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The aim of the study was to propose and test an integrated model combining

the technology acceptance model (TAM), task-technology fit (TTF), social

motivation, and drone-related perceived risks to explore the intention to

use drones in public health emergencies (PHEs). We conducted a survey

among the Israeli population, yielding a sample of 568 participants. Structural

equation modeling was implemented to test the research hypotheses.

The results showed that our integrated model provided a robust and

comprehensive framework to perform an in-depth investigation of the

factors and mechanisms a�ecting drone acceptance in PHEs. First, ease

of use, attitudes, individual-technology fit, task-technology fit, and social

influence significantly and directly influenced users’ behavioral intention to

utilize drone technology. Second, attitudes were significant mediators of

the e�ects of social influence and perceived risks on the intention to use

drones. Finally, significant relationships between TAM, TTF, social motivation,

and perceived risks were also observed. Theoretical aspects and practical

implications—which can serve as the basis for shaping a positive development

in drone public acceptance in PHEs and in general—are discussed.
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Introduction

The COVID-19 pandemic that erupted in December 2019 led to the emergence of

various technologies worldwide for tackling the virus spread and its health impacts, as

well the social aspects of the pandemic (1). These technologies included, among others,

geospatial technology, artificial intelligence, big data, telemedicine, smart applications,

and robotics (2). Within this context, much attention has been given to drones

(also known as unmanned aerial vehicles). Drones are a type of flying robot, the

specific attributes of which enable performing various actions in a remote manner: an

important feature during a viral pandemic. Drone applications during the COVID-

19 pandemic have been varied and include monitoring, surveillance, delivery, and

increasing awareness (3). The potential benefits of drone use in responding to public

health emergencies (PHEs) such as COVID-19 are well documented; however, the
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technical, security, and privacy risks when using drones in this

context have also been highlighted (4). These risks combined

with the fact that drones are considered a relatively innovative

technology pose a challenge in shaping positive development

in drone public acceptance: a key to the increase of drone

use. In this study we present a comprehensive framework to

investigate drone acceptance in the specific context of a PHE,

by combining two theoretical models for technology acceptance

and utilization—the technology acceptance model (TAM) and

the task-technology fit theory (TTF)—as well as the addition of

context variables. The theoretical background provides a short

overview of drone technology, its applications during PHEs

with a specific focus on the COVID-19 pandemic, as well as

related challenges and risks. Next, we describe the recent insights

related to drone acceptance research and provide theoretical

and empirical justification for the use of TAM and TTF in the

specific context of drone use in PHEs. In the remainder of the

paper we present the research methods used for the current

analysis (including the research model and detail the process

of hypothesis development), and the main findings. In the final

section, we present a discussion of the study’s implications as

well as the conclusions, limitations, and directions for future

research. We conducted a thorough literature review to gain a

comprehensive understanding of the investigated issue. In the

following section we summarize the literature relevant to the

integration of drones in civil usage and specifically in PHEs, to

drone acceptance research, and to the justification of using TAM

and TTF in this specific domain.

Theoretical background

Drone technology usage has increased dramatically in recent

years within a wide range of disciplines. Drones have multiple

applications such as providing real-time data, offering aerial

mailing and delivery solutions, and performing surveillance

tasks (5). All of these make drones a useful and in-demand

technology in both civic domains such as agriculture (6),

commercial industry (7), research (8), medicine and healthcare

(9), disaster management (10), law enforcement (11), as well as

in military use (12).

Notwithstanding the above, the use of drone technology is

known to pose societal challenges and risks related to citizens’

safety, security, and privacy (13). The concerns that have been

raised in these regards range from safety issues related to

technical malfunctions that may lead to property damage or

injury (14, 15); security issues related to intentional misuse

of the technology such as for terrorism purposes, delivering

illicit goods, or delivery theft (16); and privacy issues that

stem from unintentional service disruptions (e.g., delivery to

wrong address) or from intentional privacy invasion (13). In

order to minimize these potential risks, countries worldwide

have established legal frameworks and design standards (17),

and additional technological improvements related to flight

duration, reliability, and ease of use are constantly introduced

(18) in an effort to foster drone applicability and acceptance.

The recent outbreak of the COVID-19 pandemic once

again provoked discussion regarding drone application and

integration in response efforts to large-scale PHEs. A large

number of studies have previously identified the benefits

inherent in incorporating drones in PHE management, both for

(a) short-term events such as natural disasters (19), in which

the main advantages recognized have been related to search

and rescue missions and to delivering humanitarian aid under

extreme conditions of collapsed healthcare and transportation

infrastructures; and (b) for more prolonged situations, the

most recent example of which is, of course, the ongoing

global COVID-19 pandemic. Drones have assisted countries

in different ways to reduce the spread of the virus through

disinfection and screening infection symptoms (20), monitoring

physical distancing during lockdowns (21), delivering medical

supplies (22), and increasing public awareness (23, 24). All of

the above are performed without any person-to-person contact,

reducing the risk of infection.

Notwithstanding the foregoing, other voices have posed

critical questions and emphasized current challenges regarding

various technical, practical, and ethical issues of developing and

deploying drones for the purpose of addressing COVID-19 (25).

