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Objective: Tracking global health funding is a crucial but time consuming and

labor-intensive process. This study aimed to develop a framework to automate

the tracking of global health spending using natural language processing (NLP)

and machine learning (ML) algorithms. We used the global common goods for

health (CGH) categories developed by Schäferho� et al. to design and evaluate

ML models.

Methods: We used data curated by Schäferho� et al., which tracked the

o�cial development assistance (ODA) disbursements to global CGH for 2013,

2015, and 2017, for training and validating the ML models. To process raw

text, we implemented di�erent NLP techniques, such as removing stop words,

lemmatization, and creation of synthetic text, to balance the dataset. We

used four supervised learning ML algorithms—random forest (RF), XGBOOST,

support vector machine (SVM), and multinomial naïve Bayes (MNB) (see

Glossary)—to train and test the pre-coded dataset, and applied the best model

on dataset that hasn’t been manually coded to predict the financing for CGH

in 2019.

Results: After we trained the machine on the training dataset (n =

10,534), the weighted average F1-scores (a measure of a ML model’s

performance) on the testing dataset (n = 2,634) ranked 0.79–0.83 among

four models, and the RF model had the best performance (F1-score =

0.83). The predicted total donor support for CGH projects by the RF model

was $2.24 billion across 3 years, which was very close to the finding of

$2.25 billion derived from coding and classification by humans. By applying

the trained RF model on the 2019 dataset, we predicted that the total

funding for global CGH was about $2.7 billion for 730 CGH projects.
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Conclusion: We have demonstrated that NLP and ML can be a feasible and

e�cient way to classify health projects into di�erent global CGH categories,

and thus track health funding for CGH routinely using data from publicly

available databases.

KEYWORDS

classification, natural language processing, machine learning, global common goods

for health, o�cial development assistance

Key messages

What is already known on this topic

• Estimating global health financing flows is an essential

foundation for advocacy efforts and policymaking.

• There have been many efforts to improve the transparency

of the flows of official development assistance (ODA),

including establishing publicly available databases of ODA,

such as the Organization for Economic Cooperation and

Development (OECD) Creditor Reporting System (CRS).

• However, such databases do not capture all the targets

of global health spending, such as global common goods

for health (CGH). Tracking CGH is a time consuming

and labor-intensive process that involves reading detailed

project reports and manually categorizing individual

aid activities.

What this study adds

• We developed a machine learning architecture to track

the global financing for CGH and compared the machine

classified CGH projects with human classifications. We

then applied the trained machine learning algorithm to

predict the global financing for CGH.

• After we trained the machine on the training dataset (n

= 10,534), the weighted average F1-scores on the testing

dataset (n = 2,634) ranked 0.79–0.83 among four models.

The predicted total donor support for CGH projects by the

RF model was $2.24 billion across 3 years, which was very

close to the finding of $2.25 billion derived from coding and

classification by humans.

• By applying the trained RF model on the 2019 dataset, we

predicted the total funding for global CGH was about $2.7

billion for 730 CGH projects.

How this study might a�ect research,
practice or policy

• We have demonstrated that NLP and ML can be a

feasible and efficient way to classify health projects into

different global CGH categories, and thus track health

funding for CGH routinely using data from publicly

available databases.

• By tracking the global financing for CGH, we provided

evidence to support the advocacy efforts on increasing the

funding for CGH.

Introduction

Estimating global health financing flows is an essential

foundation for advocacy efforts and policymaking. Reliable

estimates enable evidence-based decision making and identify

critical financing gaps in the global health architecture. There

have been many efforts to improve the transparency of the flows

of official development assistance (ODA), including establishing

publicly available databases of ODA, such as the Organization

for Economic Cooperation and Development (OECD) Creditor

Reporting System (CRS).

However, such databases do not capture all the targets of

global health spending, and therefore researchers must come

up with innovative ways to estimate the amount of global

health funding that targets specific purposes. One example

is funding for global common goods for health (CGH)—

defined as activities that provide transnational health benefits,

such as pandemic preparedness and response, knowledge

generation and sharing, and tackling antimicrobial resistance.

The WHO published a special series in 2019 highlighting

the importance of funding common goods (1). One paper in

the series by Schäferhoff et al. attempted to estimate ODA

disbursements to global CGH in three different years (2013,

2015, and 2017) (2). The estimates, while robust, required a

very labor-intensive process of reading detailed project reports

and manually categorizing individual aid activities. Machine

learning methods could be a powerful tool to help such

investigations, providing extra automated quality control and

eventually allowing estimations over a longer time period with

minimal additional labor inputs.

