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Background: DNA damage response and repair (DDR) related signatures

play an important role in maintaining genome stability and other biological

processes. It also a�ects the occurrence, development, and treatment of

cancer. However, in renal cell carcinoma (RCC), especially clear cell renal

carcinoma (ccRCC), the potential association between DDR-related signatures

and tumor heterogeneity and tumormicroenvironment (TME) remains unclear.

Methods: Utilizing unsupervised clustering algorithm, we divided RCC into

two subgroups, DCS1 and DCS2, according to the di�erences in DDR gene

expression, and compared the characteristics of the two subgroups through

multiple dimensions.

Results: Compared with DCS1, DCS2 patients have higher clinical stage/grade

and worse prognosis, which may be related to active metabolic status and

immunosuppression status. At the same time, the high mutation rate in DCS2

may also be an important reason for the prognosis. We also analyzed the

sensitivity of the two subgroups to di�erent therapeutic agents and established

a subtypes’ biomarkers-based prognostic system with good validation results

to provide ideas for clinical diagnosis and treatment. Finally, we identified

a pivotal role for DDX1 in the DDR gene set, which may serve as a future

therapeutic target.

Conclusion: This study showed that DDR has an important impact on the

development and treatment of RCC. DCS2 subtypes have a poor prognosis,

and more personalized treatment and follow-up programs may be needed.

The assessment of DDR gene mutations in patients may be helpful for clinical

decision-making. DDX1 may be one of the e�ective targets for RCC treatment

in the future.
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Introduction

Renal cell carcinoma (RCC) caused by genetic alterations

accounts for approximately 2% of all adult carcinoma (1), and

is the second leading cause of death associated with urologic

malignancies (2). Clear cell renal cell carcinoma (ccRCC) leads

the most common histological type of renal cancer, accounting

for ∼75% of renal cell carcinomas, ccRCC has a higher

invasive capacity and recurrence rate than other renal cell

carcinoma subtypes. The morbidity and mortality of ccRCC

has been increasing rapidly in the last decades. Overall patient

survival is not satisfactory (3) because of local recurrence and

distant metastasis. Despite the effectiveness of targeted therapies

and immunotherapy in the treatment of ccRCC, only some

patients have achieved drug responsiveness, and most patients

have intrinsic resistance or will eventually develop acquired

resistance. Therefore, the identification of novel biomarkers and

therapeutic agents is important for the clinical management of

ccRCC patients.

The DNA damage response (DDR) is a highly conserved

genomic monitoring mechanism that is activated when DNA

damage occurs and functions accordingly to maintain cellular

integrity and stability (4). DDR not only is involved in

maintaining genomic integrity and cell viability, but also plays

a critical role in some of the most commonly used anti-cancer

therapies, such as targeting DNA (5). Cytotoxic agents targeting

DDR pathways have been used as anti-cancer therapies. Some

DDR kinase inhibitors have been reported to have progressed

to clinical trials (6–8). These include kinase inhibitors for ATM,

ATR and PLK1. Recently, the combination of DDR and tumor

immunity has become a new hotspot (9), and relevant clinical

trials are being carried out (10). However, the role of DDR in the

progression and metastasis of ccRCC is unclear.

In this study, we performed a remodeling analysis based

on DDR related signatures in ccRCC, and the subtypes were

identified and verified across different datasets and compared at

multi omics level. We decoded the heterogeneity and crosstalk

of DDR and immune infiltration, genomic instability, drug

therapy sensitivity via multi algorithms and datasets. All the

findings retrieved from this work might be valuable for precise

management and risk stratification of ccRCC patients.

Materials and methods

Data collection and processing

Multi omics datasets, including expression, genomic

mutation, copy number variation, DNA methylation profiles,

were retracted form UCSC Xena datasets (including ccRCC

cohort, including 526 tumor and 70 normal samples) (11).

Out-house datasets of ccRCC, including gene expression

and clinical information of the Japan renal cancer cohort,

Motzer’s cohort and Wuttig’s cohort, were download form

public datasets (Access numbers were as follow: E-MTAB-1980,

EGAS00001004353, GSE55241), containing nearly 1000 ccRCC

tumor sample clinical and transcriptome information (12, 13).

In addition, we also applied several online datasets, including

MEXPRESS, UALCAN and TIDE, to validate results found in

our study (14–16). For datasets collected from public cohorts,

the informed consent or instructional review board approval

were not required.