For example, a recent study that investigated a drone-based

system for combating the COVID-19 pandemic stressed, among

other things, the technical challenges such as collision avoidance,

the ability of drones to operate in internal spaces (e.g., private

homes) without causing disruptions, and other infrastructure

constraints related to collecting data and providing services

on a large scale (4). The main ethical argument in regard

to drone application during COVID-19 has been the lack of

sufficient consideration given to the consequences for civil

liberties, mainly the right to privacy (26). Another concern

has been the possibility of psychological resistance among

members of the public as a result of the ways in which drones

might be used during the pandemic (27, 28). In this regard, it

should be noted that the deployment of drone-based solutions

in the global north might be quite different from the global

south, due to the different political and socioeconomic features

(26). In a recent report by UNICEF on how drones can be

used to combat COVID-19, it was recommended that local

sensitization of communities and stakeholders be performed

before and during drone program implementation, in order

to raise public awareness about this technology, ultimately

facilitating its acceptance (25). As such, there is a clear need to

conduct research that examines the application and acceptance

of this technology among different populations worldwide and

to chart how individuals engage with the benefits, risks, and uses

of drones in the context of a PHE.

Public acceptance is key to the increase of drone use, both

during routine and emergency times (29). In general, it can be
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argued that although drone technology is not that new, most

of the world’s population is still in a formative phase where

attitudes and perceptions toward the acceptability of drones

are developing and taking shape (16, 30). Previous research

indicated that public willingness to accept drones depended

on the context in which the technology was being used (31).

For example, people’s acceptance of drones was found to be

higher in industrial areas than in residential areas (30) and

in situations perceived as severe such as earthquakes or terror

attacks than in more daily/routine situations (1). As such, one

could speculate that people may be more receptive toward

drones offeringmedical assistance during emergencies than with

drones performing other tasks during ordinary/routine times.

Several studies that explored drone acceptance utilized the

knowledge, attitude, and practice (KAP) model: a widely used

approach for studying human behavior based on the principle

that increasing knowledge will result in changing attitudes

and practices (32). A US-based study applying this approach

found that knowledge about potential uses, perceived risks, and

perceived benefits all had a strong impact on drone acceptance

(33). Conversely, another US-based KAP study reported that

knowledge about drones and their uses did not alter the public’s

perception of them, and the researcher concluded that this

finding was related to the high impact of risks and concerns

related to drones (34). These latter notions were supported by

another study from Singapore that utilized a KAP survey and

found that perceived benefits of and concerns about drones

were responsible for varying levels of acceptance across different

contexts (30). The KAP model has some major weaknesses.

First, it assumes a direct relationship between knowledge and

action, a notion that has gained criticism as well as empirical

evidence that refutes it (35, 36). Second, it does not capture other

external factors that may be involved in the acceptance of new

technologies (37). These factors include, among others, social

motivation, which has been found to have a positive influence

on attitudes which, in turn, affect behavioral intentions in the

context of drone acceptance (38).

In light of the above, we chose to suggest a comprehensive

research framework that includes two of the most frequently

employed models for exploring new technology acceptance

and utilization: the technology acceptance model (TAM) for

adoption and the task-fit technology theory (TTF) for utility.

Additional dimensions of social motivation and drone-related

risks were also incorporated. Previous studies have utilized this

extended framework to explore the intention to use various

technological innovations (39–41), and others have highlighted

its potential benefits in exploring drone acceptance (42).

The technology acceptance model (TAM) is considered the

most established and frequently used model for investigating

factors affecting users’ acceptance of technologies (43). The

TAM is derived from theories in the fields of psychology and

sociology such as the theory of reasonable action (TRA) and

the theory of planned behavior (TPB), which both explain and

predict individual behavior (44). The TAM suggests that the

user’s intention to use a certain technology can be explained

via three main constructs: perceived ease of use, perceived

usefulness, and attitude toward using. According to the model,

the attitude of an individual toward a specific technology is a

major determinant of whether the user will actually use or reject

it. The attitudes of the user are considered to be influenced

by two major beliefs: perceived usefulness and perceived ease

of use, with perceived ease of use having a direct influence

on perceived usefulness (45). The TAM has been applied in

various technological contexts [e.g., (40, 46)]. Nonetheless, the

original model has been criticized for not referring to factors

such as social influence and motivation (43, 44), which have

been documented to be significant antecedents in the process

of technology acceptance (40, 47). For the specific context of

drones, studies have highlighted the significant role of various

social factors in shaping users’ perceptions and their potential

ability to alter technology acceptance (16, 48, 49). Therefore, we

included variables such as social influence, social recognition,

and specific drone-related risks to gain a better understanding

of the facilitators and inhibitors involved in drone acceptance.

In addition, the fit between task and technology, which is absent

from the TAM but is the focus of the TTF, is considered an

important factor in long-term technology utilization. Therefore,

a model combining the TAM and TTF can provide a better

explanation for the variance in user acceptance of technological

innovations (40, 41).

The TTF model focuses on the fit between tasks and

the technologies that are designed to support people in the

performance of them. Both task and technology characteristics

can impact this fit, which consequently determines users’

performance and utilization. The TTF has been applied to a

wide range of technological contexts (50) and has also been

suggested as an important lens through which drone acceptance

and utilization should be viewed (42). However, very little is

known about whether a good task-technology fit would affect

drone public acceptance, and even less is known in the specific

context of a PHE. Like the TAM, the TTF also does not address

social factors, potentially limiting its ability to predict adoption

of technology applied in both private and public spaces (such as

drones). Thus, integrating social factors such as those described

above may help to bypass this limitation.

Materials and methods

Drawing upon the theoretical background of the extended

TAM, the TTF, and social motivations, we have proposed a

research model that aims to identify several factors as predictors

of intention to use drones in the context of a PHE. The interplay

between these factors is depicted in the conceptual model

displayed in Figure 1.
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FIGURE 1

Proposed research model.