One example of applying machine learning in estimating

and categorizing financial flows is by the Institute for Health

Metrics and Evaluation (IHME). In 2020, IHME published

a report on the impact of COVID-19 on financing global

health (3). The report used machine learning (ML) and natural
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language processing (NLP) (see Box 1, Glossary) to make

predictions for how the pandemic would affect development

assistance for health. Moreover, many studies in healthcare have

used ML and NLP to automate different tasks or find patterns in

large datasets. For example, Weikert et al. used NLP techniques

as well as convolutional neural network (CNN), support vector

machine (SVM), and random forest (RF) algorithms to classify

unstructured radiology reports, obtaining a high accuracy (16).

Kim et al. applied NLP techniques based on deep learning

(neural networks) to find information from online resources

and articles to quickly identify potential outbreaks of infectious

disease (17). The authors were able to achieve an accuracy

of above 90% for all the ML models in identifying infectious

disease outbreaks.

However, getting quality training data is always a challenge

inML projects. The dataset created by Schäferhoff et al. provided

us with a readily available resource to test our hypothesis–

whether NLP and ML tools could be used to help track CGH

funding. In this study, we aimed to design and implement a

ML pipeline based on NLP techniques to automate Schäferhoff

et al.s’ manual categorization method for estimating funding for

CGH (2) (Box 2). We then applied the newly developed ML

framework to the 2019 OECD CRS database to estimate funding

(ODA disbursements) for CGH in that year.

Methods

The three main steps of a ML approach are training,

validating and testing the ML model. Figure 1A captures the

pipeline of the machine learning approach implemented in the

current analysis. We describe each step in more detail below.

Our first step was to use a dataset that was classifiedmanually

to train and validate the ML models. We used data from 2013,

2015, and 2017 from the OECD CRS database obtained from

Schäferhoff et al. to train the model. We applied the data

preprocessing and cleaning steps shown in Figure 1A. Then

we explored four ML models to train on the pre-processed

data. Once the chosen models were trained and validated, we

measured the performance of the validated models on a set of

test data, previously unseen by these ML algorithms, to evaluate

and understand their performance when applied to real world

data. Finally, we applied the trained model with the highest

weighted average F1 score to a new 2019 dataset obtained from

the OECD CRS database, unseen by the trained model, to

estimate the funding for CGH in that year (see Box 1, Glossary).

Data collection

We collected two types of data from the OECD

CRS database:

BOX 1 Glossary of terms.

Machine learning: Machine Learning is the science (and art) of

programming computers so they can learn from data (4).

Natural language processing: Natural language processing is the study

of computer programs that take natural, or human, language as the input

(5).

Supervised learning: Supervised learning is a subcategory of machine

learning. It is defined by its use of labeled datasets to train algorithms to

classify data or predict outcomes accurately (6).

Support vector machines: A set of supervised learning methods used for

classification, regression and detection of outliers (7).

Random forest classifiers: Random forest is a commonly-used

supervised machine learning algorithm that combines the output of

multiple decision trees to reach a single result (8).

Multinomial naïve Bayes (MNB): A Bayesian classifier and is often used

for text classification (9).

XgBoost: Stands for extreme gradient boosting and is an optimized

distributed gradient boosting machine learning algorithm under gradient

boosting framework (10).

Deep learning: A specific subfield of machine learning: a new take on

learning representations from data that puts an emphasis on learning

successive layers of increasingly meaningful representations (11).

Neural networks: In deep learning, the layered representations are

learned via models called neural networks, structured in literal layers

stacked on top of each other (11).

Convolutional neural network:A class of deep learningmethods that has

become dominant in various computer vision tasks (12).

Feature engineering: The process of using the domain knowledge to

come upwith good sets of features formachine learning algorithm to train

(4).

Vectorization: A process that enables machines to understand raw data

by converting them into meaningful numerical representations (13).

Tokenization: The process of breaking down raw text into tokens i.e.,

words, characters, etc.

Lemmatization: The use of a vocabulary and morphological analysis of

words, normally aiming to remove inflectional endings only and to return

the base or dictionary form of a word, which is known as the lemma (14).

Cross-validation: A statistical method of evaluating generalization

performance that is more stable and thorough than using a split into a

training set and a test set. In cross validation, the data are split repeatedly,

and multiple models are trained. The most commonly used version of

cross-validation is k-fold cross-validation, where k is a user-specified

number, usually 5 or 10 (4).

Precision: Attempts to answer the question “what proportion of positive

identifications was actually correct?” (15)

Recall: Attempts to answer the question, “what proportion of actual

positives was identified correctly?” (15)

F1 score: The harmonic mean of precision and recall (4).

