
TYPE Methods

PUBLISHED 25 October 2022

DOI 10.3389/fpubh.2022.1015876

OPEN ACCESS

EDITED BY

Hao Chuangli,

Children’s Hospital of Soochow

University, China

REVIEWED BY

Sadeel Shanshal,

College of Pharmacy, University of

Mosul, Iraq

Yue Li,

Zhejiang Lab, China

*CORRESPONDENCE

Jingjing Chen

joyjchan@gmail.com

Wenlong Xu

wenlongxu@cjlu.edu.cn

SPECIALTY SECTION

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

RECEIVED 10 August 2022

ACCEPTED 30 September 2022

PUBLISHED 25 October 2022

CITATION

Xu W, He G, Pan C, Shen D, Zhang N,

Jiang P, Liu F and Chen J (2022) A

forced cough sound based pulmonary

function assessment method by using

machine learning.

Front. Public Health 10:1015876.

doi: 10.3389/fpubh.2022.1015876

COPYRIGHT

© 2022 Xu, He, Pan, Shen, Zhang,

Jiang, Liu and Chen. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A forced cough sound based
pulmonary function assessment
method by using machine
learning

Wenlong Xu1*, Guoqiang He1, Chen Pan1, Dan Shen2,

Ning Zhang3, Peirong Jiang3, Feng Liu4 and Jingjing Chen5*

1College of Information Engineering, China Jiliang University, Hangzhou, Zhejiang, China, 2The First

A�liated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China, 3Lishui

People’s Hospital, Lishui, Zhejiang, China, 4School of Information Technology and Electrical

Engineering, University of Queensland, Brisbane, QL, Australia, 5Department of Digital Urban

Governance and School of Computer and Computing Science, Zhejiang University City College,

Hangzhou, China

Pulmonary function testing (PFT) has important clinical value for the early

detection of lung diseases, assessment of the disease severity, causes

identification of dyspnea, and monitoring of critical patients. However,

traditional PFT can only be carried out in a hospital environment, and it is

challenging to meet the needs for daily and frequent evaluation of chronic

respiratory diseases. In this study, we propose a novel method for accurately

assessing pulmonary function by analyzing recorded forced cough sounds

by mobile device without time and location restrictions. In the experiment,

309 clips of cough sound segments were separated from 133 patients

who underwent PFT by using Audacity software. There are 247 clips of

training samples and 62 clips of testing samples. Totally 52 features were

extracted from the dataset, and principal component analysis (PCA) was used

for feature reduction. Combined with biological attributes, the normalized

features were regressed by using machine learning models with pulmonary

function parameters (i.e., FEV1, FVC, FEV1/FVC, FEV1%, and FVC%). And

a 5-fold cross-validation was applied to evaluate the performance of the

regression models. As described in the experimental result, the result of

coe�cient of determination (R2) indicates that the support vector regression

(SVR) model performed best in assessing FVC (0.84), FEV1% (0.61), and FVC%

(0.62) among these models. The gradient boosting regression (GBR) model

performs best in evaluating FEV1 (0.86) and FEV1/FVC (0.54). The result

confirmed that the proposed method was capable of accurately assessing

pulmonary function with forced cough sound. Besides, the cough sound

sampling by a smartphone made it possible to conduct sampling and assess

pulmonary function frequently in the home environment.
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Introduction

According to the World Health Organization’s survey on

common respiratory diseases, by 2021, Chronic Obstructive

Pulmonary Disease (COPD) and related diseases caused by air

pollution had caused about 7 million deaths every year. It is

estimated that by 2030, global COPD will become the third

leading cause of death (1). In particular, with a large population,

China is undergoing a considerable burden of respiratory

diseases. Wang et al. reported that in 2018, there were nearly

100 million patients with COPD in China (2), which shows

that respiratory diseases have been widely spread in China.

Pulmonary function testing (PFT) is the gold standard for the

clinical evaluation of respiratory diseases (3). In clinical practice,

PFT can feedback on the abnormal lung status of patients

according to their pulmonary function parameters, which is the

primary approach assisting doctors in diagnosing respiratory

diseases (4). The patient is required to put his/her mouth on the

bite of the spirometer, inhaled as deeply as possible, and then

exhaled hard to expel all the air as quickly as possible to fulfill

the pulmonary ventilation function testing. The patient must

fully complete this process, exert maximum inspiratory and

expiratory force, and repeat this process until three consistent

measurements are obtained (5). According to the patient’s age,

gender, height, and weight, the reference values of 1-s forced

expiratory flow (FEV1), forced vital capacity (FVC), and 1-s

expiratory rate (FEV1/FVC) of each patient are estimated. The

ratios between the final measured pulmonary function value

and the reference of the patient’s, FEV1%, and FVC% are the

indicators of the severity of respiratory disease (6, 7) (Table 1).