The premise here is that intention to use drones is jointly

determined by perceived usefulness and attitudes, which are

functions of perceived ease of use, TTF, perceived risks, and

social motivations. Furthermore, we hypothesized that TTF,

perceived risks, and social motivations might also have direct

associations with the intention to use drones.

Perceived ease of use can be defined as the extent to which a

person believes that using a new technology will be effort-free:

for example, the ease of learning to operate or communicate

with a drone. Previous studies have shown that perceived ease

of use has a positive effect on perceived usefulness in the context

of human-robot cooperation (51) and on attitudes toward using

drones (28). In addition, perceived ease of use was highlighted

as an important factor for drone utilization (5), and it is thus

possible to assume that this construct could directly or indirectly

affect the intention to use drones. We therefore proposed the

following research hypotheses:

H1a: Perceived ease of use would have a positive effect on the

perceived usefulness of drones during a PHE.

H1b: Perceived ease of use would have a positive effect on

attitudes toward using drones during a PHE.

H1c: Perceived ease of use would have a positive effect on

intention to use drones during a PHE.

Perceived usefulness is defined as the extent to which a

person believes that using a particular technology will enhance

their job performance (45). In the context of a PHE this notion

may be related to the perceived ability of a drone to assist in

maintaining health and wellbeing. Perceived usefulness has been

shown to affect both attitudes and intention to use drones for

online order delivery during COVID-19 (28). Thus, we expected

to see such findings replicated in the context of performing

different tasks related to the maintenance of health during

the pandemic:

H1d: Perceived usefulness would have a positive effect on

attitudes toward using drones during a PHE.

H1e: Perceived usefulness would have a positive effect on

intention to use drones during a PHE.
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Attitudes toward using drones in a PHE refers to the extent to

which a person develops positive or negative feelings related to

the drone in this specific context: for example, the belief that

incorporating drones into emergency response efforts is a good

vs. bad idea. Behavioral attitudes toward drones were found to

positively affect the intention to use drones for online order

delivery during COVID-19 (28)—thus, we expected this finding

to be replicated as well:

H1f: Positive attitudes toward using drones would have a

positive effect on intention to use them during a PHE.

Previous studies have established a link between the TTF

and TAMmodels through the effects that the task-technology fit

factors have on the main constructs of the TAM: perceived ease

of use and perceived usefulness (40, 41). Others demonstrated

the direct effect of TTF on intention to use technology (52, 53).

The choice to operate or interact with a drone during a PHE

is intuitively influenced by two technology features: individual-

technology fit (e.g., a person’s belief that they can independently

interact with a drone) as well as task-technology fit (e.g., the

belief that using drones can assist in maintaining health). As

no previous studies have provided empirical evidence for the

association between TTF and TAM factors in the context of

drone use, we proposed the following hypotheses:

H2a: Individual-technology fit would have a positive effect

on the perceived usefulness of drones.

H2b: Individual-technology fit would have a positive effect

on the perceived ease of use of drones.

H2c: Individual-technology fit would have a positive effect

on intention to use drones.

H2d: Task-technology fit would have a positive effect on the

perceived usefulness of drones.

H2e: Task-technology fit would have a positive effect on the

perceived ease of use of drones.

H2f: Task-technology fit would have a positive effect on

intention to use drones.

Drones are an emergent technology, and their uses are

often conducted in public spaces. In the context of PHEs,

drones will most likely operate in the service of health

services or other national institutions. Thus, social motivation

can be conceptualized as the positive recognition of drone-

expected-benefits in healthcare and as the belief that other

people should also accept and trust drones, factors that may

play a central role in individual willingness to adopt and

utilize this technology (54). Social recognition has been shown

to influence the perceived usefulness of new technologies

(40) as well as people’s behavioral intentions (55). However,

the implementation of social recognition in the context of

drones has yet to be explored. Accordingly, we hypothesized

as follows:

H3a: Social recognition would have a positive effect on the

perceived usefulness of drones.

H3b: Social recognition would have a positive effect on

intention to use drones.

An additional conceptualization of social motivation in the

context of drones in PHEs may be related to social influence.

Social influence has been extensively studied in the context of

adopting new technologies. Several studies have demonstrated

its significant role in impacting the perceived usefulness of

new technologies (56); attitudes toward new technologies (57);

and as a predictor of intention to use technologies such as

home healthcare robots (58), and mobile payment (56). In the

context of drones, social influence was investigated in regard

to public perceptions of drone use for food delivery (59).

However, a comprehensive investigation regarding its effect on

other constructs involved in adoption processes has yet to be

performed. Thus, we hypothesized as follows:

H3c: Social influence would have a positive effect on the

perceived usefulness of drones.

H3d: Social influence would have a positive effect on the

attitude toward using drones.

H3e: Social influence would have a positive effect on the

intention to use drones.

Perceived risk is often used as an additional variable in

the TAM (60–62). In the context of drone use in PHEs, we

therefore explored two of the most common drone-related risks:

performance risk (i.e., the possibility that the drone might

physically harm someone while attempting to provide aid) and

privacy risk (i.e., invasion of privacy by a flying drone and the

potential loss of control over personal medical information)

(13). Perceived risks have been found to negatively influence

drone delivery adoption mainly through impacting attitudes

(63), but some evidence also suggests a direct effect on intention

to use with regard to other technologies (64). Accordingly, we

hypothesized as follows:

H4a: Perceived risks about drones would have a negative

effect on attitudes toward using drones.

H4b: Perceived risks about drones would have a negative

effect on intention to use drones.

In this study we employed a cross-sectional design using a

quantitative survey in order to test the hypotheses formulated

in the previous sections. Questionnaire development and data

collection are elaborated upon below.
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Questionnaire development

We used a questionnaire survey consisting of two sections.