Identification of di�erent DDR
subclusters in CcRCC

Altogether, we collected and filtered DDR related signatures

from previous research and several datasets, including

CPDB, KEGG, Reactome and MSigDB. The detailed DDR

signatures were summarized in Supplementary Table S1.

Based on expression profile of the DDR related signatures,

we performed unsupervised consensus cluster analysis by R

package “ConsensusClusterPlus.” Totally, patients from TCGA-

KIRC cohort were sub-grouped into two distinct phenotypes,

and k= 2 was identified as the optimal cluster number.

Enrichment analysis between subgroups

Based on cluster results, we next deciphered the inner

heterogeneity between subtypes. We firstly calculated

differentially expressed genes (DEG) via R package

“DEseq2” (The threshold was as follow: p-value < 0.01,

and the abstract log Foldchange >2). After identifying

DEG, we utilized R package “ClusterProfiler” to carry

on annotation analysis, including Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways Gene Set Variation Analysis (GEVA) and

Gene Set Enrichment Analysis (GSEA). The annotation

files for DEG were downloaded from MSigDB and

ConsensusPathDB (17).

Di�erent landscape of immune
infiltration signatures

We applied several mainstream and robust immune

related algorithms to calculate immune infiltration degree,

cellular components, or immune cell enrichment scores

between subtypes. In addition, single-sample gene set

enrichment analysis (ssGSVA) was applied to prove the

differences of immune heterogeneity between DCS1

and DCS2 (18). R package “ESTIMATE” was used

to evaluate the stromal and immune scores in tumor

microenvironment. Tumor Immune Dysfunction and
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Exclusion (TIDE) algorithm (16) was introduced to estimate

immunotherapy responses.

Mutation spectrum characteristics
between subgroups

We downloadedmutation profiles of ccRCC, then compared

and visualized the difference between DCS1 and DCS2 through

R package “Maftools” (19). Besides, the oncogenic pathway

and mutually exclusive or coexisting mutations were analyzed

through function form “Maftools” (20). Analysis of loss and gain

in genomic level was performed by GISTIC 2.0 algorithm (21).

Drug sensitivity prediction

Through expression profile, we calculated each patient’s

therapy sensitivity throughGenomics of Cancer Drug Sensitivity

(GDSC) database, containing cancer cell lines transcriptome

and molecular agents’ response information. We estimated the

half-maximal inhibitory concentration-IC50 and validated such

difference by R package “pRRophetic.” Furthermore, we utilized

two public and comprehensive datasets, CellMiner (22) and

CCLE (23) to verify and identify novel treatment agents for

ccRCC patients.

Construction of risk prediction model

We firstly identified each subtype’s biomarkers and filter

signatures correlated with overall survival outcome by Cox

analysis. Then, we ranked the importance of signatures

on patients’ prognosis via random forest algorithm and

identified the optimal combination by Random Survival

Forest Variable Hunting (RSFVH) algorithm. Patients

in training and test cohorts were divided into high-

and low- risk subtypes according to median risk score of

each cohort.

Statistical analysis

All omics dataset’s processing, visualization and statistical

analysis were finished by R software (version 4.1.3). For

quantitative variables, Kruskal-Wallis and t-test were applied;

as for qualitative characteristics, Chi-square was employed

to compare the difference. Correlation among variables

were based on R package “corrplot.” R packages “survival”

and “pROC” were used to plot Kaplan-Meier and time

ROC curves. All two-sided p-value (<0.05) was considered

statistically significant.

Results

Identification of subtypes via
DDR-related signatures’ profile

We firstly identified DDR regulators impacting on ccRCC

patients’ prognosis via Cox. Then, based on the expression

level of those DDR regulators, unsupervised clustering was

introduced to categorize the TCGA-ccRCC samples into

different molecular subtypes. As shown in Figures 1A–D, we

classified ccRCC into two clusters: DDR-associated cancer

subtype 1 (DCS1) and DCS2. The clinical significance of

this clustering approach was assessed by comparing the

clinical outcomes of the two subtypes (Figure 1E). The results

showed that patients in DCS1 had a better survival outcome

(Figures 1F,G). The detailed clinical characteristic difference was

summarized in Supplementary Table S2. In addition, we found

that most DDR-related signatures were significantly upregulated

in DCS2 (Supplementary Figure S2), suggesting that abnormal

DNA damage repair signature is associated with a worse

tumor prognosis.

