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Background:Behavioral inhibition/activation systems (BIS/BAS) and impulsivity

are associated with problematic smartphone use (PSU). However, no studies

to date have explored how the subdomains of BIS/BAS and the dimensions

of impulsivity relate to the components of PSU in a joint framework. This

study aimed to examine the relationships between the three constructs at a

fine-grained level and identify the central nodes and bridge nodes of their

relationships using network analysis.

Methods: A regularized partial correlation network of PSU, BIS/BAS, and

impulsivity communities was estimated to investigate the connections

between variables and determine the expected influence and bridge

expected influence for each variable based on data from 325 Chinese

adults. PSU, BIS/BAS, and impulsivity were assessed using the Smartphone

Application-Based Addiction Scale (SABAS), BIS/BAS scales, and Barratt

Impulsiveness Scale-Version 11 (BIS-11), respectively.

Results: In addition to connections within each community, network

analysis revealed that there were connections between di�erent communities,

especially connections to PSU. I2 “motor impulsivity” was strongly associated

with PSU2 “conflict” and PSU6 “relapse”; BASR “BAS-reward responsiveness”

was strongly associated with PSU5 “withdrawal.” Nodes BASR “BAS-reward

responsiveness” and PSU6 “relapse” were the most central variables, while

nodes BASR “BAS-reward responsiveness” and I2 “motor impulsivity” were the

strongest bridge variables.

Conclusion: The connections between the subdomains of BIS/BAS and the

components of PSU and between the dimensions of impulsivity and the

components of PSU may be particularly important in the development and

maintenance of PSU. The central variables identified here, alongwith the bridge

variables, could be promising and e�ective targets for the prevention and

intervention of PSU.
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Introduction

The number of smartphone users has surged in recent

years because smartphones offer a wide range of functions

such as communication, online education, and entertainment.

Taking the Chinese population as an example, the China

Internet Network Information Center (CNNIC) reported that

1,029 million Chinese people used mobile phones to access the

Internet as of December 2021, accounting for 99.7% of Chinese

netizens (1). According to a report from Pew Research Center,

in 2018, 96% of adults owned a smartphone in South Korea,

which was the highest rate of smartphone ownership among the

39 countries surveyed (2). However, with the rapid growth of

smartphone users, a related issue—problematic smartphone use

(PSU)—has ensued. PSU refers to the compulsive and dependent

use of smartphones, leading to negative consequences or

impaired daily function (3, 4). The PSU has become a public

concern. It has been reported that the median prevalence

of PSU amongst children and young people was 23.3% (5).

Following suggestions by previous researchers, the current study

does not discriminate between PSU and other terms used

to describe excessive smartphone use such as “smartphone

addiction”; these terms are here collectively referred to as PSU

(6, 7). Cumulative evidence indicates that PSU can be related

to physical health problems (e.g., headaches, neck and thumb

pain) (8–10) and psychological problems (e.g., anxiety and

depression, sleep disorders, loneliness, and impulsivity) (11–

15). Given the high prevalence and adverse results related to

PSU, it is of great significance to reveal the pathogenesis of

PSU. According to the Interaction of Person-Affect-Cognition-

Execution (I-PACE) model, individuals’ predisposing variables

(e.g., specific personality trait, neurobiological characteristics,

reduced executive functioning and inhibition control, etc.) make

them more susceptible to developing PSU (16, 17). Importantly,

two candidate transdiagnostic risk factors for PSU are behavioral

inhibition/activation systems and impulsivity.

Gray’s reinforcement sensitivity theory (RST) has often

been used to explain an individual’s predisposition to addictive

behaviors (18–21). RST attempts to illuminate individual

differences in personality traits from the perspective of

neurophysiological mechanisms. It holds that there are two

brain systems that are sensitive to punishment and rewards,

respectively, and control individual behavior: the Behavioral

Inhibition System (BIS) and the Behavioral Activation System

(BAS) (18, 22, 23). The BIS regulates aversive motivation and

is activated by punishment and by the termination of rewards,

inhibiting behavior that may result in negative consequences;

the BAS regulates appetitive motivation and is activated by

rewards and by the termination of punishment, increasing

approach behavior and generating positive emotional feelings

(20, 22, 24, 25). Growing evidence indicates that BIS/BAS can

be associated with addiction or addiction-like behavior, such as

substance use disorder (26, 27), Internet addiction (28, 29), and

Internet gaming disorder (IGD) (20, 30). Additionally, it has

been reported in a prospective study that there are bidirectional

interactions between addiction and BIS/BAS (31). Importantly

for this study, although few related studies have been conducted,

some studies have revealed that BIS/BAS is closely related to

PSU and can be risk factors for PSU (25, 32–34). For example,

a study has found that BIS is significantly associated with

PSU through copula regression analysis (33). Overall, existing

researches establish the close relationships between BIS/BAS

and PSU.