The first section included demographic information and an item

that examined familiarity with drones (i.e., do you know what a

drone is?). The second section featured questions measuring the

nine constructs in the researchmodel. Each of the constructs was

measured by multiple-item, self-reported scales (apart from one

construct—individual-technology fit/ITF—which was measured

by a single item), as shown in Appendix A. All items were

measured using a 5-point Likert scale, ranging from 1 (strongly

disagree) to 5 (strongly agree), which is the most frequently used

type of response to measure perceptions and attitudes (65).

Participants and data collection

The data were collected in July 2020 by undertaking a

population survey. A randomized sample of the Israeli adult

population was engaged through an online polling service.

We collaborated with iPanel (66), a survey company with the

largest online panel in the country. It adheres to the rigorous

standards of the European Society for Opinion and Marketing

Research (ESOMAR). Only adults (≥18 years) were eligible to

participate. The survey targeted a specific distribution of age and

gender, broadly reflecting the population of Israel. Overall, 568

valid surveys were returned. The participants’ demographics are

depicted in Table 1.

Data analysis

Data analysis was performed in two steps. First, we

examined the fitness and validity of the model constructs

(67, 68) by assessing reliability (Cronbach’s alpha); convergent

validity (factor loadings, composite reliabilities/CRs, and average

variance extracted/AVE, for each construct); and discriminant

validity (squared root of AVE). Table 2 demonstrates item

loadings, AVE, CRs and Cronbach’s alpha values for all

constructs in the measurement model, and Table 3 demonstrates

the inter-correlation analysis and discriminant validity. The

analyses were conducted using SPSS version 26. Next, we

examined the structural model to investigate the strength and

direction of the relationships among the theoretical constructs

by performing Structural Equation Modeling (SEM) using

the bootstrapping method. The main principle underlying the

bootstrapping method is that it allows the researcher to simulate

repeated subsamples from an original database, allowing the

assessment of the stability of parameter estimates and reporting

their values with a greater degree of accuracy (69, 70). We used

bootstrapping based on 5,000 iterations to assess the estimators

and 95% confidence intervals for direct and indirect effects.

TABLE 1 Demographic characteristics of the study participants#.

n (%)

Gender Female 295 (52%)

Male 269 (47.5%)

Age (years) Mean± SD 48.9± 20.3

Min-Max (in years) 18–87

Educational level Elementary 20 (3.5%)

Secondary (high school) 143 (25.5%)

Tertiary (vocational) 179 (32%)

Tertiary (university or college) 216 (39%)

#Without missing values.

The following indices were used to evaluate the model: chi-

square, which is acceptable when the value is not significant;

the goodness of fit index (GFI); the comparative fit index (CFI);

the non-normed fit index (NFI); and the root mean square

error of approximation (RMSEA) (70–72). SEMwas tested using

AMOS software.

Results

In order to assess the hypothesized model, SEM was

performed, using the bootstrappingmethod. To test the research

hypotheses, TTF, social motivation, and risk aspects were

exogenous variables; perceived usefulness, perceived ease of use,

and behavioral attitudes served as mediators; and intention to

use drones was the outcome tested. In addition, we controlled for

the influence of age, gender, and education. The model showed

good fit: chi-square/degree of freedom = 4.27, CFI = 0.99, GFI

= 0.99, NFI= 0.99, TLI= 0.93, RMSEA= 0.08.

Figure 2 illustrates the R2-values, which represent the

amount of variance explained by the independent variables,

and estimates of the path coefficients of the proposed research

model, which indicate the strengths of the relationships

between the dependent and independent variables. Perceived

usefulness was found to be significantly determined by the

two exogenous variables (i.e., task-technology fit and social

recognition), resulting in an R2 of 0.248. Likewise, perceived

ease of use was found to be significantly determined by the

two exogenous variables (i.e., individual-technology fit and task-

technology fit), resulting in an R2 of 0.304. Behavioral attitudes

were significantly determined by perceived usefulness, perceived

ease of use, social influence, and perceived risks, resulting

in an R2 of 0.047. The dependent variable, intention to use

drones, was significantly determined by perceived ease of use,

behavioral attitudes, individual-technology fit, task-technology

fit, and social recognition, resulting in an R2 of 0.485. Thus,

the combined effect of these five variables explained 48.5% of

the variance in intention to use drones. Table 4 summarizes the
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TABLE 2 Construct reliability and convergent validity.

Construct Construct code Items loading AVE CRs Cronbach’s a

PU 1 0.804 0.55 0.907 0.88

2 0.803

3 0.792

4 0.752

5 0.729

6 0.710

7 0.683

8 0.643

PEOU 1 0.827 0.54 0.855 0.78

2 0.769

3 0.723

4 0.710

5 0.642

ATT 1 0.846 0.60 0.816 0.65

2 0.822

3 0.638

ITU 1 0.895 0.69 0.899 0.84

2 0.881

3 0.827

4 0.710

ITF 1 NA

TTF 1 0.872 0.72 0.885 0.8

2 0.838

3 0.835

SR 1 0.930 0.86 0.928 0.84

2 0.930

SI 1 0.892 0.71 0.881 0.79

2 0.820

3 0.818

RISK 1 0.921 0.74 0.895 0.82

2 0.888

3 0.765

NA= not applicable, as contains only 1 item.

hypotheses testing results of the standardized path coefficients

and path significances. Most of the paths were significant in the

expected direction.