Functional enrichment analysis of
di�erent DDR subtypes

Since DCS1 and DCS2 led a distinctive prognosis, we

next aimed to decipher the biological difference between

subtypes. The different expression genes (DEGs) were depicted

in Figure 2A. GO enrichment analysis showed that DEGs

were mainly involved in cornification, keratinization, and

epidermal cell differentiation in BP part; cornified envelope and

keratin filament in CC part; and serine-type endopeptidases

inhibitor activity and hormone activity in MF parts (Figure 2B,

Supplementary Figures S3A,B). We then performed GSEA

analysis of the differential genes, which showed that the

adaptive immune system, apoptosis, cell cycle, developmental

biology and PIP3/AKT signaling pathways were activated in

DCS1, whereas DCS2 was in a suppressed state, indicating

that it might lead a poor immune response (Figure 2C).

KEGG enrichment analysis also showed that it was associated

with abnormal protein metabolism, and the differential

genes were mainly located in thermogenesis, ribosome, and

ubiquitinmediated proteolysis pathways (Figure 2D). To further

investigate the differences between genes, we usedGSVA analysis

to analyze the differences between gene sets. KRAS, myogenesis

and coagulation pathways were significantly upregulated in

DCS1, while UV_RESPONSE_DN, HEME_METABOLISM and

protein secretion pathways were significantly upregulated in

DCS2 (Figure 2E). The transcriptome differences were further

analyzed by regulon analysis. It was found that HNF4A,

HNF1A, HNF1B, EPAS1 and ZEB2 were up-regulated in C1,

while FOXE1, TBX18, TFE3 and TP53 were down-regulated in
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FIGURE 1

Identification of two DDR related subtypes. (A) Consensus cluster matrix based on DDR-related regulators. (B) Relative change in area under

cumulative distribution function (CDF) curve. (C) The proportion of ambiguous clustering score, and the optimal cluster number. (D)

Two-dimensional principal component plot based on DDR related regulators. (E) Clinical di�erence between DCS1 and DCS2. (F,G) Survival

analysis of OS and PFS.
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FIGURE 2

Functional enrichment analysis of ccRCC subtypes. (A) Volcano plot showed DEGs. (B) BP enrichment analysis, (C) GSEA, (D) KEGG and (E) GSVA

analysis between subtypes. (F) Di�erent transcriptional factors’ regulon scores. Yellow represented activated expression of transcription factors.

Blue represented repressed expression of transcription factors.
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FIGURE 3

Immune profiling between subtypes. (A,B) Heatmap indicating the di�erent immune signatures and immune component enrichment between

subtypes. (C) Di�erent expression level of immune checkpoint inhibitors between subtypes.
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DCS1 (Figure 2F). EPAS1 is a transcription factor that regulates

hypoxia-related genes, and its expression increases with the

decrease of oxygen concentration (24). It indicates that DCS1

owned a hypoxic state. Tumor hypoxia has been reported to

lead to tumor resistance to immunotherapy (25–27), so targeted

disruption of the hypoxic environment may make DCS1 more

sensitive to immunotherapy.We also compared the metabolism,

tumor immune, and classic oncogenic pathways’ state difference

between DCS1 and DCS2. And found that several pathways

were significantly activated in DCS2, including ubiquinone

and nucleotide sugar metabolism, sulfur metabolism, linoleic

acid metabolism of tumor metabolic pathways; cytokines,

chemokines, trafficking of immune cells to tumors, Treg,

interleukins, macrophage related signatures and complement of

immune part; regulation of exosomal secretion, ferroptosis of

tumor related pathways (Supplementary Figures S4A–D).

Comparing immune infiltration and
component of two subgroups

The biological enrichment analysis indicated the significant

difference in immune related pathways between DCS1 and

DCS2, thus we decided to further compare such immune

heterogeneity. We found that chemokine related signatures were

high expressed in DCS2, while immune related inhibitor and

stimulator factors displayed a heterogenous expression pattern

between subtypes, which might be partially accounted for the

different DDR related signatures expression pattern (Figure 3A).

We used several deconvolution algorithms to describe the

immune infiltration of subtypes and analyze the heterogenous

composition of TME. The results were consistent and showed

that DCS2 displayed lower immune cell infiltration than DCS1

(Figure 3B). Most immune cells were highly infiltrated in

DCS1, while neutrophil and endothelial cells were significantly

enriched in DCS2.