Impulsivity is a multi-dimensional construct involving

actions carried out quickly and without foresight, preferences

for risk taking, failures of inhibitory processes, a lack of

planning, and a tendency to accept small immediate rewards

rather than large delayed rewards and that often results in

undesirable consequences (35–39). Impulsive behavior is not

always maladaptive: for example, functional impulsivity helps

to complete tasks in a limited period of time, and can lead

to good outcomes (36, 40). However, excessive and persistent

impulsivity is a prominent risk factor for addiction (36, 40–42).

It has also been reported that there is a bidirectional relationship

between impulsivity and addictive behavior (43). Impulsivity

is not only an important predictor of substance use disorders

(36, 44, 45) but also a vulnerability factor for non-substance-

related addictive disorders (40, 42, 46). Critical for this study,

prior studies have revealed that impulsivity is one of the most

predictive factors of PSU (3, 25, 40, 41, 47–49). For example,

it has been reported that dysfunctional impulsivity is directly

connected to PSU, and also indirectly connected to PSU through

the mediation of sensation seeking (e.g., thrill and adventure

seeking) through stepwise regression (40). Hence, impulsivity

has tight relationships with PSU; in particular, it is important

for developing, reinforcing, and maintaining the symptoms of

PSU. Furthermore, a close relationship between the BAS of

the BIS/BAS and impulsivity has been shown in substance use

disorders (50, 51).

Prior studies have investigated the relationships between

PSU and the BIS/BAS (25) and between PSU and impulsivity

based on total scores on scales (41, 47, 49). However,

this practice may obscure the variation between individual

psychopathological variables and fail to reveal the relationships

between the variables at a fine-grained level (52, 53). In fact, of

PSU, BIS/BAS, and impulsivity, none are simple unidimensional

constructs. PSU consists of six components according to the

addiction components model, namely salience (preoccupation

with the behavior), mood modification (mood changes brought

about by the behavior), tolerance (increasing engagement in

the behavior over time), withdrawal (negative feelings and

physical symptoms when the behavior is blocked), conflict

(interpersonal and intrapersonal relationship problems because

of the behavior), and relapse (reversion to the behavior after a

period of abstinence) (54, 55). As for BIS/BAS, in addition to BIS,

BAS alone is comprised of three subdomains, including reward
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responsiveness (receptivity to actual or potential rewards), drive

(persistent pursuit of goals), and fun seeking (desire for new

and potentially rewarding experiences) (18, 22). Impulsivity

is composed of three dimensions, including inattention (not

focusing on the task at hand), motor impulsiveness (acting

on the spur of the moment), and lack of planning (not

planning and thinking carefully) (35, 56). Therefore, the single

summative score of BIS/BAS, impulsivity, or PSU is based on

the notion of variable equivalence and masks the heterogeneity

between individual variables, as well as obscure the specific

relationships between variables (57, 58). In order to better

understand the psychopathology behind PSU, BIS/BAS, and

impulsivity at a fine-grained level (especially between PSU and

BIS/BAS and between PSU and impulsivity) and to pinpoint

effective intervention and prevention targets for PSU, studies are

warranted to investigate the relationships among the individual

variables of these constructs.

Network analysis is a new and promising data-driven

approach that can satisfy this requirement. It involves estimating

and visualizing the complex relationships and characteristics of

a system in network form (24, 52, 59). The network can consist

of individual disorder symptoms (52, 59) or non-symptom

factors thatmay contribute to the development andmaintenance

of a disorder, such as psychophysiological variables, cognitive

process, behaviors, or different personality traits (60, 61). From

the perspective of the network theoretical model, psychological

constructs are characterized as networks emerging from the

interactions between different variables (60, 62). Variables,

whether symptoms or non-symptoms, are regarded as the

nodes in the psychopathology network; the partial correlations

between different variables are represented as node-to-node

edges (62, 63).

