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Introduction: The COVID-19 pandemic has led to unprecedented social and

mobility restrictions on a global scale. Since its start in the spring of 2020,

numerous scientific papers have been published on the characteristics of the

virus, and the healthcare, economic and social consequences of the pandemic.

However, in-depth analyses of the evolution of single coronavirus outbreaks

have been rarely reported.

Methods: In this paper, we analyze the main properties of all the tracked

COVID-19 outbreaks in the Valencian Region between September and

December of 2020. Our analysis includes the evaluation of the origin, dynamic

evolution, duration, and spatial distribution of the outbreaks.

Results: We find that the duration of the outbreaks follows a power-law

distribution: most outbreaks are controlled within 2 weeks of their onset,

and only a few last more than 2 months. We do not identify any significant

di�erences in the outbreak propertieswith respect to the geographical location

across the entire region. Finally, we also determine the cluster size distribution

of each infection origin through a Bayesian statistical model.

Discussion: We hope that our work will assist in optimizing and planning the

resource assignment for future pandemic tracking e�orts.

KEYWORDS

COVID-19, SARS-CoV-2, epidemiological analysis, cluster, outbreak modeling,

biomedical data science, Bayesian statistical model

1. Introduction

SinceMarch of 2020, the COVID-19 pandemic has put our society under tremendous

pressure on a global scale, revealing vulnerabilities and pre-existing structural limitations

in the public administrations and healthcare systems of most countries in the world.

Unprecedented amounts of socio-sanitary and mobility data were made available to

scientists, government officials, and decision-makers to inform and support their policy-

making efforts (1). However, the quality of this information is generally low since

it is often incomplete, noisy, has been originated by different methods and sources

and is not systematically captured and shared for analysis (2–5). The global impact

of the coronavirus pandemic has induced enormous research efforts by the scientific
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community, leading to hundreds of publications on this matter,

from epidemiological (6–11), Bayesian (12), and machine

learning-based (13, 14) computational models of the spread of

the virus (13, 15–20), to reports of the pandemic’s influence on

the economy and psychology of the population worldwide (21).

Despite this wealth of COVID-19 publications, there are

few reports about the characteristics and evolution of individual

SARS-CoV-2 outbreaks within a wide region over a sustained

time period. Most previous work on infection clusters has

analyzed the evolution and characteristics of a single COVID-

19 cluster within a social group (22–26). However, pandemic

control efforts entail the early detection and modeling of

the spread of the virus in all detected outbreaks, with the

goal of isolating all infectious individuals and hence avoiding

community transmission. Note that in the control phase of the

pandemic, super-spreading events are of critical importance,

since they might lead to community transmission.

In this paper, we focus on analyzing the origin, duration,

spatial distribution, and temporal evolution of all tracked

COVID-19 outbreaks in the Valencian Community of Spain for

a period of 16 weeks between September 15th and December

29th, 2020. To the best of our knowledge, this is the longest study

of SARS-CoV-2 outbreaks to date. The main research questions

(RQ) that we address in our work are:

(1) RQ1:What is the dynamic evolution and duration of all the

tracked COVID-19 outbreaks within the Valencian Region

of Spain?;

(2) RQ2:What is the predominant origin of such outbreaks?;

(3) RQ3: Are there any differences in the outbreak

characteristics among the 24 health departments in

the region?;

(4) RQ4: What mathematical function best describes the

relationship between the outbreak duration and frequency?

(5) RQ5: Can the cluster size distribution of each infection

origin be modeled?

The paper is structured as follows: Next, we summarize the

most related previous work. Section 2 describes the data used to

model the COVID-19 outbreaks. The main results of our work

are presented in Section 3, followed by our conclusions and lines

of future research.

1.1. Related work

In this section, we describe the most relevant published

works that study the evolution of individual COVID-19

outbreaks within a region or country.

Several contributions describe the number of cumulative

cases of COVID-19 outbreaks resulting from the celebration of

public events, such as religious gatherings (27), or outbreaks

tracked in nursing homes (28). Other scientific works address

multiple infection sources, such as in the workplace, leisure,

educational and sanitary centers (29). For example, in Lakha

et al. (30), most of the identified outbreaks started in workplaces,

educational centers, and healthcare facilities, whereas the

number of primary infections having a social origin was small.