FEV1/FVC and FVC% help distinguish obstructive, restrictive,

and normal respiratory patterns. The severity of obstructive

diseases can be determined by FEV1% (8).

High-cost and complex operation procedures prevent the

wide adoption of the traditional PFT method. Pulmonary

function departments are available only in large hospitals.

The PFT is still unreachable in large-scale respiratory disease

screening but is a frequent requirement for chronic respiratory

disease patients (9). The situation is even worse in low-income

areas where chronic respiratory disease is usually more prevalent

TABLE 1 Description of pulmonary function parameters.

Term Description

FEV1 Forced expiratory volume in one second

FVC Forced vital capacity

FEV1/FVC Forced expiratory volume in one second / Total vital capacity

FEV1% Measured FEV1 value / Reference FEV1 value

FVC% Measured FVC value / Reference FVC value

(10). Therefore, new methods, which are easy to use and low-

cost, are urgently expected. A typical process of cough can

be divided into three stages: (1) inhalation, (2) compression,

and (3) exhalation (11). It contains some similar procedures

to pulmonary ventilation function testing. A smartphone can

record cough sounds and transmit the data to the Internet easily.

Such a procedure for data collection is non-invasive, touchless,

and can be completed at home without any professional staff.

The duration of the cough (12) is shorter than that of pulmonary

ventilation function testing, which usually lasts about 6 s (13).

Cough is an important early symptom of respiratory diseases

(14). As a protective physiological reflex action, cough is affected

by acoustic characteristics of airflow, tissue, and the shape of the

lung and airway (15). Due to its unique histology and organ

pathology, different respiratory diseases show characteristic

features in cough. The cough sounds of patients with pneumonia

and asthma were proved to be different (16). However, cough

sounds have not been widely adopted to estimate pulmonary

function. It is promising in discriminating respiratory diseases

in clinical, disease prevention, and control. In this study, we

proposed a novel method for assessing pulmonary function

parameters based on cough sounds collected by mobile devices.

Themajor contributions in this study are summarized as follows.

• We introduced the cough sound to construct a touchless,

non-invasive method to assess pulmonary function

parameters that meet the requirement of daily monitoring

for patients with chronic respiratory diseases.

• We adopted multiple regression models to predict five

pulmonary function parameters, refine the learning process

of pulmonary function parameters, and improve the

prediction accuracy.

• We used 309 clips of cough sounds collected from 133

subjects in the same environment and with homogeneous

criteria. The data of patients with different severity of lung

disease were adopted to improve the generalization ability

of the proposed model.

The structure of this article is organized as follows. In

section related work, we present an overview of related works.

In section materials and methods, we introduce the detailed

process of the proposed method. In section results, we introduce

the experimental results. In section conclusion, we conclude this

study and discuss future research.

Related work

Assessment of pulmonary function based
on sound signals

Sound has been widely used for pulmonary function

assessment recently. Compared with the traditional PFT
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method, the diagnosis and evaluation of respiratory diseases

based on sound signals is not only convenient but also low

cost. Alam et al. (17) developed three prediction models based

on speech and breathing sound signals. Through 323 clips

of speech and breathing sounds of 26 subjects, five features

(spectral contrast, rolling at 95%, root mean square energy,

spectral bandwidth, and average amplitude) were extracted, and

the random forest regressionmodel was used to train and predict

the pulmonary function parameter FEV1%, and it achieved

an RMSE of 10.86 and an MAE of 11.47. A support vector

machine model was used to classify the severity of four kinds

of pulmonary function, and the accuracy was 73.20%, and an

accuracy of 85% was achieved to judge whether the subjects

had abnormal pulmonary function through the random forest

classification model. In addition, Nazir (18) adopted mobile

devices for the diagnosis of chronic respiratory diseases, and 201

subjects were enrolled to collect “A-vowel” sound or “AAAA...”

sound to assess the pulmonary function parameter FEV1/FVC

by using the multi-layer regression model, and it achieved an

MAE of 7.4%. Moreover, keuml (19) used mobile phones to

collect the speech sound signals of 59 subjects and proposed

two algorithms for passive evaluation of pulmonary function:

the first one used a random forest classifier model to distinguish

whether the subjects were healthy or had obstructive respiratory

disease, and obtained an accuracy of 78.6%; the latter one used

the 7-dimension features of speech sounds by neural network

model to assess FEV1/FVC pulmonary function parameters, and

achieved an MAE of 12.5%.