Network analysis provides further understanding of the

mechanisms underlying the development and maintenance of

disorders (62, 64). This approach also makes it possible to

identify central nodes that greatly affect other nodes across

the whole network, as well as bridge nodes, which connect

with nodes of other network communities (63–65). The

term “community” is used to represent a group of nodes

corresponding to a specific construct based on psychological

theory or clinical criteria rather than based on any network

analytical methods such as community detection (65, 66).

Because central nodes have the greatest influence on the overall

network and bridge nodes are critical to maintaining the co-

occurrence of mental disorders and facilitating the contagion

of one disorder to another, these nodes have been identified

as more effective targets for prevention and treatment than

other nodes (53, 63–65). Network analysis has been used to

investigate three or more co-occurring constructs in a joint

framework, including problematic Internet and smartphone

use, primary emotional systems, and need satisfaction (67), as

well as depressive symptoms, parental stress, and mechanistic

variables (68).

However, to the best of our knowledge, no study has

yet investigated the relationships between PSU, BIS/BAS, and

impulsivity in a joint framework using network analysis. To

fill that research gap, we used a network analysis approach

to examine the interactions between PSU, BIS/BAS, and

impulsivity, especially the relationships between subdomains of

BIS/BAS and components of PSU and between dimensions of

impulsivity and components of PSU. We constructed a PSU-

BIS/BAS-Impulsivity network to explore the links among the

three communities. We also calculated the expected influence

(EI) and bridge expected influence (BEI) of each of the

network’s nodes to identify central nodes that maintain the

whole network and bridge nodes that contribute to the co-

occurrence of these constructs. Based on previous studies that

BIS/BAS and impulsivity are vulnerability factors of PSU, we

hypothesized that subdomains of BIS/BAS and dimensions of

impulsivity both exist connections to components of PSU in

addition to edges within each community. We also hypothesized

that there exist influential nodes in this network that play

important roles in the development and maintenance of PSU.

In this study, we aimed to advance our understanding of

the psychopathological pathways leading from BIS/BAS and

impulsivity to PSU, and to determine effective prevention and

therapeutic targets for PSU. Considering that no published

studies have investigated the relationships between PSU,

BIS/BAS, and impulsivity using network analysis, our work is

largely exploratory.

Methods

Participants

This study was cross-sectional and conducted in China

from 27 April 2022 to 16 May 2022. The current study

used an online survey hosted on the Wenjuanxing platform

(www.wjx.cn), which has been used successfully in previous

studies (24, 69). The first part of the survey included the

anonymity statement and informed consent form. Participants

all gave their informed consent and were allowed to exit the

study at any time; they were also encouraged to give honest

responses to the survey. A total of 343 participants were

recruited through convenience sampling based on WeChat.

The inclusion criteria were: (1) healthy adults (aged 18

years or above); (2) college students (undergraduates, masters,

or doctors); (3) consent to participate in the study. The

exclusion criteria were: (1) a history of organic brain damage

or mental disorders; (2) the time used to complete the

survey was <100 s, indicating indiscriminate response without

consideration. The final sample consisted of 325 participants.

The study was reviewed and approved by the Medical

Ethics Committee of Tangdu Hospital of the Fourth Military

Medical University.
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Measures

In addition to demographic variables such as age, gender,

and education, participants were asked to complete scales in

the online survey assessing PSU, behavioral inhibition/activation

systems (BIS/BAS), and impulsivity.

Problematic smartphone use

PSU was measured using the Chinese version of the

Smartphone Application-Based Addiction Scale (SABAS) (70–

72). The scale consists of 6 items, with each scored from 1 =

strongly disagree to 6 = strongly agree; a higher score indicates

a higher level of severity of PSU. The 6 items correspond

one-to-one to the 6 core criteria of the components model

of addiction, namely salience, conflict, mood modification,

tolerance, withdrawal, and relapse (54, 55). The Cronbach’s α

coefficient for this scale was 0.83 in our sample.

Behavioral inhibition/activation systems

BIS/BAS was measured using the Chinese version of the

BIS/BAS scales (22, 73). The scale has 18 items in total (items

1 and 18 deleted) that are rated on a 4-point Likert-type scale

ranging from 1 = strongly agree to 4 = strongly disagree (32, 51,

73, 74). The scale includes one subscale assessing BIS (5 items)

and 3 subscales assessing BAS (13 items): reward responsiveness

(BASR, 4 items), drive (BASD, 4 items), and fun seeking (BASF,

5 items). The Cronbach’s α coefficient was 0.82 for BIS, 0.87 for

BAS, 0.78 for BASR, 0.75 for BASD, and 0.65 for BASF in the

current study.