Except of CD274, most immune check point, or immune

exhausted signature, including CTLA4, CXCR4, IL6, LAG3,

PCDC1 and TGFB1, were higher expressed in DCS2

(Figure 3C). All those results reminded that DCS2 might

led an immune exhausted phenotype. Through estimate

algorithm, we found that stromal score was higher in DCS1,

while immune and ESTIMATE scores were higher in DCS2

(Figure 4A). Epigenetically regulated RNA expression-based

stemness score (EREG.EXPss) was also higher in DCS1

(Figure 4B). The immune cell infiltration scores calculated

via TIP pipeline revealed that B cell, CD4 naïve, Th cell,

pDC signatures were lower in DCS2 (Figure 4C). Dysfunction

and TIDE scores in DCS2 were significantly high in DCS2

(Figures 4D,E). Consistently, the immune therapy response

rate in DCS1 were higher than DCS2 (40 vs. 24%) (Figure 4F).

Combined with paradox results of clinical outcome and immune

infiltration difference, we hypothesized that the DCS2 might

be an immune-desert or exhausted state with the mark of

suppression in immunity, and such results might be relevant to

deregulated DDR pattern between subtypes.

Genomic mutation of di�erent subtypes

The alteration of genome was analyzed to decipher the

potential oncogenic factors in DCS1 and DCS2. The most

frequent mutation signatures were depicted in Figure 5A. The

overall mutation frequency of DCS1 was lower than DCS2

(84.07 vs. 89.36%).When compared with DCS1, DCS2 displayed

several high frequencies in signatures, including BAP1, mTOR,

KDM5C, DST, CHD4, PTEN and so on (Figure 5A). We also

evaluated somatic alterations in common tumor associated

pathways in two subgroups, including RTK-RAS, Hippo, WNT,

PI3K, NOTCH, MYC, NRF2, TP53, TGF-Beta, and Cell cycle

(28). The results showed that NRF2 and TP53 were affected in

DCS1, while RTK-Ras and PI3K pathways were most affected

in DCS2 (Figure 5B). Interestingly, we found that co-mutation

frequency was lower in DCS1, containing ARID1A-DNAH9

(p < 0.01); while such patterns in DCS2 contained PBRM1-

FLG, MUC16-REV3L, PHF3-REV3L (p < 0.01) (Figure 5C).

Most mutated signatures led protective roles in DCS2, including

MYOM2, REV3L, CHD4, CABIN1, ZFPM2, SETD2, PHF3,

RTTN, UNC80 and BAP1 (Figure 5D). Consistently, the average

tumor mutation burden was higher in DCS2 (Figure 5E).

We also compared the CNV differences between subgroups,

and the results showed that the CNV occurrence frequency was

higher in DCS2 (Figures 6A–C). In detail, amplification in chr

1p, 3p, 3q, 4p, 7p, 7q, 8p, 8q, 10q, 12p, 12q, 14q, 16p, 16q, 19p,

19q, 20p, 20q and 21q, deletion in chr 2p, 2q, 4q, 6p, 6q, 8p, 9p,

9q, 10p, 10q, 11q, 13q, 14q, 16q, 17p, 17q, 18p, 18q, 19p, 19q

and 22q were higher in DCS2. The total copy number alteration

rate also proved such difference (Figure 6D).When it mentioned

to focal, or arm-level mutation level, DCS2 subtypes displayed a

higher rate comparing with DCS1 (Figure 6E).

Drug sensitivity profiles of di�erent DDR
clusters

Drug response data (as defined by IC50 values) were

collected from the GDSC database to analyze drug sensitivity

difference between subtypes. We found that most of the

drugs performed poorly in the DCS2 (Figure 7A), which was

consistent with previous prognostic results. The IC50 was higher

in DCS2 when treated with Axitinib, Crizotinib, Imatinib,

Pazopanib, Temsirolimus, while Dasatinib, Erlotinib, Lisitinib,

Saracatinib, Erlotinib and Gefitinib might be novel therapeutic

targets for such a high-risk subtype. Figures 7B,C showed the top

10 potential drugs with the most significant differences between
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FIGURE 4

Landscapes of specific immune components and immune function scores. (A) Stromal, immune and ESTIMATE scores di�erence between

subtypes. (B,C) EGER.EXPss and immune signature di�erence between DCS1 and DCS2. (D,E) Immune dysfunction and TIDE score between

subtypes. (F) Di�erence of immune therapy response of DCS1 and DCS2.

subgroups. The DCS1 was sensitive to PAC.1, Vinorelbine, and

Embelin, while the DCS2 group responded better to SL.0101.1,

RO.0036, VX.680, and KU.55933. To further assess the results’

reliability and identify novel treatment target, we applied ccRCC

cell lines expression and therapeutic response information from

CCLE datasets. The DDR related signature expression pattern in
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FIGURE 5

Profiles of somatic mutations between the two subtypes. (A) Mutation landscape of DCS1 and DCS2, containing the top 20 mutated signatures.