Relationship in TAM

Hypotheses 1a to 1f addressed the relationship in the TAM,

which is related to perceived usefulness, perceived ease of use,

behavioral attitudes, and intention to use drones, and all except

Hypotheses 1a and 1e were supported. Although the direct link

between perceived usefulness and intention was not significant,

we did find that a significant indirect path existed between these

variables, mediated by behavioral attitudes. In addition, another

significant indirect path was found between perceived ease of use

and intention, and was also mediated by behavioral attitudes.

Relationship in TTF and TAM

Hypotheses 2a−2f assessed the relationship between the

variables of TTF (individual-technology fit and task-technology

fit) and the variables of TAM. We explored both the direct links

between the TTF variables and intention to use drones (H2c and

H2f), as well as the links with perceived usefulness (H2a and

H2d) and perceived ease of use (H2b and H2e). All hypotheses

apart from H2a were supported. In addition, significant indirect
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TABLE 3 Inter-construct correlations and discriminant validity.

M (SD) PU PEOU ATT ITU ITF TTF SR SI RISK

PU 3.8 (0.84) 0.74

PEOU 3.5 (0.80) 0.312** 0.74

ATT 4.1 (0.72) 0.462** 0.417** 0.77

ITU 3.8 (0.78) 0.437** 0.491** 0.596** 0.83

ITF 3.7 (0.92) 0.361** 0.577** 0.305** 0.527** NA

TTF 3.4 (0.85) 0.509** 0.399** 0.442** 0.618** 0.511** 0.85

SR 3.5 (0.84) 0.437** 0.421** 0.508** 0.619** 0.441** 0.605** 0.93

SI 2.8 (0.87) 0.189** 0.121** 0.100* 0.266** 0.226** 0.380** 0.425** 0.84

RISK 2.8 (0.96) −0.141** −0.224** −0.379** −0.274** −0.066 −0.218** −0.291** −0.064 0.95

Discriminant validity (squared root of average variance extracted) for each construct is presented in bold numbers.

*p < 0.05.

**p < 0.001.

NA= not applicable, as contains only 1 item.

FIGURE 2

Path analysis. *p < 0.05; **p < 0.001.
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TABLE 4 Model path analysis.

The hypotheses Path coefficient P-value Conclusion

Direct paths

H1a Perceived ease of use→ Perceived usefulness 0.069 0.104 Not supported

H1b Perceived ease of use→ Behavioral attitudes 0.161 0.014* Supported

H1c Perceived ease of use→ Intention to use 0.098 0.019* Supported

H1d Perceived usefulness→ Behavioral attitudes 0.239 0.006** Supported

H1e Perceived usefulness→ Intention to use 0.007 0.924 Not supported

H1f Behavioral attitudes→ Intention to use 0.265 0.012* Supported

H2a Individual-technology fit→ Perceived usefulness 0.070 0.089 Not supported

H2b Individual-technology fit→ Perceived ease of use 0.450 0.008** Supported

H2c Individual-technology fit→ Intention to use 0.148 0.005** Supported

H2d Task-technology fit→ Perceived usefulness 0.354 0.004** Supported

H2e Task-technology fit→ Perceived ease of use 0.171 0.014* Supported

H2f Task-technology fit→ Intention to use 0.226 0.012* Supported

H3a Social recognition→ Perceived usefulness 0.177 0.018* Supported

H3b Social recognition→ Intention to use 0.189 0.007** Supported

H3c Social influence→ Perceived usefulness −0.042 0.273 Not supported

H3d Social influence→ Behavioral attitudes 0.618 0.013* Supported

H3e Social influence→ Intention to use 0.012 0.689 Not supported

H4a Perceived risks→ Behavioral attitudes −0.259 0.012* Supported

H4b Perceived risks→ Intention to use 0.005 0.915 Not supported

Indirect paths

Perceived usefulness→ Behavioral attitudes→ Intention to use 0.063 0.007**

Perceived ease of use→ Intention to use# 0.048 0.016*

Individual-technology fit→ Intention to use# 0.071 0.010*

Task-technology fit→ Intention to use# 0.050 0.008**

Social recognition→ Intention to use# 0.012 0.043*

Social influence→ Intention to use# 0.161 0.011*

Perceived risks→ Intention to use# −0.069 0.007**

#More than one path available.
*p < 0.05.
**p < 0.001.

paths were found between individual-technology fit, task-

technology fit, and intention to use, mediated by perceived

usefulness, perceived ease of use, and behavioral attitudes.

Relationship between social motivation
and TAM

Hypotheses 3a−3e explored the relationship between

variables of social motivation (social recognition and

social influence) and TAM variables. We explored both

the direct links between the social motivation variables

and intention to use drones (H3b and H3e), as well as the

links between social motivation and perceived usefulness

(H3a and H3c), and the link between social influence and

behavioral attitudes (H3d). All hypotheses were supported

except for H3c and H3e. In addition, significant indirect

paths between social motivation variables and intention to

use were detected, mediated by perceived usefulness and

behavioral attitudes.
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Relationship between perceived risks and
TAM

Hypotheses 4a and 4b addressed the relationship between

drone-related risks and TAM variables—behavioral attitudes

and intention to use drones. Only H4a regarding the link

between risks and behavioral attitudes toward using drones was

supported. In contrast to the prediction in H4b, the effect of

drone-related risks on intention to use them was not significant.

However, a significant indirect path was found to exist between

risks and intention to use, mediated by behavioral attitudes.

Discussion

In this paper we examined individuals’ intentions to use

drones and how they engaged with the benefits, risks, and uses

of drones during a PHE in Israel. The results of the empirical

analysis provide strong support for most of the hypotheses. In

what follows, we discuss the findings of the study from both a

theoretical and practical perspective.

