mortality in affluent countries, the opposite appears to

be true for populations that are less affluent. Thus, the

answer to the question of whether obesity is associated with

an increased COVID-19 cause-specific mortality rates is,

“It depends.”

Importantly, the implication of this view is not that a reliable

understanding of the pandemic is unobtainable. Rather, this

analysis highlights the importance of thoughtfully structuring

and integrating potential markers from a range of domains,

and candidate explanations, before drawing firm conclusions

about the drivers of outcomes in the COVID-19 pandemic. By

construction, this requires that researchers remain skeptical of

simple explanations, based on aggregate data.
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Caveats

The quality of the reported data on which we based our

examples and analysis, and the protocols by which it was

collected and verified varied greatly. We have deliberately

demurred any discussions of the impact of data collection

practices, reporting, variable definitions, coding and other

variance increasing features of the data itself, and how it is

transformed, though these issues are important and can critically

affect inference10 [e.g., (30)].

We also emphasize that, consistent or not, the data

underling our analyses are reported at the population

level. Such population-level data are essential for

establishing major pandemic patterns, and for evaluating

population-level interventions (such as government policies

and mandates).

However, in most cases it is not appropriate to generalize

population-level analysis to individuals, since effects estimated

at a population can be misleading when applied to individuals.

(e.g., It would be wrong to conclude from Example 3 that

very obese individuals tend to experience lower individual

COVID cause-specific mortality and morbidity than those who

are moderately obese). Such generalizations are prone to what

is commonly termed the ecological fallacy [see, for example,

(31–37)]. Ecological inference problems can arise both due

to numerical issues (e.g., Jensen’s Inequality), and/or due to

statistical issues (e.g., Simpson’s Paradox).

For concreteness, we showed examples in which, a

population may have a high obesity prevalence and a

low COVID-19 casualty toll, which may (or may not)

occur because that high prevalence occurs in conjunction

with individual resource repletion, a robust medical

care infrastructure, etc. This can be unbundled by

further partitioning.

However, ultimately, we often wish to understand

how an individual’s weight, access to capital, education,

etc. affects longer-term health outcomes. This, in general,

can only be understood by modeling individual-level data

(e.g., within a given population with a high prevalence of,

obesity, and a relatively low COVID-19 casualty toll- how

10 For example, in Supplementary Table 1 in the supplemental

information, we carefully chose variables that were fully observed for

all counties (i.e., in each regression, the set of countries was the same).

However, had we elected to include several other of our preferred

covariates, we could easily have produced regressions that were

non-conformable since some of the covariates were not reported for all

68 countries. Had we instead included only those countries for which

all covariates were observed, we would have made the regressions

conformable, but might have systematically excluded those countries

that did not have the resource or infrastructure to collect this data or

which did not collect it for some other reason.

did COVID-19 outcomes vary among individual population

members with respect to their weight or BMI, after controlling

for individual factors of seeming relevance such as education,

income, insurance status, and so forth?).

Conclusion

A full understanding of the associations among the drivers of

differential COVID-19 outcomes at a national level will benefit

greatly from a careful enumeration of candidate factors, an

examination both within and among diverse populations, and

a holistic representation of factors impacting the population

of interest.
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