(B) Oncogenic signaling pathways in DCS1 and DCS2. (C) Co-mutation and -existing mutation pattern in DCS1 and DCS2. (D) Forest plot

showing prognostic impact of mutated signatures between subtypes. (E) Tumor mutation burden di�erence between subtypes.

ccRCC cell lines was similar with patients from DCS1 and DCS2

(Supplementary Figure S5A). The AUC of DCS1 was higher in

FTI-277, KIN001-270, PD-173074 and PAZOPANIB and the

AUC of DCS2 was higher in EHT 1864, GEFITINIB, A832234,

KOBE2602 and ALBOCICLIB (Supplementary Figure S5B). All

those agents might be helpful for precise management of ccRCC

patients, and potential.

Validation of the robustness of subtyping
models using external datasets

Even the re-subtype system of DCS1 and DCS2 in TCGA-

KIRC cohort received promising results, whether such a

classifier could decode the heterogeneity in other datasets

remained unknown. We applied NTP algorithm to perform

re-cluster analysis in three independent cohorts. Cluster-

specific signatures were identified using the nearest template

prediction (NTP) algorithm (Supplementary Table S3) from

TCGA-ccRCC, which divided the ccRCC patients form TCGA-

KIRC, Motzer’s and Miao’s studies into DCS1 and DCS2

subgroups (Supplementary Figures S6A–C). ccRCC patients re-

clustered into DCS2 also owned an inferior prognosis compared

with DCS1, which was consistent with previous survival results.

All these results confirmed the reliability and robustness of our

classification model.

Construction and validation of subtypes’
biomarkers-based risk score

Since the dysregulated DDR expression pattern could

led distinctive clinical outcome and multi-omics level-based

heterogeneity in ccRCC patients. Thus, we next aimed

to develop a novel subtypes’ specific biomarkers related

risk score system. We firstly identified prognostic related

signatures from biomarkers retracted from DCS1 and

DCS2, then we ranked those signatures according to their

contributor importance on OS (Supplementary Figures S7A,B).
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FIGURE 6

Landscapes of copy number variations. (A) Comparison of overall copy number among all patients, DCS1 and DCS2. Orange represents

genomic gain; blue represents genomic loss. (B) Detailed specific amplification or deletion sites between subtypes. Up represents DCS1; Low

(Continued)

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1029509
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jiang et al. 10.3389/fpubh.2022.1029509

FIGURE 6 (Continued)

represents DCS2. (C) The amplification or deletion frequency in chromosome between subtypes. (D) Bar-plot indicating total alteration

frequency. (E) Di�erent burden of copy number gain at focal and arm-level. The *, **, ***, and **** symbols indicate the values of P < 0.05, P <

0.01, P < 0.001, and P < 0.0001 respectively.

FIGURE 7

Drug sensitivity di�erence between DCS1 and DCS2. (A) Distribution of IC50 value of clinical chemotherapy agents. (B,C) Novel identified

molecular agents for DCS1 and DCS2, respectively.

Finally, we constructed a DDRsig = 8.34047∗PLK1-

5.617764∗SMARCA2-6.195526∗MSH3 according to RSFVH

algorithm. Patients in training dataset, TCGA-KIRC, and

test dataset, KIRC-JAPAN, were divided into high-risk

and low-risk subgroups when applying median score as

the cutoff (Supplementary Figures S7C,D). Comparison of

survival probabilities revealed that patients in the high-risk

subgroup all had significantly worse prognosis than the

low-risk subgroup (Supplementary Figure S7E). Area under

the ROC curve was used to evaluate the specificity and

sensitivity of the DDRsig score model in both the TCGA-

ccRCC and TCGA-JAPAN. AUC scores were above 0.7, which

suggested that our model reached a good prognostic prediction

(Supplementary Figure S7F). These results indicate that the

constructed score was reliable enough to be used to assess the

prognosis of ccRCC patients.