Assessment of pulmonary function based
on cough sounds

Cough is a common symptom in a variety of respiratory

diseases (20). Respiratory diseases that affect the human

body will promote secretion in the airway. As a protective

response, this secretion will cause patients to cough. Clinical

investigation indicates that the severity of cough is an important

indicator to understand the progress of respiratory diseases

(21). The features of cough sound include the description

of the respiratory system. The features extracted by signal

processing technology can be used to establish an effective

disease assessment and diagnostic method. However, compared

with other respiratory disease diagnosis methods based on

sound signals (such as wheezing, speech, and vowels), the use

of cough sound for estimation has not attracted wide attention

yet. Windmon (22) focuses on using cough sound signals to

evaluate and diagnose COPD. By using 13 spectral features

extracted from cough sounds of 23 COPD patients and 16

healthy subjects, the random forest classification model was

used to train these samples and an accuracy of 85.6% was

achieved. Hee (23) tried to establish a classification model

using cough sounds to analyze whether children have asthma.

Mel Frequency Cepstrum Coefficient (MFCC) and Constant-Q

Cepstral Coefficients (CQCC) signal processing techniques were

used to extract the features of 1,192 clips of cough sounds from

89 children with asthma and 1,140 clips of cough sounds from

healthy children. Gaussian mixture model (GMM) classification

was used to train the samples, and the specificity was 82.81% and

the sensitivity was 84.76%.

With the wide adoption of cough sound in the diagnosis

of respiratory diseases, a lot of literature focus on the study

of cough sound on pulmonary function parameters. According

to Achuth (24) study, the cough sound signal can better

predict pulmonary function parameters than the wheeze sound

signal. Cough and wheeze were recorded in 16 healthy people

and 12 patients, and statistical spectrum description (SSD)

was used as the cue. Support vector regression (SVR) was

used to predict FEV1%, FVC%, and FEV1/FVC pulmonary

function parameters, and achieve RMSE of 11.06, 10.3, and

0.08. Moreover, the severity of asthma was also classified and

evaluated, with an accuracy of 77.77%. More subjects were

achieved in Sharan’s (25) study, cough sounds from 322 adults

were collected to estimate FEV1, FVC, and FEV1/FVC with

support vector expression and a random forest model, reaching

RMSE of 0.593, 0.725, and 0.164.

Application of cough sound in the
epidemic period of COVID-19

COVID-19 can be detected by cough sound (26). As

reported byMIT (27), an artificial intelligence speech processing

framework was developed, and COVID-19 was screened from

cough sounds by using the processing feature extractor of

cough sound signal. The convolutional neural network model

was trained by 4,256 subjects’ cough sounds and tested by

1,064 subjects, and the sensitivity and specificity of COVID-19

detected by this model were 98.5 and 94.2%. For the

asymptomatic subjects, the model achieved a sensitivity of 100%

and a specificity of 83.2%.

In addition, cough sounds can also assist in the online

screening of respiratory diseases during the epidemic of

COVID-19. Due to the normalization of COVID-19, doctors’

clinical diagnosis is limited to reducing the spread of the virus.

Therefore, online system assisted with remote diagnosis has

attracted more and more attention. The symptom detection

model for early respiratory diseases will be a solution that

can be implemented on low-power mobile devices to replace

the preliminary screening of health practitioners to reduce the

risk of infection transmission. For example, online medical

consultation methods have emerged based on cough sounds

in recent years. In Nemati’s (28) study, the application in

the mobile phone was used to collect cough sounds, and
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the patient’s current status of pulmonary obstruction disease

was feedback through the Internet. The estimated MAE of

pulmonary obstruction as COPD and asthma were 8 and 9%,

respectively. Kosasih et al. (29) proposed a cough detection

method for multiple respiratory diseases, which analyzes the

sound of cough in an AI model. This method used multiple

classifiers (such as LR, ANN, SVM, and RF), and achieved a

sensitivity of 86%, specificity of 91%, and accuracy of 91%.

Sharma (30) and Chowdhury (31) realized the detection of

subjects’ infection with COVID-19 by recording cough sounds

through mobile phones, and the classification accuracy was

66.74% and the sensitivity was 92.77%.