Theoretical implications and discussion

From a theoretical perspective, we integrated the extended

TAM and TTF theory, as well as social motivation and perceived

risks, to explore public drone acceptance and utilization in the

context of a PHE. This study advances the existing knowledge

about the TAM and TTF in several ways. First, an integrated

framework combining the two models and the addition of social

motivation and perceived risks, which was developed on the

basis of previous studies in different technological contexts (39–

41), was presented and empirically confirmed in the new context

of drone technology. Second, the model facilitates an in-depth

understanding of the mechanisms of TAM and TTF separately,

as well as of those that combine them, which underlie drone

adoption in the unique context of PHE. Further implications

and discussions for each model and the additional constructs are

described in the reminder of this section.

In regard to the TAM, the findings indicate that perceived

ease of use is not a predictor of perceived usefulness. This finding

contradicts the original assumption underlying the TAM model

but aligns with the previous findings of a study that explored

drone acceptance in agriculture. The researchers attributed this

finding to the multiplicity of uses entailing different skill levels;

in other words, the effect of perceived ease of use is different

for each application and cannot point to a clear direction (73).

Our finding supports this notion. Additionally, some of the

drone uses in a PHE, such as performing surveillance tasks,

are operated remotely by organizations and not by the users

themselves and, as such, perceived ease of use may be less

relevant in these regards. Future studies should distinguish

between uses that require interaction with the public and those

that do not.

We also demonstrated in this study that the effect of

behavioral attitudes on intention to use drones is both significant

and positive, and that behavioral attitudes are an important

mediator between perceived ease of use and perceived usefulness

(on the one hand) and intention to use drones (on the other),

as theorized in the original model of technology acceptance

(74). In addition, perceived ease of use also had a direct effect

on intention to use drones. These findings align with findings

from previous studies [e.g., (41, 75)] and point to perceived

ease of use as an important factor in shaping public attitudes

as well as acceptance of drones. Perceived ease of use expresses

aspects related to human-technology interaction (76) and, in this

case, of human-drone interaction (77). Our results suggest that

the interaction characteristics are a powerful aspect of drone

acceptance, and further research should focus on improving this

interaction in the context of drone use in PHEs.

Additionally, our results suggest that extending the TAM

through the integration of TTF, social motivation, and perceived

risks yields greater explanatory power of the intention to use

drones than the TAM can provide alone, as also reported by a

recent study that explored customers’ adoption of drone food

delivery services (78). However, the context of food delivery

is very different from the one explored in the current study,

and thus, additional studies are required to further support

this notion.

The TTF by itself was also found in the current study to

be a robust model in which task and technology characteristics

significantly determine the intention to use drones in PHEs.

Furthermore, the results suggest that task-technology fit can

influence both core components of the TAM, perceived ease

of use and perceived usefulness, and that individual-technology

fit influences perceived ease of use, thus contributing to drone

acceptance onmore than one path. As speculated, drone features

that support the maintenance of health during a PHE (i.e.,

task-technology fit) can shape individuals’ positive perceptions

regarding both ease of use and usefulness of drones. The belief of

a person that they can independently interact with a drone (i.e.,

individual-technology fit) is an antecedent for perceived ease of

use. This finding further supports the importance of human-

drone interaction in the current context as stressed above. These

results align with those of a prior study which indicated the effect

of the TTF on perceived ease of use and perceived usefulness of

gamification in higher education (39). In sum, the better the fit

between the individual, the task, and the technology, the greater

the likelihood of drones being perceived positively. The results

of this study can serve as a reference for future studies on drones

with the TTF model.

The proposed model extends the role of social motivation in

regard to drones by integrating two factors: social recognition

and social influence. As predicted, social recognition was found

to influence perceived usefulness and to have a direct effect on
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the intention to use them. Thus, a recognition of the benefits of

drones by the healthcare system (a highly trusted institution in

Israel), as well as positive public views regarding these benefits,

seem to create a supportive environment for enhancing the

promotion of drone public acceptance. These results align with

those of previous studies that explored social recognition as an

external factor to the TAM (40, 55).

Social influence was found to have a strong effect on

behavioral attitudes toward drones. This finding is not

surprising given that peoples’ beliefs about innovative

technologies are well established as important factors shaping

personal attitudes about these technologies (60, 79, 80).

Together with the above, this finding further supports the

argument regarding the importance of social motivation in the

process of technology adoption.

Perceived risks were found to negatively affect behavioral

attitudes toward drone use in PHEs. In addition, behavioral

attitudes served as a significant mediating variable between

perceived risks and intention to use drones. These findings

correspond with those of previous studies both related to drone

use (27, 49, 63) and to other technological [e.g., (61)], and

emergency context (81–83). The results are consistent with the

idea that perceived risks counterbalance individuals’ propensity

for using technologies potentially causing harm in various ways.

Healthcare institutions wishing to introduce drones for use in

PHEs will need to take this issue into consideration, as well as

map out the perceived risks among different population groups.

In sum, the study findings enhance the understanding of

factors impacting people’s intention to use drones in the context

of PHEs. The findings also broaden our understanding of

user psychology and behavior, which has been mainly studied

through a technology acceptance approach.

Practical implications

From a practical perspective, the current study has unveiled

several implications for drone companies as well as for

healthcare organizations that wish to incorporate drones into

their activity.