Impulsivity

The valid Chinese version of the Barratt Impulsiveness

Scale-Version 11 (BIS-11) was used to assess impulsivity (56, 75).

This scale has been widely used in previous studies (76–78).

The scale consists of 30 items and can be separated into three

dimensions (each with 10 items), namely motor impulsivity,

attentional impulsivity, and non-planning impulsivity. Each

item is scored from 1 = never to 5 = always; however,

the items of the non-planning and attentional impulsivity

dimensions are inversely scored (75). The scores for each

dimension and the BIS-11 all range from 0 to 100 after

being converted (75). The higher the score, the higher the

impulsivity. The internal consistency of the BIS-11 in this study

was fairly good; the Cronbach’s α coefficients of the motor

impulsivity dimension, attentional impulsivity dimension, and

non-planning impulsivity dimension were 0.86, 0.89, and

0.83, respectively.

Analytical procedure

SPSS 26.0 and RStudio software (version 4.1.1) were used

to analyze the data. SPSS 26.0 was first used to calculate

descriptive metrics and Cronbach’s α coefficients. Following

previous studies (53, 79, 80), the informativeness of each variable

was estimated viamean of standard deviation. RStudio was then

used to perform network analysis.

We estimated the structure of the networks in the current

study via Gaussian graphical model (GGM) (81), namely the

network structure of PSU components, BIS/BAS subdomains,

and impulsivity dimensions (PSU-BIS/BAS-Impulsivity

network). Within a GGM, edges are undirected and represent

the partial correlation between two nodes after controlling

for all remaining nodes. As recommended by a previous

study (82), the estimation of network structure was based on

Spearman correlations. Moreover, in order to regularize the

GGM, we employed the graphical least absolute shrinkage

and selection operator (LASSO) method (83). By shrinking

all edges and punishing the edges of trivially small partial

correlation coefficients to zero, this regularization process

helps to remove spurious edges and to obtain a more stable,

sparse, and easy-to-interpret network (82, 83). Furthermore,

the hyperparameter of the Extended Bayesian Information

Criterion (EBIC) was set to 0.5 to determine the optimal

network model (82, 84, 85). The network layout was visualized

using the Fruchterman-Reingold algorithm (86). In this part

of the analytical procedure, we constructed and visualized the

network structure using R-package qgraph (87).

Both the traditional centrality and bridge centrality

measures were reported as raw values. We calculated EI, which

was used in this study as the traditional centrality index, using

R-package qgraph (87). EI is a more suitable than other node

centrality measures for evaluating the centrality of each node

and determining central nodes in a network with both negative

and positive associations (88). EI is defined as the sum of

all the edge weights connecting to a given node. A higher

EI indicates a more important and influential node in the

network. Moreover, to identify bridge nodes in the network that

connect different communities or disorders (e.g., PSU, BIS/BAS,

and impulsivity), BEI was computed as the bridge centrality

indicator using R-package networktools (65). BEI refers to

the sum of the edge weights connecting a specific node with

nodes in the other communities; a higher BEI value represents

a higher likelihood of contagion between communities (65).

In our study, we defined three communities in the network

in advance: we set the six components of PSU to form one

community, the four subdomains of BIS/BAS to constitute the

second community, and the three impulsivity dimensions to

form the third community.

We used R-package bootnet to evaluate the robustness

and accuracy of the PSU-BIS/BAS-Impulsivity network (86).

First, to assess the stability of centrality measures, including
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TABLE 1 Abbreviations, mean scores, standard deviations, skewness,

and kurtosis for the study variables.