Additionally, the clusters’ size and their relationship with

mortality rates in hospitals and other facilities in Japan have been

analyzed in (31). In (32), the authors present the basic statistics

of outbreaks in aged care facilities from North America, Europe,

China, and Australia. An assessment of the cluster network

of COVID-19 cases in Singapore up to March 2020 can be

found in (33), where the authors report cluster sizes of fewer

of four individuals in most of the cases. In (34), the authors

outline the evolution of the emergence of COVID-19 infection

clusters in Switzerland. They study the cluster duration and the

viral load of the infected individuals. A systematic review of

65 articles conducted in (35) presents the outbreak size and

origin of infection during the early stages of the pandemic

in 2020 worldwide and highlights the importance of cluster

transmission. In particular, most of the transmission chains

had a familial origin, and their size was smaller than 10 cases,

whereas the largest outbreak corresponded to a mass gathering

in South Korea involving 112 people.

Some published works detail the size distribution of

individual clusters at local, regional and even national levels.

However, some of these contributions present aggregated data

(36) that are only segmented by the infection origin but are, in

reality, a collection of multiple clusters. Other research teams

perform individual cluster analyses, but the number of reported

clusters is rather small, being in the range of 10 to 200 clusters

in any published study (37–40). Thus, these publications rarely

describe large clusters, i.e., with more than four positive cases,

and little information is provided on longer chains. However,

large infection clusters and superspreading events have been

argued to play a crucial role in the transmission of SARS-CoV-

2 (29).

The overall duration of individual transmission chains in a

small number of outbreaks is reported in a few publications (34,

39, 41) without presenting, however, the temporal evolution of

the clusters. This lack of temporal outbreak data hinders a deeper

understanding of the dynamics of the virus spread in the early

stages of the outbreak before community transmission takes

place. In addition, we only found comprehensive data describing

how new cases appear within the same cluster for very specific

groups, that is, for single clusters within a region. However, no

work describes the temporal evolution of thousands of clusters,

assessing their geographical and social context.

Mathematical tools can shed light on the intrinsic
characteristics and dynamics of COVID-19 outbreaks. Several

mechanistic models studying outbreak dynamics were already

available before the COVID-19 pandemic, such as theoretical

work based on stochastic Markov chain modeling for isolated

populations (42). New models have been formulated and

validated thanks to the availability of data during the current

coronavirus pandemic. A mathematical model has been used

to support the claim that outbreak clusters originating within
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schools in Canada could lead to average cluster sizes of more

than 20 people if no social distancing measures were taken (37).

The relationship between the distribution of outbreak sizes

and their occurrence has been reported to follow a power-law

distribution in (28, 43). In (44), there is evidence that cluster

size of worldwide reported COVID-19 outbreaks follows a

power law with respect to their rank size. The probability

distribution of COVID-19 outbreak sizes in three Asian

countries (Hong Kong, Japan, and Singapore) has been modeled

as a negative binominal function (45). Similarly, a branching

process model was applied to estimate outbreak size in multiple

countries where the number of secondary transmissions was

assumed to follow a negative-binomial distribution (46). In

this regard, Nande et al. propose an interesting mathematical

model of network transmission among social clusters (47).

They found that the strength of within-household transmission

is a fundamental determinant of the success in curbing the

pandemic. Recent theoretical work has studied the transition

from individual outbreaks to community transmission of the

SARS-CoV-2 virus in Wuhan city during the first 2 months of

2020 (48). COVID-19 outbreak control is part of the widely

adopted Test-Trace-Isolate (TTI) control strategy to avoid

community transmission (49, 50). A comprehensive model on

the effect of TTI on the virus transmission chains was recently

published (51), and an empirical study of the effectiveness

of TTI in Spain and Italy have been reported by De Nadai

et al. (52).

Given all previously reported related work, the main

contributions of this paper are three-fold. First, we study

the main characteristics—namely duration, dynamics, origin

source, and relation with other public health data—of 3,365

individual COVID-19 clusters tracked over 3.5 months in the

Valencian Region of Spain. Second, we assess the mathematical

properties of the cluster size distribution and third, we model

the temporal evolution of the COVID-19 clusters via Bayesian

statistics to better understand their dynamics and if there

are disparities among the COVID-19 outbreaks with different

infection sources.