First, the centrality of perceived ease of use to the intention

to use drones in PHEs suggests that drone companies, as well

as healthcare organizations, should carefully design emergency

drones and user interfaces to provide a friendly and intuitive

experience in order to support acceptance by the general

public. The study of human-drone interaction is relatively

new, but previous findings show that designing interactions

with drones to resemble interactions with pets can support

their incorporation into daily life (77, 84). In the context of

PHEs, further study is needed in order to understand whether

interactions with drones in potentially stressful emergency

situations can be facilitated by designing them to resemble

interactions with healthcare practitioners, similar to interactions

in telemedicine services.

Second, as the TTF factors and social recognition determine

direct intention to use, as well as perceived usefulness and ease of

use, a special emphasis should be placed on increasing awareness

and clarifying the benefits of drones in maintaining health in

general, and during PHEs in particular, factors that may not be

intuitive or fully recognized by the public. Highlighting benefits

such as expediting the receipt of emergency medical attention

by using drones equipped with video cameras connected to

health practitioners, or hastening medical supply replenishment

by using delivery drones without having to leave home or

another protected space, via public campaigns, may support

drone utilization in PHEs. As the effects of social influence

and of perceived risks on behavioral attitudes toward drones

were found to be relatively high, we would recommend further

exploring, characterizing, and mapping these factors among

various population groups. Doing so might yield insights

regarding specific populations who may hold negative beliefs

or fear the risks of drones to a higher extent than others.

Such insights can facilitate tailor-made campaigns and even a

culturally-sensitive drone design to support drone acceptance

across diverse populations.

Limitations and future research

The current study had several limitations. First, its cross-

sectional design precludes the determination of causality

between the constructs examined, and in relation to the outcome

variable of intention to use drones in PHEs. As user behavior is

dynamic by nature, future studies should employ a longitudinal

design that will enable an in-depth investigation of the interlinks

between the factors involved in technology acceptance, as well

as track trajectories of change specific to drone acceptance.

Second, as only 48.5% of the variance in the intention to

use drones in PHEs was explained, additional studies should

incorporate other factors that may be relevant in this regard

but were beyond the scope of the current analysis. Further,

another study limitation may stem from the fact that we relied

on a general sample of the population in Israel and did not

control for factors such as ethnicity or cultural affiliation. As

localizing user experience through culturally-sensitive designs

has been recognized as an important factor for fostering effective

communication and sustainable technological development (85,

86), future research should allow for subgroup analyses in

a given population. For example, in the Israeli context, the

Ultraorthodox Jewish population and the Arab population are

two groups that should be explored in comparison with the

general Jewish Israeli majority.

Conclusions

Drones are becoming increasingly ubiquitous. Although

many applications such as drone use for delivery, or for targeted
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search and rescue missions, have been discussed and even tested

to a relatively large extent, the use of drones as part of response

efforts to large-scale PHEs has led to more interest lately, due

to the COVID-19 pandemic. Generally, there has been little

examination of the factors involved in drone acceptance and

even less in the context of PHEs. The integrated model that was

developed and tested in the current study provides a robust and

comprehensive framework to perform an in-depth investigation

of the factors and mechanisms affecting drone acceptance in

PHE. Furthermore, the empirical findings not only expand

and deepen the existing body of knowledge but also provide

valuable insights for public health researchers and practitioners,

as well as others involved in emergency health management.

The findings point to the centrality of factors related to human-

drone interaction—such as perceived ease of use and individual-

technology fit—in the process of drone acceptance and suggest

that special attention should be provided to improving this

interaction in the context of PHE. Additional factors such

attitudes, task-technology fit, and social influence were also

found to directly and indirectly influence the intention to use

drones, and this further highlights the need to raise awareness

of drone benefits in maintaining health during both routine and

emergency times. As public opinion and belief regarding drones

are still forming, the current findings will have an important

impact on promoting drone public acceptance in PHEs and

in general.
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banking adoption: a unified theory of acceptance and use of
technology and perceived risk application. Int. J. Inf. Manage. (2014)
34:1–13. doi: 10.1016/j.ijinfomgt.2013.06.002

65. Sullivan GM, Artino AR, Jr. Analyzing and interpreting data from Likert-type
scales. J Grad Med Educ. (2013) 5:541–2.? doi: 10.4300/JGME-5-4-18

66. iPanel (n.d.). [home page on the Internet] [WWW Document]. Available
online at: https://www.ipanel.co.il/en/ (accessed March 5, 2022).

67. Fornell C, Larcker DF. Structural equation models with unobservable
variables and measurement error: Algebra and statistics. J Mark Res. (1981)
18:328–88. doi: 10.1177/002224378101800313

68. Anderson JC, Gerbing DW. Structural equation modeling in practice:
A review and recommended two-step approach. Psychol. Bull. (1988) 103:411.
doi: 10.1037/0033-2909.103.3.411

69. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing
and comparing indirect effects in multiple mediator models. Behav Res Methods.
(2008) 40:879–91. doi: 10.3758/BRM.40.3.879

70. Byrne BM. Structural Equation Modeling with AMOS: Basic Concepts,
Applications, and Programming (Multivariate Applications Series). (vol. 396, p.
7384) New York, NY: Taylor & Francis Group. (2010).