Variables Abb M SD Skewness Kurtosis

Problematic smartphone use

Salience PSU1 3.73 1.31 −0.39 −0.64

Conflict PSU2 2.77 1.35 0.40 −0.77

Mood modification PSU3 3.79 1.29 −0.48 −0.45

Tolerance PSU4 3.43 1.23 0.04 −0.56

Withdrawal PSU5 3.00 1.29 0.23 −0.60

Relapse PSU6 3.10 1.22 0.10 −0.65

Behavioral

inhibition/activation

systems

BIS BIS 10.03 2.70 0.19 0.18

BAS-reward responsiveness BASR 6.99 2.18 0.65 0.65

BAS-drive BASD 8.04 2.07 0.21 0.70

BAS-fun seeking BASF 10.12 2.28 0.26 0.43

Impulsivity

Non-planning impulsivity I1 37.54 16.24 0.36 1.07

Motor impulsivity I2 36.97 14.54 0.07 −0.07

Attentional impulsivity I3 37.46 12.72 0.66 3.07

Abb, abbreviation; M, mean; SD, standard deviation; PSU, problematic smartphone use;

BIS, behavioral inhibition system; BAS, behavioral activation system.

node EI and node BEI, we calculated the correlation stability

(CS) coefficient using a case-dropping bootstrap approach

(1,000 bootstrap samples). The CS coefficient indicates sufficient

stability if it is above at least 0.25 (an acceptable value), and

preferably >0.5 (86). Second, we examined the accuracy of

edge weights with a non-parametric bootstrap method (1,000

bootstrap samples) to compute the 95% confidence interval.

A narrower 95% confidence interval indicates a more reliable

network (80, 89). Finally, we applied bootstrapped difference

tests (1,000 bootstrap samples) to evaluate differences in the

centrality indices and edge weights.

Results

Descriptive statistics

Themean age of the participants was 21.49 years (SD= 3.73,

range = 18–36 years). All participants had received a college

education or above. There was an approximately equal gender

distribution; 54.8% of the participants were female (n = 178),

and males made up 45.2% (n = 147). The participants reported

that they spent an average time of 6.62 h (SD = 3.59) on their

smartphones per day. Abbreviations, mean scores, standard

deviations, skewness, and kurtosis for each variable of the three

constructs are shown in Table 1.

Network analysis

The level of variable informativeness was checked. No

variable was found to be poorly informative, namely 2.5 SD

below the mean level of informativeness (M± SD= 1.28± 0.05,

2.31± 0.28, and 14.50± 1.76 for PSU, BIS/BAS, and impulsivity,

respectively). Figure 1 shows the PSU-BIS/BAS-Impulsivity

network. In the network with 13 nodes, 52 out of the 78 edges

were non-zero, including 14 negative edges and 38 positive

edges. The six strongest, positive edges in the final network

were identified. Within the PSU community, the two strongest

edges were between the nodes PSU1 “salience” and PSU3 “mood

modification” (weight = 0.34) and between PSU4 “tolerance”

and PSU6 “relapse” (weight = 0.46). Within the BIS/BAS

community, the three strongest edges were the edges between

the nodes BASD “BAS-drive” and BASF “BAS-fun seeking,”

between BASR “BAS-reward responsiveness” and BASF “BAS-

fun seeking,” and between BASR “BAS-reward responsiveness”

and BASD “BAS-drive” (weight = 0.37, 0.33, 0.32, respectively).

Within the impulsivity community, a particularly strong

positive edge occurred between nodes I1 “non-planning

impulsivity” and I3 “attentional impulsivity” (weight = 0.63).

The cross-community edges were weaker than the within-

community edges. Nevertheless, some relatively strong edges

were identified. I2 “motor impulsivity” was positively associated

with PSU2 “conflict” (weight = 0.19) and PSU6 “relapse”

(weight = 0.09). BASR “BAS-reward responsiveness” was

positively associated with PSU5 “withdrawal” (weight = 0.1).

In addition to associations with PSU, some dimensions of

impulsivity were positively correlated with subdomains of

BIS/BAS. I1 “non-planning impulsivity” was linked to BASD

“BAS-drive” (weight = 0.16). I2 “motor impulsivity” was linked

to BASR “BAS-reward responsiveness” (weight= 0.16). All edge

weights of the PSU-BIS/BAS-Impulsivity network can be seen

in Supplementary Table 1. The bootstrapped 95% confidence

interval for estimated edge weights is narrow, indicating

that the edges were estimated accurately and reliably (see

Supplementary Figure 1). The bootstrapped difference test for

edge weights is shown in Supplementary Figure 2, revealing that

the weights of the six strongest edges were significantly higher

than∼84–100% of the weights of other edges.