2. Data and methods

2.1. Data description

The dataset analyzed in this paper consists of the temporal

evolution of 3,365 COVID-19 outbreaks detected in the

Valencian Autonomous Community or Region of Spain during

the period of September 15th till December 29th, 2020. This

region is the fourth most populous autonomous community

in Spain after Andalusia, Catalonia, and Madrid, with more

than five million inhabitants. Its capital, Valencia, is the third-

largest city and metropolitan area in Spain. It is located

along the Mediterranean coast on the East of Spain. .

The Valencian Community consists of three administrative

provinces: Castellón, Valencia, and Alicante. Their official name

in Valencian language is Castelló, València, and Alacant. From a

public health perspective, the Valencian Community is divided

into 24 health departments (HD), which are the geographic

areas served by a major hospital, as displayed in Figure 1. The

distribution of HD by province reads as follows: Castellón (HD1

to HD4), València (HD4 to HD12, HD14, and HD23), and

Alicante (HD13, HD15 to HD22, and HD24). It has to be noted

that HD4 (Sagunt) comprises municipalities of two different

provinces. Clusters of SARS-CoV-2 cases in our analysis involve

a minimum of three cases, including confirmed close contacts

with epidemiological linkage over a limited period of time.

The outbreak dataset comprises 16 weeks of outbreak

information in the three provinces, 24 health departments and

230 municipalities of the region. It classifies the outbreaks

in six different types depending on their origin: educational

center, healthcare center, nursing home, vulnerable collectives

(penitentiary centers and psychiatric hospitals), workplace, and

social origin. The following variables are associated with each

outbreak: outbreak identifier, outbreak origin, detection week,

health department, municipality, province, and the number of

diagnosed and suspected COVID-19 cases each week after the

start of the outbreak.

This dataset was shared with the authors by the Public Policy

and Analysis Directorate within the Presidency of the Valencian

Regional Government, by virtue of a collaboration agreement

between the Valencian Government and the authors in the

context of the Data Science against COVID-19 taskforce which

was established in March of 2020 and where the authors were

members of. All the data is fully anonymized and in compliance

with existing data protection regulations. The data sharing was

approved by the Government’s Data and Privacy Protection

Officer. See also (53) for other studies of COVID-19 pandemic

evolution in the Valencia region of Spain.

Next, we briefly enumerate the non-pharmaceutical

interventions (NPIs) adopted in the Valencian Region during

this period. We indicate the level of intensity of each applied

NPI according to the COVID-19 Government Response Tracker

(54): School closings were required at some educational levels

(level 2 of 3); workplaces were closed for some sectors or

working categories (level 2 of 3); public events were canceled

(level 2 of 2); restrictions on gatherings of 10 people or less were

implemented (level 4 of 4); a recommendation to stay at home

was issued (level 1 of 3); restrictions on internal movements

between regions/cities were deployed (level 1 of 2); and there

was a ban on arrivals for international travelers from some

regions in the world (level 3 of 4).

2.2. Data analysis methods

We first pre-processed the data to amend typographic

mistakes and other sources of noise. For example, the number

of new positive and suspected cases was wrongly annotated as
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FIGURE 1

Health departments in the Valencian Region of Spain. Each province is depicted with a thicker contour and labeled.

the cumulative number was provided instead of the new positive

and suspected cases.We transformed the three location variables

(health department, municipality, province) and the outbreak

origin into factors. We excluded the outbreaks labeled with the

origin “other”, which corresponded to 22 outbreaks of the total

number of 3,387.