71. Arbuckle JL. Amos 22 User’s Guide. Chicago, IL: SPSS. (2013).

72. Cangur S, Ercan I. Comparison of model fit indices used in structural
equation modeling under multivariate normality. J Mod Appl Stat Methods. (2015)
14:14. doi: 10.22237/jmasm/1430453580

73. Michels M, von Hobe CF, Weller von Ahlefeld PJ, Musshoff O. The adoption
of drones in German agriculture: a structural equation model. Precis Agric. (2021)
22:1728–48. doi: 10.1007/s11119-021-09809-8

74. Davis FD, Bagozzi RP, Warshaw PR. User acceptance of computer
technology: a comparison of two theoretical models. Manage Sci. (1989)
35:982e. doi: 10.1287/mnsc.35.8.982

75. Parvez MO, Arasli H, Ozturen A, Lodhi RN, Ongsakul V. Antecedents of
human-robot collaboration: theoretical extension of the technology acceptance
model. J Hosp Tour Technol. (2022) 13:240–63. doi: 10.1108/JHTT-09-2021-0267

76. Saadé R, Bahli B. The impact of cognitive absorption on perceived usefulness
and perceived ease of use in on-line learning: an extension of the technology
acceptance model. Inf Manag. (2005) 42:317–27. doi: 10.1016/j.im.2003.12.013

77. Cauchard JR, Kevin JLE, Zhai Y, Landay JA. Drone and me: an exploration
into natural human-drone interaction, in: proceedings of the 2015. In: ACM
International Joint Conference on Pervasive and Ubiquitous Computing. (2015).
p. 361–5.

78. Waris I, Ali R, Nayyar A, Baz M, Liu R, Hameed I. An empirical evaluation
of customers adoption of drone food delivery services: an extended technology
acceptance model. Sustainability. (2022) 14:2922. doi: 10.3390/su,14052922

79. de Groot JIM, Schweiger E, Schubert I. Social influence, risk and
benefit perceptions, and the acceptability of risky energy technologies: an
explanatory model of nuclear power versus shale gas. Risk Anal. (2020) 40:1226–
43. doi: 10.1111/risa.13457

80. Yeshua-Katz D, Shapira S, Aharonson-Daniel L, Clarfield AM, Sarid
O. Matching digital intervention affordances with tasks: the case of a Zoom
and WhatsApp mental health intervention for seniors during the COVID-19
pandemic. Health Commun. (2021) 1–13. doi: 10.1080/10410236.2021.1956071

81. Shapira S, Aharonson-Daniel L, Clarfield AM, Feder-Bubis P. Giving a
voice to medically vulnerable populations: a mixed-methods investigation of their
unique perceptions and needs in emergency situations. Heal Soc Care Commun.
(2020) 28:12911. doi: 10.1111/hsc.12911

82. Shapira S, Aharonson-Daniel L, Bar-Dayan Y. Anticipated behavioral
response patterns to an earthquake: the role of personal and household
characteristics, risk perception, previous experience and preparedness. Int J
Disaster Risk Reduct. (2018) 31:1–8. doi: 10.1016/j.ijdrr.2018.04.001

83. Shapira S, Levi T, Bar-Dayan Y, Aharonson-Daniel L. The impact of behavior
on the risk of injury and death during an earthquake: a simulation-based study.Nat
Hazards. (2018) 91:1059–74.? doi: 10.1007/s11069-018-3167-5

84. Tezza D, Andujar M. The state-of-the-art of human-drone interaction:
a survey. IEEE Access. (2019) 7:167438–54. doi: 10.1109/ACCESS.2019.
2953900

85. Ramos G, Chavira DA. Use of technology to provide mental health care for
racial and ethnic minorities: evidence, promise, and challenges. Cogn Behav Pract.
(2022) 29:15–40. doi: 10.1016/j.cbpra.2019.10.004

86. Sun H, Getto G. Localizing user experience: strategies, practices,
and techniques for culturally sensitive design. Tech Communl. (2017)
64:89–94.

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1019626
https://doi.org/10.1109/ACCESS.2020.2990420
https://doi.org/10.1108/IntR-09-2017-0338
https://doi.org/10.1080/07370024.2015.1022425
https://doi.org/10.1080/02642069.2015.1043278
https://doi.org/10.1016/j.chb.2015.04.018
https://doi.org/10.1016/j.ijmedinf.2014.07.003
https://doi.org/10.3390/su13010117
https://doi.org/10.1108/02652321211236923
https://doi.org/10.1016/j.elerap.2008.11.006
https://doi.org/10.1016/j.trc.2018.11.018
https://doi.org/10.1016/j.tele.2018.04.014
https://doi.org/10.1016/j.ijinfomgt.2013.06.002
https://doi.org/10.4300/JGME-5-4-18
https://www.ipanel.co.il/en/
https://doi.org/10.1177/002224378101800313
https://doi.org/10.1037/0033-2909.103.3.411
https://doi.org/10.3758/BRM.40.3.879
https://doi.org/10.22237/jmasm/1430453580
https://doi.org/10.1007/s11119-021-09809-8
https://doi.org/10.1287/mnsc.35.8.982
https://doi.org/10.1108/JHTT-09-2021-0267
https://doi.org/10.1016/j.im.2003.12.013
https://doi.org/10.3390/su
https://doi.org/10.1111/risa.13457
https://doi.org/10.1080/10410236.2021.1956071
https://doi.org/10.1111/hsc.12911
https://doi.org/10.1016/j.ijdrr.2018.04.001
https://doi.org/10.1007/s11069-018-3167-5
https://doi.org/10.1109/ACCESS.2019.2953900
https://doi.org/10.1016/j.cbpra.2019.10.004
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Integrating drones in response to public health emergencies: A combined framework to explore technology acceptance
	Introduction
	Theoretical background

	Materials and methods
	Questionnaire development
	Participants and data collection
	Data analysis

	Results
	Relationship in TAM
	Relationship in TTF and TAM
	Relationship between social motivation and TAM
	Relationship between perceived risks and TAM

	Discussion
	Theoretical implications and discussion
	Practical implications
	Limitations and future research
	Conclusions

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