The results of the traditional centrality index (i.e., EI)

are shown in Figure 2A. The nodes BASR “BAS-reward

responsiveness” (EI = 1.22) and PSU6 “relapse” (EI = 1.13)

exhibited extremely high EI, marking them as the most central

nodes in the network. BIS had the lowest EI and was thus the

least central node (EI = 0.17). The CS coefficient for EI was

0.59, exceeding the preferably recommended threshold of 0.5;

therefore, the estimation of node EI had a good level of stability

(see Supplementary Figure 3). The bootstrapped difference test

showed that the EIs of BASR “BAS-reward responsiveness” and

PSU6 “relapse” were significantly higher than ∼75–92% of the

other node EIs; no significant difference was observed in the EIs
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FIGURE 1

Network Structure of PSU, BIS/BAS, and impulsivity variables.

Blue edges represent positive relations, whereas red edges

represent negative relations. Thickness of edge indicates

strength of relationship. The weights of edges are in

Supplementary Table 1. PSU1, salience; PSU2, conflict; PSU3,

mood modification; PSU4, tolerance; PSU5, withdrawal; PSU6,

relapse; BIS, Behavioral Inhibition System; BASR, Behavioral

Activation System-reward responsiveness; BASD, Behavioral

Activation System-drive; BASF, Behavioral Activation System-fun

seeking; I1, non-planning impulsivity; I2, motor impulsivity; I3,

attentional impulsivity.

of these two nodes (see Supplementary Figure 4). To sum up,

compared with other nodes, BASR “BAS-reward responsiveness”

and PSU6 “relapse” were the most important and influential

nodes in the network.

The BEI for each node in the network is shown in

Figure 2B. Two bridge nodes exhibited the highest BEI values.

One was node BASR “BAS-reward responsiveness” (BEI = 0.3)

in the BIS/BAS community; the other was node I2 “motor

impulsivity” (BEI = 0.4) in the impulsivity community. The CS

coefficient of node BEI was 0.52, indicating that the estimation

of BEI was adequately stable (see Supplementary Figure 5).

The bootstrapped difference test showed that the BEIs of I2

“motor impulsivity” and BASR “BAS-reward responsiveness”

were significantly higher than about 42–67% of the BEIs of

the other nodes (see Supplementary Figure 6). Bridge centrality

emphasizes the importance of I2 “motor impulsivity” and BASR

“BAS-reward responsiveness,” which had enormous influence on

the interactions between different communities.

Discussion

To the best of our knowledge, this is the first study to use

network analysis to investigate the relationships between PSU,

BIS/BAS, and impulsivity. Based on this approach, this study

developed a complex network consisting of three communities:

the symptoms of PSU, the subdomains of BIS/BAS, and the

dimensions of impulsivity. The strongest edges were observed

within each community and there were some relatively weak

edges connecting variables between the communities. These

results suggest that individual variables of BIS/BAS and

impulsivity are linked to specific pathways to develop and

maintain PSU. The current study also explored the central

nodes and bridge nodes that played important roles in this

PSU-BIS/BAS-Impulsivity network. The perspective of network

analysis helps to better understand how the dimensions of

impulsivity and the subdomains of BIS/BAS are linked to

the components of PSU and revealed effective targets for the

prevention and treatment of PSU.

This study revealed that the strongest edges appeared within

the communities rather than connecting different communities.

This is consistent with prior studies that have shown that the

strongest edges exist within each community when detecting

relationships between variables in a network consisting of

two or more communities (24, 53, 63, 90–93). For the PSU

community, the two strongest positive edges were between PSU1

“salience” and PSU3 “mood modification” and between PSU4

“tolerance” and PSU6 “relapse”; this has also been found in a

prior network research (24). The three strongest edges found

within the BIS/BAS community are similar to the results found

by other studies using network analysis (94). They were between

BASD “BAS-drive” and BASF “BAS-fun seeking,” between BASR

“BAS-reward responsiveness” and BASF “BAS-fun seeking,” and

between BASR “BAS-reward responsiveness” and BASD “BAS-

drive.” For the impulsivity community, the strongest edge

was between I1 “non-planning impulsivity” and I3 “attentional

impulsivity,” which is consistent with prior studies that revealed

a positive correlation between non-planning impulsivity and

attentional impulsivity (95). Additionally, it has been held that

non-planning and attentional impulsivity should be regarded as

forms of cognitive impulsivity, and thus conceptually different

frommotor impulsivity (96, 97). This may account for the strong

relationship observed between non-planning and attentional

impulsivity. Altogether, it is unsurprising that the strongest

edges existed within each community rather than connecting

different communities, because the variables of each community

are sub-components of each psychological construct; these

variables have close interactions with each other from a

theoretical perspective.