Mean (standard deviation) and median (1st, 3rd quartile)

values are reported in the case of numerical variables and

relative and absolute frequencies in the case of categorical

ones. We complement these basic figures with a variety of

descriptive graphs, such as boxplots and scatterplots. The

geospatial distribution of the outbreaks is depicted in choropleth

maps of the Valencian Community. Statistical modeling of the

evolution in number of cases of the outbreaks is performed using

Bayesian negative binomial models with a monotonic effect for

the week variable. Ourmodels include each specific outbreak as a

random factor with both a random intercept and a random slope

for the week variable. The monotonic effect for the week variable

is parameterized as introduced by (55), following Equation (1)

which sets the linear predictor term of each observation as:

ηn = bD

xn∑

i=1

ζi (1)

where parameter ζi is a simplex (each value lies between

zero and one and all sum to one), D is the number of unique

values of the predictor minus one and b takes any real value

and sets the global scale of the effect of the predictor on the

response variable. x is the monotonic predictor (week) with n

different observations. This method was proposed for modeling

ordinal predictors in situations where their effects are assumed

to be monotonic. Such models prevent an incorrect treatment

of ordinal variables as nominal and avoid to overestimate

the information provided by the variables. In the case of

the COVID-19 pandemic, they have been used to estimate

unreported COVID-19 deaths in the United States (56) and to

measure the impact of COVID-19 vaccine misinformation on

vaccination campaigns in the United Kingdom and the United

States, too (57).

We provide 95% credible intervals for the estimate of

each of the fitted models. Models were internally validated

by computing the mean estimated Root-Mean-Square Error

(RMSE) value using 10-fold cross-validation. All statistical

analyses have been performed using R (version 4.0.1) and the

brms (version 2.16.3) and clickR (version 0.8.0) R packages.

3. Results

In this section, we describe the main results of our analysis.

We first present a general descriptive analysis of the data,

followed by a temporal and spatial description of the outbreaks
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TABLE 1 Descriptive statistics of the outbreaks per origin of the infection.

Education center
(N = 285)

Health center
(N = 81)

Nursing home
(N = 165)

Vulnerable c.
(N = 16)

Work-related
(N = 557)

Social origin
(N = 2,261)

Total
(N = 3,365)

Positive cases

Mean (SD) 5.80 (3.99) 6.69 (5.42) 13.9 (17.4) 8.75 (8.52) 6.32 (6.80) 5.65 (3.33) 6.22 (5.95)

Median [Min, Max] 4 [3, 38] 5 [3, 34] 7 [3, 103] 5.5 [3, 33] 5 [3, 114] 5 [3, 49] 5 [3, 114]

Suspected cases

Mean (SD) 15.8 (15.3) 17.3 (25.3) 13.0 (21.1) 18.1 (27.0) 15.0 (27.5) 13.8 (15.5) 14.2 (18.7)

Median [Min, Max] 12 [3, 133] 10 [3, 156] 7 [3, 209] 6.5 [3, 105] 10 [3, 560] 10 [3, 243] 10 [3, 560]

N, number of cases; SD, Standard deviation; Min, minimum; Max, maximum.

to address RQ1 to RQ3. Next, we tackle RQ4 and RQ5 and

model the characteristics of the outbreaks to shed light on

their growth and the role that they play in the evolution of

the pandemic.

3.1. Descriptive analysis

We analyze 3,365 tracked COVID-19 outbreaks in the

Valencian Community of Spain. Table 1 depicts the basic

statistics of the number of positive and suspected cases for each

type of outbreak by origin of the infection. First, the distribution

of the total number of cases per outbreak has a mean and

a median value of 6 and 5 cases, respectively. Moreover, the

maximum number of confirmed coronavirus cases in a single

outbreak is 114 positive cases. Outbreaks originating in nursing

homes had a notably larger size than any other type of outbreak:

a mean of 13.9 and a median value of seven cases. Interestingly,

this type of outbreak only represents 4.9% of the total number

(165/3,365) but contributes with 11.0% of all the outbreak-

related cases. This figure can be obtained by dividing the number

of detected cases in the outbreaks of a given infection origin,

i.e., nursing homes, by the total number of reported cases within

all outbreaks. Education-related outbreaks have a median size of

four cases, whereas the median of the other types of outbreaks is

five individuals. Note that schools, high schools and universities

were open in the region during the entire period of study, with

in-classroom teaching in schools and high-schools, and hybrid

(online plus in-classroom) teaching in universities. Suspected

cases are also reported in Table 1, being the mean value very

similar in outbreaks from all infection sources.