DDX1 functions as the core signature in
CcRCC

Considering the regulatory role of DDR-related signatures

and distinctive prognosis between subtypes, we analyzed which

gene was the most important one. Among biomarkers from

DCS2, we observed that DDX1 might play a central role

in ccRCC patients’ prognosis via Random Forest analysis

(Figures 8A,B). Comparing with normal tissues, the expression

level of DDX1 was significantly de-regulated in tumor tissues

(Figure 8C). In addition, we found DDX1 expression level was

lower in late stage and grade tumor tissue (Figures 8D,E).

Across different ccRCC datasets, we revealed that DDX1 could

be treated as a protective factor, especially in TCGA-KIRC

(Figure 8F). To further investigate the biological impact in

ccRCC, we performed GSEA analysis though ORA algorithms
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FIGURE 8

Impact of DDX1 in ccRCC. (A,B) Radom Forest tree indicating the importance of DDR-related signatures. (C) Di�erent expression level of DDX1

in normal and tumor tissues. (D,E) Expression level of DDX1 in di�erent stage and grade tumor tissues. (F) Survival impact of DDX1 in ccRCC

across di�erent datasets. (G) GSEA-hallmark analysis based on DDX1 expression level in ccRCC. (H) Mutation and genomic landscape between

DDX1low and DD1low groups in ccRCC.
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and found that DDX1 was associated with Myc and PI3K-

AKT-MTOR signaling (Figure 8G). To explain the aberrant

expression of DDX1 in ccRCC, we divided all ccRCC patient

to DDX1low and DDX1high according to median expression

level; And found that mutation frequency of PTEN, both of

gain and loss in chromosome were higher in DDX1low subtype

(Figure 8H).

Discussion

Clear cell renal cell carcinoma (ccRCC) is characterized

by extreme high level of heterogeneity, which is one of the

reasons for the unsatisfactory results of immunotherapy (29).

Therefore, there is an urgent need to distinguish molecular

subtypes of ccRCC and to predict patient prognosis and

enhance immunotherapeutic response. DNA damage signature

and its associated repair mechanisms lead a pivotal role

in carcinogenesis, as most oncogenic alterations (including

mutations, translocations, amplifications and deletions) in

human are derived from inefficient repair of damagedDNA (30).

It is involved in all processes from early precancerous lesions

to metastasis of tumors and has altered functions, manifesting

as tumor suppressor in early stages and as tumor promoter

in late tumor stages (31–33). And it has been shown that

mutations in DDR are associated with tumor resistance to

radiotherapy (34).

The function of DDR pathway is diverse, while the studies

based on DDR molecular clustering in ccRCC remain few

and unknown. In this study, we analyzed DDR regulatory

signatures in multi datasets at multi omics level. We observed

that DDR related signatures were significantly upregulated

in various cancer tissues compared to paraneoplastic tissues,

which were associated with genomic mutations and epigenetic

modifications. Based on the expression of DDR related

signatures, ccRCC patients can be classified into two different

DDR regulatory clusters (DCS1 and DCS2). Between them,

the DCS2 cluster has a poor survival probability, which

may be related to its higher tumor mutation burden,

activated metabolic profile and immunosuppressive status.

In addition, the prognostic risk model constructed based

on subgroup characteristics achieved good results in both

training and validation cohorts; in addition, the predictive

accuracy in 1-, 3- and 5-year OS was higher than previous

prognostic models (20, 35, 36). Finally, we analyzed the

core signature in the DDR gene set and found that DDX1,

as a pivotal prognostic factor in the DDR axis, played

a good prognostic predictive role and can be a reliable

ccRCC target.

Immune checkpoint inhibitors (ICI) combined with tyrosine

kinase inhibitors (TKI) have become the first-line treatment

for ccRCC. However, only some patients respond well to

the therapy, and the objective response rate varies between

different drug combinations with the range of 41–71% (37–

39). One possible solution is combination therapy, in which

DDR modulation targets may cooperate with immunotherapy.

Strong evidence suggests that defects in DDR-related signaling

pathways cause genetic instability, increase tumor mutational

load (TMB), generate more mutation-associated neoantigens

(MANAs) that are easily recognized by the immune system,

and thus enhance the efficacy of immune checkpoint inhibitors

(40, 41). Meanwhile, when DDR is absent, the damaged

DNA enters the cytoplasm and activates the CGAS-STING

signaling pathway, which is related to the activation of

innate immunity and CD8+ cytotoxic T cells and mediates

tumor immunity (42, 43). Mutations in DDR also induce

the expression of some proteins on the cell surface to help

tumors evade immune surveillance, such as NKD2D (44).