In addition to within-community edges, we found that

some variables in the impulsivity and BIS/BAS communities

were associated with components of PSU (i.e., cross-community

edges), which is consistent with our hypothesis. These

findings provide a fine-grained understanding of the links

between BIS/BAS and PSU and between impulsivity and PSU.

For example, I2 “motor impulsivity” had relatively strong

connections with PSU2 “conflict” and PSU6 “relapse,” which

could partly account for why individuals with high impulsivity

are predisposed to developing PSU (25, 41, 47, 49, 98). It

has been reported that response inhibition is closely related to
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FIGURE 2

Centrality plot depicting the expected influence and bridge expected influence of each node in the network (raw value). (A) Expected influence.

(B) Bridge expected influence. PSU1, salience; PSU2, conflict; PSU3, mood modification; PSU4, tolerance; PSU5, withdrawal; PSU6, relapse; BIS,

Behavioral Inhibition System; BASR, Behavioral Activation System-reward responsiveness; BASD, Behavioral Activation System-drive; BASF,

Behavioral Activation System-fun seeking; I1, non-planning impulsivity; I2, motor impulsivity; I3, attentional impulsivity.

motor impulsivity (99–101). Response inhibition (a component

of inhibition control) helps to inhibit impulsive action and to

resist temptations, which facilitates adaptive and goal-directed

behaviors (102–104). Excessive motor impulsivity may lead

to difficulty with response inhibition. Hence, failing to resist

temptations may result in relapse and acting impulsively may

contribute to conflicts with others (24, 105, 106). Another

important edge identified in this study was the positive

connection between BASR “BAS-reward responsiveness” and

PSU5 “withdrawal,” which is similar to the finding that

BASR is a predictor of PSU (25). The current study further

explored the possible path linking BAS and PSU, which lies

in reward responsiveness and withdrawal. However, this result

contradicts a previous study that showed reward responsiveness

to be negatively correlated with Internet addiction (20). This

inconsistency may arise from a difference in samples: the

previous study was based on participants with IGD. IGD can

lead to functional and structural alterations of the brain that

influence reward responsiveness, contributing to differences

from the healthy population (107–110). Since no studies have

investigated the relationships between individual variables of

BIS/BAS or impulsivity and components of PSU, the current

study only provided preliminary insight into an issue certainly

worth further study. In addition to edges linking to PSU,

there were some edges connecting dimensions of impulsivity

and subdomains of BIS/BAS. For example, I1 “non-planning

impulsivity” was associated with BASD “BAS-drive,” and I2

“motor impulsivity” was associated with BASR “BAS-reward

responsiveness.” These findings are in line with the view that

impulsivity is conceptually related to BAS (18, 22, 111, 112).

Prior studies based on measuring scales have also reported that

BAS is associated with impulsivity (51, 113).

Consistent with our hypothesis that there existed influential

nodes (i.e., key central nodes or bridge nodes) in the PSU-

BIS/BAS-Impulsivity network, there were two key central

nodes with the highest EIs (62, 88): BASR “BAS-reward

responsiveness” and PSU6 “relapse.” This result demonstrates

that these two variables have the greatest influence within the

network and may play the most important role in activating

other variables and maintaining the current psychopathological

network. This finding aligns with those of previous studies,

which have shown that BAS-reward responsiveness exhibits

extremely high centrality (24). However, this result differs from

prior studies on the centrality indices for components of PSU;

relapse was identified as the central node in our study, whereas

moodmodification was the most central node in an earlier study
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(24). However, another qualitative examination has revealed

that non-addicted smartphone users and addicted users are not

different in the components of mood modification and relapse,

but are instead different in the other four components of PSU

(114). It would seem that mood modification and relapse may

not be the dominant components in the development of PSU.

Considering that the results of previous studies are inconsistent

and confusing, our study is largely exploratory and more studies

are warranted.

The BEI is used to evaluate the importance of bridge

nodes when analyzing co-occurring constructs (65). Bridge

nodes that connect theoretically independent constructs are

crucial to understanding the development and maintenance of

psychological comorbidities (63, 65). In the current study, I2

“motor impulsivity” and BASR “BAS-reward responsiveness”

were identified as key bridge nodes. What interests us most was

that I2 “motor impulsivity” had the highest BEI value and was

more related to the PSU community than BASR “BAS-reward

responsiveness.” This result suggests that motor impulsivity

has a significant impact on BAS and the development and

maintenance of PSU. These findings echo prior studies that have

reported that impulsivity is closely related to PSU (3, 25, 41, 48,

49). Moreover, these findings also accord with some studies that

have shown that impulsivity is associated with BAS (51, 113).