A heatmap visualization of the distribution of weekly new

positive cases per outbreak is shown in Figure 2. Note how

most outbreaks report cases during the first week in which they

appear. We also observe an increase in outbreak detection on

the sixth week of analysis, corresponding to the beginning of

November. From that moment onwards, the number of newly

identified outbreaks remains approximately constant. Most of

the outbreaks report new cases in the initial 2 weeks after the first

case has been identified, whereas less than 20 outbreaks display

new cases over a period of at least 6 weeks.

FIGURE 2

Heatmap of the weekly evolution of new positive cases within

each outbreak in natural logarithmic scale. The horizontal axis

indicates the evolution within the period of study in weeks. The

vertical axis represents the order of appearance of each

outbreak. Thus, each row displays an outbreak, while each

column corresponds to the new cases reported in that outbreak

in each of the following weeks (period of 16 weeks from

September 15th till December 29th).

Geographically, almost two-thirds of the outbreaks (65%)

were detected in the province of Valencia, 25% in the province

of Alicante and roughly 10% in the province of Castellón. Note

that the relative population size of these provinces is: Valencia

(51%), Alicante (38%), and Castellón (11%). Thus, there was a

larger presence of outbreaks in the province of Valencia than

what one would have expected given its population. Figure 3

depicts a map of the Valencian Community with the number

of outbreaks per capita in each municipality (Figure 3A) and in

each health department (Figure 3B) during the period of study.

The areas without any confirmed coronavirus infections

correspond to sparsely populated, rural municipalities in the

interior of the Valencian Region. This is not surprising since

most of these villages and small towns are located within

forestry and hilly areas. The municipalities with the largest
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FIGURE 3

Number of outbreaks per thousand inhabitants. (A) Number of outbreaks per municipality. Municipalities without recorded outbreaks are

displayed with gray color. Each province is outlined with a black contour. (B) Number of outbreaks per health department.

number of outbreaks per capita correspond to the three

largest metropolitan areas in the region, namely Castellón

(39◦59’N 0◦2’W), Valencia (39◦28’N 0◦22’W), and Alicante-

Elche (38◦20’N 0◦29’W and 38◦16’N 0◦42’W, resp.). In general,

more outbreaks are reported in the coastal areas than in the

interior regions (Figure 3), probably due to larger population

densities and tourism.

Remarkably, the number of outbreaks ranges between 0 and

2.5 clusters per thousand inhabitants. In addition, the median

outbreak size in each HD ranged between 4 and 6 confirmed

cases, except for the HD 19, Alicante, with a median value of

7 positive cases (data not shown). Moreover, there were no

relevant differences among the health departments regarding the

number and distribution of positive cases (data not shown).

With respect to age, the SARS-CoV-2 virus is more likely to

severely impact the elderly and individuals with compromised

immune systems. Therefore, we analyzed the relationship

between the percentage of elderly population (aged 65+ years

old) in each province and the number of outbreaks per capita.

As shown in Figure 4A, the distribution of elderly population

in the region is quite homogeneous, independently of the

municipality’s size. Thus, this factor does not seem to have been

a decisive variable to determine the number of outbreaks per

capita. In Figure 4B, we observe that the larger the population

of a municipality, the lower the percentage of tracked cases.

Only in very small villages, more than 50% of the total cases

were tracked. In large urban areas, healthcare resources and

social conditions tend to be more homogeneous. Alternatively,

small towns can be found in very different geographical

environments when compared to large cities, i.e., coastal vs. rural

regions. These geographic differences could impact the outbreak

detection capabilities.

We also studied the relationship between the number of

COVID-19 cases linked to outbreaks and all reported positive

cases for each municipality in the Valencian Region. This

relationship captures the mean coverage of confirmed cases

of the outbreak tracking system with respect to all detected

cases for each municipality (Figure 4B). There are no significant

differences among the provinces, with larger cities having lower

detection ratios than smaller municipalities. Intuitively, the

larger the population in a municipality, the lower the coverage

of the outbreak tracking system, converging to values close to

15% for the largest cities. This is probably due to a saturation of

the contract tracing systems in suchmunicipalities, as it has been

previously reported (52).