Materials and methods

The regression model for PFT is detailed in Figure 1. Cough

sound segmentation was handled with Audacity (32) on cough

sound clips sampled by a smartphone. For each single cough

sound, multi-dimensional features were extracted. The features

were optimized using principal component analysis (PCA) (33)

and then normalized through Z-score normalization (34). The

trained result of the five pulmonary function parameters was

used as input in the regression model.

Dataset collection

This study (including the protocols and subject

recruitments) was approved by the human ethics committees

of Lishui people’s Hospital in China. In the experiment, a

total of 133 subjects were recruited to complete the PFT, in

which, the cough sounds were recorded within 10min. The

distribution of subjects and their demographic information are

shown in Table 2. A mobile application developed by China

Jiliang University, paired with a smartphone, HONOR 60, was

used to collect the subject’s cough sounds. The smartphone was

placed ∼40 cm away from the mouth of the subject at an angle

of roughly 45◦. The sounds were recorded under the onsite

instruction. And the sampling frequency was 16,000Hz. Each

subject was instructed to cough at least three times within 30 s,

and the interval between the consecutive coughs was 1 s. It is

emphasized that during the experiment, except for the cough

sound, age, height, weight, and gender of the subjects, this study

did not collect any personal information of the subjects.

The experimental result showed that 69 subjects tested

normal, 29 subjects tested mildly abnormal (including 9

obstructive cases, 5 restricted cases, and 15 mixed cases), 27

subjects tested moderately abnormal (including 7 obstructive

cases and 20 mixed cases), the other 8 subjects tested severely

abnormal (including one obstructive case and 7 mixed cases).

The above assessment results were obtained based on the latest

guidelines for PFTs (35) in 2021. Using Audacity, 309 clips

of single cough sounds with a time duration of 350ms were

extracted from 133 cough sound files. Each cough sound was

annotated with pulmonary function parameters (i.e., FEV1,

FVC, FEV1/FVC, FEV1%, FVC%) and biological attributes (i.e.,

age, sex, height, and weight). The ratio of the training set to the

testing set was 8:2. The 309 clips of cough sounds were randomly

divided into the training set (247) and the testing set (62).

Feature engineering

Feature extraction

In this study, we used a mixture of traditional features

and novel features (36, 37), and features were generated by

using the Librosa toolkit in Python, which was widely used

for acoustic analysis (38). The 52-dimensions features in the

time domain and frequency domain were extracted to map the

relationship between cough features and pulmonary function

parameters. The main features include Mel-frequency cepstral

coefficient (MFCC), zero-crossing rate (ZCR), signal energy,

spectral features (spectral centroid, spectral bandwidth, spectral

roll-off), and calculated hue centroid features. These 52 features

are time and frequency features extracted by the solid sound

signal processing method and this feature was taken due to

its comprehensiveness and paralinguistics (39). The 52 features

used in this article are from Gowrisree’s study, which objectively

describes the primary and secondary characteristics of cough

sound. It also describes the impact of primary and secondary

features of cough sounds on the clinical diagnosis of lung

function. Besides, the 52 features extracted in this article

provide a complete description of the information in the time

domain and frequency domain of the cough sound signal.

We attempted to use these features for fitting the parameters

of lung function. In addition, four biological attributes of

the subjects were also used. This is because the reference

value of pulmonary function parameters was evaluated and

calculated through biological attributes, which could describe

the relationship between cough sound and pulmonary function

parameters through the biological attributes of subjects. Table 3

shows the specific descriptions of the 52 cough-sound features

and 4 biological attributes.

Feature selection

Among 52 cough sound features and 4 biological features,

none has an equivalent value in evaluating pulmonary function

parameters. By PCA, observations of correlated variables were

converted to a set of linearly uncorrelated orthogonal variables,

which were ordered in the way that each orthogonal variable

has the largest possible variance under the constraint of being

orthogonal to all preceding components (40). In this way, the

number of features was reduced while preserving as much
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FIGURE 1

The procedures for assessing pulmonary function parameters.

TABLE 2 Statistical overview of demographic and cough data.

Normal Mildly Moderately Severely Total

Number of subjects 69 29 27 8 133

Number of coughs 170 72 55 12 309

Age in years (SD) 64.41 (16.04) 53.29 (15.81) 70.07 (11.01) 80.38 (6.87) 60.75 (17.51)

Gender (Male/ Female) 43:26 16:13 20:7 7:1 86:47

Height (cm) 162.99 161.03 162.11 163.00 162.38

Weight (kg) 63.65 62.31 70.48 57.13 64.35

TABLE 3 Statistical overview of features.