Our previous analysis also identified activation of pathways

related to protein secretion and protein targeting to membrane.

Therefore, the DDR pathway can inhibit immune response by

reducing the production of tumor neoantigens and inhibiting

the CGAS-STING signaling pathway, which is consistent with

our findings of DCS2 clusters. It expresses lower levels of

immune cell infiltration and is marked by suppressive status

in immunity.

Although there are multiple types of DNA damage,

dMMR (defective DNA mismatch repair) remains the only

genomic biomarker proven to respond to ICI (45). In

addition to this, novel drugs targeting DNA repair proteins,

including PARP inhibitors and inhibitors of ATM, ATM and

ATR, as well as CHK1, may also play a role with the

combination of ICI. PARP inhibitors have been observed to have

immunomodulatory effects in tumors, including upregulation

of PD-L1 expression in preclinical models and increased

CD8+ and NK cell infiltration, suggesting a possible role

in combination with ICI (46, 47). Clinical trials of PD-

(L)1 inhibitors in combination with PARP inhibitors were

underway to further evaluate the activity of such combination.

Friedlander et al. conducted a phase I clinical trial with

49 cases of the PD-1 inhibitor tesilizumab in combination

with the PARP inhibitor pamiparib for the treatment of

advanced cancers with possible DNA damage repair defects.

The preliminary results showed an ORR of 20% and a clinical

benefit rate of 39% (48). The ongoing phase II MEDIOLA trial

is evaluating the efficacy of the PD-L1 inhibitor durvalumab

and the PARP inhibitor olaparib in cancers with BRCA1

/2 mutations, with results showing a 12-week DCR of 80%

(49). Our results showed that DDR-related signatures were

aberrantly upregulated in DCS2 as an immunosuppressive

subtype. Combined inhibition of DDR and immune checkpoints

may increase tumor genomic instability, reshape the ccRCC

microenvironment, and promote drug action by restoring

immune homeostasis.

In addition to DNA damage repair, ubiquitination and cell

cycle-related genes also play important roles in maintaining
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genomic stability, cancer development and drug resistance

(50). Similarly, our study also found that in addition

to immune infiltration, DDR is also involved in protein

metabolism, cell cycle and other cancer signaling pathways.

DCS2 is associated with ribosome production and protein

ubiquitination, which affects the metabolism of protein. Post-

translational modifications can identify abnormal translated

proteins and degrade them, preventing the accumulation

of DNA damage (51, 52). The core pathways of DDR,

ATM, ATR and DNA-PKcs, function by phosphorylating

proteins and thus generating cascade reactions (53). The

ubiquitination modification also plays an important role

in genome stabilization (54). Wu et al. found that the

deubiquitinating enzyme USP37 can act with the helicase

BLM to regulate the DNA damage response (55), and Kim

et al. also found that ubiquitin enzyme play an important

role in poly (ADP-ribose) (PAR) repair of DNA damage (56).

Ubiquitination is also closely related to cancer, among which

ubiquitination regulation by tumor inhibitor p53 is one of the

classical pathways (57). Xu et al. showed that circPOLR2A

regulated UBE3C-mediated ubiquitination and degradation of

PEBP1 protein, which then activated the ERK pathway to

promote RCC progression (58). DCS2 is also associated with

cell cycle genes such as chromosome segregation, and the

cell cycle has an important role in genomic stability, which

prevents the proliferation of cancer cells in three main ways:

(i) stimulating abnormal homologous recombination in the

G1 phase of cancer cells; (ii) inducing mitotic mutations in

cancer cells; or (iii) deleting cell cycle checkpoint (50). The

cell cycle also plays an important role in the development

of RCC. Kulkarni et al. found that overexpressed lncRNA

TCL6 could inhibit cell proliferation and migration/invasion

by interacting with miR-155 and induce cell cycle arrest and

apoptosis (59). Li et al. found that restoring the expression of

microrNA-99a could induce cell cycle arrest in G1 phase in

vitro and inhibit the proliferation of RCC (60). In addition,

p53 is an important protein that regulates the cell cycle,

and it is also involved in the proliferation and metastasis of

RCC (61–63).

ccRCC is one of the tumors with a high mutational burden.