3.2. Temporal analysis

The temporal evolution of the type of origin of the

COVID-19 outbreaks is shown in Figure 5. In our analysis, the

proportion of newly confirmed cases for each infection source

remains approximately constant during the assessed period.

The most important source of infection is the social origin,

with around 67% of all confirmed outbreaks. The distribution

of the remaining outbreaks per type of origin is as follows:
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FIGURE 4

(A) Relationship between the number of outbreaks per capita (in logarithmic scale) and the percentage of population above 65 years old in each

municipality. (B) Relationship between the ratio of confirmed cases within tracked outbreaks and the total number of confirmed COVID-19

cases in each municipality. Dot size and dot color correspond to the municipality population and province, respectively.

FIGURE 5

Distribution of the type of origin of the analyzed COVID-19

outbreaks throughout the period of study (16 weeks from

September 15th till December 29th).

work-related (17%), educational center (8%), nursing home

(5%), health center (2%), and vulnerable collectives (0.5%).

Remarkably, few outbreaks were detected in healthcare facilities

and nursing homes during the period of study, yet with a large

number of infections, as previously described.

Figure 6 shows the temporal evolution of the total number

of COVID-19 cases linked to an outbreak detected by the

tracking system vs. the overall number of confirmed infections.

We see that the number of cases linked to surveyed outbreaks

accounts for less than 20% of the total number of cases,

decreasing as the weeks progress. Note that the Valencian

Community faced a second wave of COVID-19 infections in

the Fall of 2020, followed by a severe third wave of infections

FIGURE 6

Temporal evolution of the proportion of confirmed cases linked

to an outbreak vs. the total number of confirmed COVID-19

infections and its linear trend.

after Christmas of 2020. The outbreak tracking system’s

coverage shows a slightly decreasing trend, with a coverage

ratio fluctuating between 15 and 25% of the total number of

detected cases. These figures are aligned with those reported in

De Nadai et al. (52).

3.3. Outbreak modeling

In this section, we first study the relationship between the

number of outbreaks and their duration. The latter is defined as

the period of time (in weeks) between the outbreak identification
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FIGURE 7

Relationship between the outbreak duration in weeks and the number of reported outbreaks (both in logarithmic scale). The 95% confidence

interval around the linear regression line is shown with gray color. For the vulnerable collectives, no interval is shown as only two data points are

available.

and closure. This means between the week an outbreak is first

identified and that when no additional cases have been reported

for that outbreak. When this happens, the outbreak is labeled

as closed.

Interestingly, we find that this relationship follows a power

law: most outbreaks last less than 2 weeks before they are

controlled, whereas a few last for more than 2 months before

they are fully contained (data not shown). Such pattern has

been previously reported in (58–61). The estimate of the

power law exponent is −3.4, and the adjusted R2-value for

the linearized logarithmic values is close to 98%, indicating a

strong power-law relationship between the duration and the

number of outbreaks. The exponent is lower than −3, which

is the lowest expected exponent in many natural and physical

phenomena. This may be due to missing information and to the

fact that parts of an outbreak may be reported independently.

When we split the outbreaks by their infection origin, we

also obtain power-law relationships as depicted in Figure 7.

Outbreaks that occurred in healthcare centers and workplaces

are controlled faster than outbreaks of social nature and those

linked to nursing homes. According to our data, the most

difficult outbreaks to control seem to be those detected in

nursing homes.

Finally, we model the evolution of the outbreak cases

for each infection source using a Bayesian negative binomial

function with monotonic effects. The main statistics of each

obtained distribution and the parameters of the model are

shown in Tables 2, 3, respectively. The aim of this model

is to predict the evolution of new cases within a detected

outbreak and the corresponding credible interval. As shown in

the Figure 8, all outbreak types display a common two-stage

evolution pattern, with a sharp increase in the number of cases

during the first 2 weeks followed by a stabilization with zero or

negligible growth. The estimated total number of cases is the

largest for outbreaks detected in nursing homes, as expected.