Features Number Explained in detail

MFCC 1–40 A Mel scale is used to tone the obtained pitch and

frequency to the actual measured frequency.

Zero-crossing

rate

41 Determine the number of times a signal crosses

the zero amplitude line.

RMS 42 The square root of the signal is used to

characterize the energy in the signal.

Spectral

contrast

43–49 The decibel difference between peaks and valleys

in the spectrum.

Spectral

centroid

50 Indicates the center of mass of the spectrum is

located.

Spectral

bandwidth

51 The bandwidth of light is at one-half the peak

maximum.

Spectral

roll-off

52 The frequency below which a specified

percentage of the total spectral energy.

Patient details 53–56 Age, Gender, Height, Weight.

information as possible. More precisely, PCA mapped the high-

dimensional space X = [x1, x2, · · · , xi]
T to a low-dimensional

space Y, and searched a maximum value of linear mapping by

Formula (1) (41).

Y = argmax Tr(WTCov(X)W) (1)

In Formula (1), Cov(X) represents a covariance matrix of the

data X. W represents a transformation matrix of X and WT

represents the transposed matrix of W. Tr(X) denotes the trace

of an n-by-n square matrix of the X. The argmax represents the

maximum value of linear mapping.

Feature normalization

With regard to different scales, features were normalized to

eliminate the influence of scale differences. Formula (2) was

used to scale the values in each feature to a mean of 0 and a

variance of 1.

X(i) =
X(i) − X

σ

(2)

In Formula (2), σ represents the standard deviation of a

feature and X denotes the mean value of a feature.

Regression model and evaluation
indicators

In this study, seven regression models were taken for

performance comparison, including support vector regression

(SVR), random forest regression (RF), Bayesian ridge regression

(BRD), gradient enhanced regression (GBR), ridge regression

(RD), extreme learning machine (ELM), and multi-layer

perceptron (MLP). The parameters of each model were

automatically adjusted using the gray wolf optimization (GWO)

algorithm (42). Five pulmonary function parameters (FEV1,

FVC, FEV1/FVC, FEV1%, and FVC%) were assessed. Each of

these parameters was compared with seven regression models.
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TABLE 4 Performance comparison of seven regression models.

Model Indicators FEV1 FVC FEV1/FVC FEV1% FVC%

SVR RMSE 0.41 0.38 0.11 15.63 11.27

MAE 0.33 0.31 0.09 11.55 8.71

R2 0.82 0.84 0.45 0.61 0.62

RF RMSE 0.35 0.42 0.13 15,10 13.17

MAE 0.28 0.30 0.10 11.67 10.46

R2 0.81 0.81 0.38 0.44 0.42

GBR RMSE 0.38 0.44 0.11 20.42 14.56

MAE 0.27 0.34 0.08 15.49 10.88

R2 0.86 0.81 0.54 0.34 0.37

RD RMSE 0.44 0.49 0.12 18.80 13.49

MAE 0.36 0.41 0.10 15.05 10.61

R2 0.74 0.76 0.26 0.28 0.16

BRD RMSE 0.48 0.54 0.11 17.27 16.77

MAE 0.40 0.43 0.09 13.52 13.50

R2 0.75 0.76 0.29 0.35 0.17

MLP RMSE 0.47 0.48 0.22 25.53 20.61

MAE 0.38 0.39 0.17 20.86 15.87

R2 0.70 0.77 – 1.54 – 0.18 0.25

ELM RMSE 0.54 0.64 0.15 18.70 16.97

MAE 0.42 0.51 0.12 14.52 13.82

R2 0.68 0.58 0.13 0.45 0.15

The values with bold and underline are the best values.

In the training process, 5-fold cross-validation was used to

evaluate the performance of the model. Three indicators were

used to evaluate the accuracy of the regression model, including

root mean square error (RMSE), mean absolute error (MAE),

and coefficient of determination (R2).

RMSE =

√

√

√

√

1

m

m
∑

i=1

(yi− ÿi)

2

(3)

MAE =
1

m

m
∑

i=1

|yi− ÿi| (4)

R2 = 1−

∑

i (ÿi− yi)
2

∑

i (yi− yi)
2

(5)

In Formulas (3), (4), and (5), yi represents the estimated value,

ÿi represents the real value, yi represents the mean of real value,

andm represents the number of samples.