Pre-coded data

For training, validating, and testing the model, we used the

dataset created by Schäferhoff et al. that was originally extracted

from the OECD CRS database (19, 20), using the health

focused purpose codes. The initial dataset that we obtained from

Schäferhoff et al. included 24,681 projects with information on

financing by funders for health-related projects in 2013, 2015,

and 2017. For this new study, we used an earlier version of

Schäferhoff et al.’s dataset—the number of projects in this earlier

version is not exactly the same as in the final version. The small

discrepancy is unlikely to affect our results.
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BOX 2 Schäferho� et al.s’ manual categorization method for

estimating funding for CGH.

Schäferhoff et al. tracked international funding for CGH using the

taxonomy developed by The Lancet Commission on Investing in

Health, which divided global functions into three broad categories:

provision of global public goods for health, managing negative regional

and global externalities, and fostering leadership and stewardship

(18). Schäferhoff et al. further divided these three categories into 11

categories of CGH (Annex 1). They used the OECD CRS database to

access information about projects funded by health aid. The authors

downloaded projects with purpose codes for “aid to health”: “health,

general (purpose code 121),” “basic health (purpose code 122),” and

“population policies/programmes and reproductive health (purpose code

130)”. They also accessed humanitarian aid purpose codes (72010, 72040,

72050, 73010, and 74010) to make sure that any funding for epidemic

and pandemic preparedness and response (a critical CGH) was also

included in the analysis. To understand time trends in funding for CGH,

Schäferhoff et al. downloaded projects for the years 2013, 2015, and 2017

from the OECD CRS database that had the above-mentioned purpose

codes.

The authors manually classified the projects from these 3 years into 11

CGH categories. They then calculated the amount of funding that was

targeted at each of these 11 categories.

Data for application

We extracted 2019 health-related data following the strategy

outlined by Schäferhoff et al. (Annex 1; Box 2). This step was

an application of the final selected model (the best performing

model on the test data) on a new dataset—one that had not been

manually coded. The downloaded data included information on

the donor’s name, recipient name, purpose code, project long

and short description, project title, and funding amount for

each project.

As noted in Annex 1, we included projects under the

purpose code 16064 (“social mitigation of HIV”), and under

the humanitarian purpose codes 72010, 72040, 72050, 73010,

and 74020. Projects with these five humanitarian purpose codes

were included in order to capture all funding for epidemic and

pandemic response (not just funding via the health sector).

Definitions

We used Schäferhoff et al.’s eleven categories of CGH

(2) for training and testing the ML models. In addition to

the eleven categories, we created an extra category called

“not a global function”. This category included projects that

did not fall into any of the predefined eleven classes. The

eleven categories of global CGH were (1) R&D of new health

tools; (2) development and harmonization of international

health regulations; (3) knowledge generation and sharing; (4)

sharing of intellectual property; (5) market shaping activities;

(6) epidemic and pandemic preparedness and response; (7)

responses to antimicrobial resistance; (8) responses tomarketing

of unhealthful products; (9) control of cross border disease

movement; (10) health advocacy and priority setting; and (11)

promotion of aid effectiveness and accountability (further details

can be found in Annex 2).

Data/text cleaning, splitting, and
preprocessing

We applied several data cleaning and preprocessing steps to

prepare the data for the analysis. These steps were applied to

both the pre-coded data used for training and testing themodels,

and the 2019 data used for application of the pretrained model.

Data cleaning

We removed five types of projects (n = 11,513) from the

analysis (Figure 1A):

(1) Language: For the current analysis, we focused only on

projects described in the English language. Therefore, we

removed all the projects that had a project description in a

language other than English (n= 2,729).

(2) No, unclear, or short description: We excluded projects

with no, an unclear or only a short text description for a

manual coder to classify the projects (n= 5,017).

(3) Duplicated projects: We dropped duplicated projects as

these would not provide new knowledge to the ML model

(n= 3,596).

(4) Negative funding value: In the dataset, some projects

had a negative funding amount as the loan repayments for

these projects are higher than newODA.We excluded these

projects from the analysis (n= 162) (21).

(5) Categories with few observation/projects: An imbalance

in the number of projects among different categories could

result in biased predictions toward a category with a

large number of projects (22). For example, “Knowledge

generation and sharing” had the largest number of

observations with 4,003 projects, whereas “Epidemic and

pandemic preparedness and response” and “R&D of new

health tools”, were the second and third largest CGH

categories with 1,795, and 1,706 projects, respectively

(Annex 3). We decided to drop “Sharing of intellectual

property” (n = 9) and “Responses to antimicrobial

resistance (n = 0)” from the database as the ML algorithm

would not be able to learn anything meaningful from

these classes.