Our results verify the relationships between impulsivity and PSU

from the perspective of network analysis.

These aforementioned findings have important theoretical

and clinical implications. Regarding the theoretical implications,

this research revealed some edges appeared between BIS/BAS

and PSU and between impulsivity and PSU such as edges

between I2 “motor impulsivity” and PSU2 “conflict” and

between BASR “BAS-reward responsiveness” and PSU5

“withdrawal.” These findings are of importance to figure out

specific role played by different components of BIS/BAS or

impulsivity in the development and maintenance of symptoms

of PSU. In other words, our study shed light on the possible

pathological pathways linking BIS/BAS and impulsivity to

PSU. Regarding the clinical implications, network theory holds

that interventions on critical central nodes may effectively

disrupt the overall network and reduce the severity of the

entire network, facilitating the intervention and treatment

(59, 62, 64, 89). Additionally, targeting key bridge nodes may

disrupt the connection between co-occurring constructs and

reduce the adverse effects of one disorder on others (i.e.,

prevent the contagion of one disorder to others), benefiting

the treatment outcomes (63–65, 115). In this study, preventing

the contagion between communities may decrease the risky

interactions between them that may co-lead to PSU. Regarding

central nodes, we underscore the importance of taking

reward responsiveness and relapse into consideration when

attempting to prevent and treat PSU. As for bridge nodes, future

intervention of PSU should focus on motor impulsivity and

reward responsiveness. Consequently, reward responsiveness of

BIS/BAS, relapse of PSU, and motor impulsivity may be effective

targets for intervention and treatment of PSU.

The current study has provided preliminary insights

into the fine-grained relationships between PSU, BIS/BAS,

and impulsivity. Nonetheless, it has some limitations that

warrant consideration. First, the results were based on data

collected using self-reported scales. Although participants

were encouraged to give honest responses, self-reports may

nonetheless lead to subjective biases and social approval effects

(91, 115). This reminds us to interpret our results cautiously.

Second, the study is cross-sectional and cannot verify the

causality linking the variables. Future studies should examine the

causal relationships using a longitudinal experimental design.

Third, similar to the second limitation, although we identified

the central and bridge nodes that play important roles in

the network and regard them as effective intervention targets

(62, 65), it is necessary to verify using further longitudinal or

experimental studies whether interventions on these variables

will succeed. Fourth, we chose only healthy adults and obtained

the network structure and centrality indices, and thus one

should be cautious when extending the results to clinical

samples. Fifth, similar to fourth limitation, given that this study

used a convenient sampling method and enrolled a relatively

small sample, the findings are specific to the present sample,

and the generalizability of our findings to other populations

needs to be established via replications in other samples. Sixth,

redundant nodes refer to nodes that were highly overlapping

and most likely measure the same underlying variable (116).

Although it is theoretically justified that none of the variables

in our study were redundant (117), it is recommended to

conduct statistical redundancy analysis in such future studies.

Finally, the network and its characteristics in the current

study are specific to the scales we used. We assessed PSU

using the SAMAS, BIS/BAS using the BIS/BAS scales, and

impulsivity using the BIS-11 scale. This means that the current

study did not capture all aspects of these constructs, and only

provided a limited picture of the relationships between BIS/BAS

or impulsivity and PSU. Future studies can consider other

facets of these constructs and integrate them into a unified

framework to investigate how BIS/BAS and impulsivity develop

and maintain PSU.

Conclusions

This study is the first to estimate the network structure of

PSU, BIS/BAS, and impulsivity based on individual variables

and investigate the relationships among these constructs

using network analysis. In addition to connections within

each community, we found some connections between PSU

and BIS/BAS and between PSU and impulsivity. This result

showed that there are psychopathological pathways linking

BIS/BAS and impulsivity with PSU on a fine-grained level.
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This study also identified some variables that are critical to

the development and maintenance of PSU, including the

central nodes BASR “BAS-reward responsiveness” and PSU6

“relapse,” as well as the bridge nodes I2 “motor impulsivity”

and BASR “BAS-reward responsiveness”; these findings

have important clinical implications, providing promising

and effective targets for the prevention and intervention

of PSU.
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