Results

The accuracy of the proposed model with biological

attributes was compared with the result of the same model

without biological attributes. The root mean square error

(RMSE), mean absolute error (MAE), and coefficient of

determination (R2) were taken as evaluation indexes.

Experimental results

As shown in Table 4, the accuracy of seven regressionmodels

in evaluating five pulmonary function parameters with regard

to features of the cough sounds and biological attributes was

listed. Each parameter was analyzed by seven regression models,

and the best-performance model was selected to complete the

evaluation. As illustrated in Table 4, the evaluation of the best-

performance model depended on the effect of the coefficient of

determination (R2).

For the evaluation of FEV1, gradient enhanced regression

(GBR) is the model with the best performance, and its accuracy

is RMSE: 0.38, MAE: 0.27, and R2: 0.85.

For the evaluation of FVC, support vector regression (SVR)

is the model with the best performance, and its accuracy is

RMSE: 0.38, MAE: 0.31, and R2: 0.84.

For the evaluation of FEV1/FVC, gradient enhanced

regression (GBR) is the model with the best performance, and

its accuracy is RMSE: 0.11, MAE: 0.08, and R2: 0.53.

For the evaluation of FEV1%, support vector regression

(SVR) is the model with the best performance, and its model

accuracy is RMSE: 15.63, MAE: 11.55, and R2: 0.61.

For the evaluation of FVC%, support vector regression

(SVR) is the model with the best performance, and its accuracy

is RMSE: 11.27, MAE: 8.71, and R2: 0.62.
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FIGURE 2

The best-performance model evaluated the results of five pulmonary function parameters: (A) Comparison between real value and estimated

value of the best model; (B) Regression diagram of pulmonary function parameters of the best-performance model.
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FIGURE 3

Performance comparison of the model with/without biological attributes through R2.

TABLE 5 Performance comparison of the model with/without biological attributes based on SVR.

Model Indicators FEV1 FVC FEV1/FVC FEV1% FVC%

Model (SVR) with sex, RMSE 0.38 0.38 0.11 15.63 11.27

age, weight & height MAE 0.27 0.31 0.08 11.55 8.71

R2 0.86 0.84 0.54 0.61 0.62

Model (SVR) with sex, RMSE 0.61 0.58 0.11 17.02 13.25

age, weight & height MAE 0.49 0.44 0.09 13.12 10.48

R2 0.59 0.63 0.35 0.54 0.48

The values with bold and underline are the best values.

Figure 2 shows the evaluation results of the best-

performance models of five pulmonary function parameters and

their regression diagrams. Figure 2A compares the estimated

value and the real value of pulmonary function parameters

obtained using the optimal model. Figure 2B shows the

regression diagram and the corresponding test results of the

best model. Besides, the experimental results of the remaining

estimation regression models are shown in Figure 3.

E�ects of biological features

To verify the impact of biological attributes while evaluating

pulmonary function parameters, the evaluation indicators

(with/without biological attributes) based on the SVR model

were compared. The biological attributes include the subjects’

age, sex, weight, and height, which is an important basis for

constituting the reference value of the pulmonary function.

Table 5 shows the impact of biological attributes on

the accuracy of the regression model. The introduction

of biological attributes caused the decrease in RMSE

and MAE. For the regression model with biological

attributes, the improved RMSE for FEV1, FVC, FEV1,

and FVC% were 0.23,0.20,1.39, and 1.98, respectively. The

FEV1/FVC did not decrease, but the MAE was improved by

0.01.

As shown in Figure 3, R2 was significantly improved by

introducing biological attributes. The improvement in R2 for
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FEV1, FVC, FEV1/FVC, FEV1, and FVC% were 0.27, 0.21, 0.19,

0.07, and 0.14, respectively.

Conclusion

In this study, we introduced sound features and biological

attributes to predict the pulmonary function parameters by

using a group of machine learning models. The extracted

features were normalized and dimension reduced by PCA,

and GWO was adopted to adjust the parameters of the

model automatically. An experiment including 133 subjects

was conducted to validate the effectiveness of the proposed

method for PFT. The result showed that the method can

accurately predict pulmonary function. However, there are still

some limitations, which should be further studied in future.

In the proposed model, similar subject cough sounds may

cause a correlation to impact the accuracy of the model. A

better way to integrate all the results from multiple attempts

by the same subject is expected. In addition, this study

was conducted in a controlled environment. It will consider

subject changes to improve the robustness of the model.

In summary, the proposed method can be easily applied in

smartphone, providing a convenient and non-invasive way to

assess pulmonary function.
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