Differences among other origin types are minor, being the health

and educational centers types more prone to larger infection

clusters. It is noteworthy that after the sharp increase of cases

during the first weeks, the model predicts that the outbreaks

will be controlled (hence, the small slope in the graph). We

observe an apparent reactivation of each outbreak type, with the

exception of those of social origin, in the last period (week 12

onwards). This apparent effect is due to the scarcity of data on

outbreaks lasting more than 12 weeks.

However, the modeled interval contains the horizontal trend

without new cases in all outbreak sources. Thus, the outbreaks
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TABLE 2 Main characteristics of the distribution of the expected number of cases for each type of COVID-19 outbreak.

Outbreak type Q1 Median Q3 Mean SD Skewness Kurtosis

Health center 7 9 12 9.7 3.5 0.55 0.55

Nursing home 18 23 28 23.3 7.6 0.68 0.95

Vulnerable collectives 9 12 15 12.4 5.5 1.08 3.1

Educational center 6 8.5 11 8.8 3.3 0.54 0.52

Work-related 5 7 9 7.1 2.7 0.4 0.26

Social origin 4 6 8 6.2 2.5 0.38 0.09

Q1, first quartile of the data distribution; Q3, third quartile; SD, standard deviation.

TABLE 3 Main statistics of the monotonic e�ect model, i.e., a Bayesian negative binomial function with monotonic e�ects applied to each outbreak

origin.

Estimate Std. error Exp (estimate) Lower 95% Upper 95%

Work-related

Intercept −5.778 0.828 0.003 0.000 0.011

Week 0.483 0.052 1.621 1.496 1.828

Educational center

Intercept −5.167 0.808 0.006 0.001 0.020

Week 0.458 0.052 1.581 1.457 1.786

Social origin

Intercept −7.347 0.905 0.001 0.000 0.003

Week 0.573 0.057 1.773 1.628 2.020

Health center

Intercept −3.606 0.712 0.027 0.005 0.085

Week 0.366 0.045 1.443 1.341 1.599

Vulnerable collectives

Intercept −1.705 0.666 0.182 0.041 0.541

Week 0.261 0.043 1.298 1.209 1.427

Nursing home

Intercept −4.872 0.820 0.008 0.001 0.028

Week 0.500 0.051 1.649 1.520 1.856

The intercept estimate of infected people (at week 0), the week effect, and their standard deviation and the corresponding 95% credible interval are shown.

can be considered to be fully controlled in the last weeks. For

social-origin and work-related outbreaks, the model seems to

underestimate the number of cases. However, this is not the

case as most of the outbreaks just contain less than 10 people.

Conversely, we do not observe this effect for outbreaks with

vulnerable-collectives and nursing home origins probably due

to a larger variance of the number of cases in the case of

outbreaks with these infection sources. Internal validation of

the models using 10-fold cross-validation yielded the following

RMSE values: 1.83 for the vulnerable collectives model, 1.19 for

the social origin model, 2.78 for the health center model, 3.64 for

the educational center model, 7.58 for the nursing home model,

and 1.25 for the work-related model.

We also estimate the probability distribution of the

cluster size for each infection source using posterior

draws from the posterior predictive distribution of each

model. These distributions are displayed in Figure 9 and a

detailed description of each of them is provided in Table 2.

Outbreaks are expected to present less than 20 cases in

five out of six infection sources, whereas the clusters

reported in nursing homes are larger. According to the

model, outbreaks in nursing homes could reach up to

40 cases.

4. Discussion and conclusions

In this paper, we have analyzed the characteristics

of one of the largest COVID-19 outbreak datasets

containing all the COVID-19 outbreaks reported in

the Valencian Autonomous Community of Spain

over a period of 16 weeks between September and
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FIGURE 8

Conditional e�ect plots of the negative binomial models for the weekly evolution of the number of within-outbreak cases for each infection

source. The number of cases of each outbreak is represented in a logarithmic scale (experimental data, shown as dots). Shadowed in gray, we

depict the range that comprises the 95% credible interval of the expected value by the model, whose parameters are shown in Table 3.

December of 2020, right before the emergence

of the third wave of COVID-19 infections in

January-February 2021.

From our analyses, we draw several insights that could

inform the design of public policies in future waves of

this pandemic.
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FIGURE 9

Probability histogram of expected cases for each type of outbreak origin.