The biological functions of DDR genes are associated with

genomic mutations. The DCS2 subtype has a higher mutation

frequency than the DCS1. It retains several high frequency

mutated genes, including BAP1, mTOR, and KDM5C. In

ccRCC, BAP1 is a key tumor suppressor gene that is involved

in some important biological process including DNA repair

and transcription in the nucleus, and regulating cell death

and mitochondrial metabolism in the cytoplasm, and promotes

tumor development when mutated in somatic cells (64). In

RCC, BAP1 is the gene with the fourth highest mutation rate

and is closely associated with the proliferation and metastasis

of RCC (65–67). mTOR gene is also one of the classical

mutated genes in RCC, and the drug sirolimus against this

target has been approved for the treatment of RCC (68). And

a recent study found that in a mouse model, mTOR activation

combined with p38MAPK-p53 / p16 axis inactivation can

trigger renal cell carcinoma like that in humans, suggesting

an important role in tumorigenesis (63). KDM5C, a histone

demethylase gene, is involved in regulating a variety of biological

processes. Zheng et al. showed that kDM5C mutation promotes

ccRCC proliferation by remodeling glycogen metabolism and

inhibiting ferroptosis (69). RTK-RAS and PI3K are the most

affected oncogenic pathways in DCS2. Both pathways are typical

oncogene mutation pathways that play an important role in the

development of RCC. The copy number variation was higher

in DCS2. Fernandes et al. reported that the most significant

copy number alterations in ccRCC were loss of 3p (87.3%),

14q (35.8%) and 6q (29.3%) and increase in 5q (59.7%),

7p (29.3%) and 16q (20.6%). There were 19 related genes

localized to important regions of CNA, including SETD2, BAP1,

FLT4, PTEN, FGFR4, and NSD1 (70), which is consistent with

our findings. Thus, DDR-related genes are involved in tumor

heterogeneity through crosstalk with genomic mutations.

As mentioned previously, DDR-related genes affect the

efficacy of antitumor drugs. Different subtypes of ccRCC

patients have different sensitivity to drugs, which may provide

some guidance for clinical treatment. We identified several

potential molecular inhibitors for DCS2 subtypes which is

insensitivity to many drugs. Ribosomal S6 Kinase (RSK)

inhibitor SL.0101.1, aurora kinase inhibitor VX.680, and

inhibitor KU.55933, which targets ATM Kinase, the core

pathway of DDR, were more effective in the treatment

of DCS2.

We constructed a risk score model to predict prognosis,

which included three key differential genes, PLK1, SMARCA2

and MSH3. PLK1 plays a key role in mitosis, and then affects

cell proliferation, which is closely related to the occurrence

of a variety of cancers. A variety of PLK1 inhibitors have

entered clinical trials (71). Chong found that SMARCA2

could regulate the activity of multiple myeloma by interacting

with NSD2 (72). MSH3 is closely related to the occurrence

and development of colorectal cancer (73–75). Interestingly,

we found that DDX1 may play a central role in DDR

axis signaling. It is an ATP-dependent RNA helicase (76).

Han et al. found that CircLONP2 can recruit DiGeorge

syndrome critical region gene 8 (DGCR8) and Drosha complex

through DDX1. They interacted with microRNA-17 (pri-miR-

17) and promotes its processing, which enhanced colon cancer

aggressiveness (77).

Although our study clarified the characteristics of DDR

regulators in ccRCC, there are still some limitations. Most

of our findings are based on comprehensive bioinformatics

analysis, and further experiments are needed to verify the

upstream and downstream molecules and related pathways

regulated by DDR. In addition, the prediction model may be

influenced by some confounding factors, such as race and
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region. More independent datasets are needed to validate our

risk model.

Conclusion

In summary, we identified two molecular clusters of ccRCC

based on DDR and comprehensively explored the role of

DDR-regulated signatures in RCC. Under certain conditions,

inhibition of DDR-related genes may become an appropriate

cancer treatment. By increasing the instability of tumor

genome, increasing the exposure of tumor-associated antigens,

and activating immune-related pathways, the tumor immune

microenvironment can be reshaping to enhance the efficacy

of ICI and reduce the occurrence of drug resistance. Our

study contributes to a better understanding of the relationship

between DDR and ccRCC and provides clinical guidance for the

management of ccRCC.
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