1. Social and workplace infections are key: Concerning

the outbreak origin, most outbreaks are linked to social or

workplace infections, with a contribution of 80% to the overall

identified outbreaks. This is in line with the increased probability

of infection in poorly ventilated indoor environments, especially

inside buildings (62). Moreover, there is a small number of

outbreaks in education centers, that is, not so many scholars

were infected. This finding could be indicative of a successful

deployment of the protocols implemented in education centers.

Note that schools fully reopened in Spain in September of 2020

and were open during the entire period of study. These protocols

entailed wearing facemasks in class, considering each primary

school class as a social bubble, and reducing class sizes to respect

at least 1.5 m distance between students. For those that were not

able to attend in person due to COVID-19 quarantines, classes

could be followed online.

Based on the social nature of most of the COVID-

19 clusters in our dataset, it would seem advisable to

strengthen communication campaigns and public policies

aimed at informing the population about the transmission

dangers of SARS-CoV-2 in social settings. Regarding workplace

outbreaks, the region had well-defined workplace COVID-19

safety regulations. However, given our data, it seems that they

might not have been rigorously complied with.

2. Large metropolitan areas contribute to most outbreaks:

Geographically, the province of Valencia contributed to two-

thirds of the total number of outbreak infections, as it is the

largest, most densely populated metropolitan area in the region.

3. All health departments behaved similarly: We did

not identify any significant differences in the structure and

distribution of the outbreaks across the 24 health departments

in the region. This homogeneity in the nature of outbreaks per

health department is a consequence of the design of such health

departments, covering similar types of populations across the

region. However, the total number of outbreaks per capita was

not homogeneously distributed at the municipality level, such

that the metropolitan areas of the capital cities had a larger

number of outbreaks per capita.

4. Most outbreaks last less than 2 weeks:More than 92% of

the COVID-19 cases linked to outbreaks were controlled within

the first 2 weeks. Remarkably, less than 1% of the outbreaks

lasted for at least 2 months since the first case was detected.

This means that the transmission chains seem to be properly

contained given the adopted measures, e.g., the isolation of the

confirmed cases.We found that the number of outbreaks follows

a power law distribution with respect to their duration.

5. The outbreak dynamics may be mathematically

modeled: We have modeled the outbreaks by means of a

monotonic-effect Bayesian model. Our proposed approach

could be relevant to support the work of contact tracers. The

reproduction number and the efficacy of the contact tracing

efforts will determine the parameters of the model.

Our predictions successfully capture the temporal dynamics

of the six different types of outbreaks depending on their origin.

According to our model, outbreaks linked to nursing homes and

vulnerable collectives are expected to yield the largest number of

confirmed infections and to last longer than outbreaks of other

origins. Our modeling approach could be used to predict the

expected number of cases and duration of new outbreaks, such

as the right resources, e.g., contact tracers, hospital beds, and

healthcare personnel that could be potentially allocated.

Moreover, we believe that the proposed model could be used

to analyze outbreak data for other infectious diseases. However,

the parameters of themodel will depend on the specific virus, the

target population, the applied non-pharmaceutical interventions

and the efficacy of the tracing system. We hope that our analyses

and outbreak models will help public health authorities to better

track positive cases during future pandemics.
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4.1. Limitations

Our work is not exempt from limitations. First,

asymptomatic cases were not detected by the system and

hence not included in our analysis. However, just a weekly

update on the number of new cases is available. Hence, this

weekly input might not provide enough temporal resolution

to observe a smooth evolution of the growth of outbreaks

that last less than 2 weeks. We have also detected noise in

the reporting data: cases might be reported late and not

annotated in the correct infection week. This leads to an

artificial merging of cases from different weeks into a single

data update.

The positive cases linked to outbreaks only account for

20% of the overall confirmed infections in the region, with

a decrease in this ratio as the total number of COVID-

19 cases increased toward the end of our period of study,

when community transmission was a reality. A much higher

ratio of tracked-outbreak cases to the total number of

detected cases could have potentially delayed the start of

community transmission.

Finally, our sample population, culture and behaviors might

differ from those in other geographies and hence should be taken

into consideration when applying our findings to other regions

in the world.
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