Splitting datasets into separate training and
testing sets

After data cleaning, 13,168 projects were eligible for analysis

and were randomly divided into two datasets: 80% (n = 10,534)

went into the training set and 20% (n= 2,634) into the test set.
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FIGURE 1

(A) Machine learning pipeline for global CGH classification. (B) Machine learning pipeline for predicting CGH categories in 2019 data.
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A training dataset was used to train the ML model and

inform its future predictions. We included a large portion

of the projects in the training set so that there would be a

diverse dataset to train the ML models, which could increase the

prediction accuracy.

The text pre-processing steps were implemented separately

on the training and testing datasets (Figure 1A). The steps were

implemented separately to avoid information leakage to the

ML model—to make sure that the ML algorithm only saw

the training dataset, and the test dataset remained completely

unknown to the algorithm. Finally, the test set was used to gauge

the performance of the chosen model.

Pre-processing

We included pre-processing steps, including combining

information from different columns in the dataset and creating

synthetic text to balance the data in each CGH category.

We also undertook several standard procedures in NLP

tasks, including feature engineering, tokenization, punctuations

and stop word removal, lemmatization and vectorization

(see Box 1, Glossary) (23, 24). These standard steps should

be implemented before executing a model for it to learn

meaningful information from the data. Figure 1A shows the

preprocessing steps undertaken on the training and test datasets,

respectively. More information on each data preprocessing step

is given below:

(1) Combining information: Project title, purpose code,

long and short descriptions carry relevant information

from which a ML model can learn about the project.

Therefore, we concatenated all these variables to create a

single description and used the combined text for training

the model. There was no change in the number of projects

in each subcategory after the implementation of this

preprocessing step.

(2) Creating synthetic projects/text: After the data cleaning

steps, an imbalance in the number of projects among

different categories remained (see Annex 4). We applied

the synonym replacement technique to create synthetic text

to balance the categories and thus reduce the potential bias

caused by imbalanced data (25). Specifically, we created

artificial projects by replacing certain words with their

synonyms in the original project description (26, 27).

This step created new observations using the already

available information in the original project descriptions.

The synthetic text was created only for the training dataset.

For the training set we created 14,249 new projects using

this technique to balance the dataset. As a result, the total

number of projects in the training data increased to 24,783.

(3) Feature engineering: In addition to the already existing

features in the training data, new features can be created

and added to the dataset to help the ML classifiers

to learn the underlying structure of text description in

each category. New features can be created based on

expert knowledge about the data which could help in

differentiating projects into different categories. Based on

our understanding of the dataset, we created three new

features for each project description–number of characters,

number of sentences, and the percentage of punctuations.

(4) Tokenization: By this stage, we had project descriptions

as text, which was a collection of words, punctuations, and

white spaces. But for the ML algorithm, these are just a

collection of one long string of characters, which does not

provide any useful information. Therefore, we tokenized

the project description i.e., we split the text in each project

description by the white spaces. Now, instead of having a

long string of text, we had a list of tokens (without any

white spaces), which helps the model to learn better from

each word.

(5) Removing punctuations and stop words: After we

tokenized the text, we got a list of tokens for each project

description. However, some words or tokens could be more

important than the other. For example, words such as the,

am, a, an, and, of, or, etc. appeared very frequently in

any text but did not add much to the information. These

words are stop words and we removed stop words so as to

let the ML algorithm focus more on pivotal words in the

project description. Removing the stop words still captured

the important information in the sentence but reduced

the number of tokens that the algorithm had to look at

to capture the relevant information. The same argument

applied for the removal of punctuation from the text as

its deletion did not impact the information available in the

remaining tokens.

(6) Lemmatization: After removing punctuations and stop

words, we implemented lemmatization (14). The process of

lemmatization helped the algorithm understand that words

such as grew, grow and growing all have the same semantic

meaning. Therefore, with lemmatization we replaced the

words with same semantic meaning into their base word.

This helped in reducing the corpus of words that the ML

model was exposed to, in order to explicitly correlate words

with similar meaning. This reduced the number of tokens

that an algorithm needs to learn from and allowed it to

focus on the most pivotal words in the text.

(7) Vectorization of the raw text:We had a list of tokens that

the model could use to learn from. But the algorithm still

only took them as characters, and it was not able to learn

from a list of characters. Therefore, we converted the text

tokens into a format that an algorithm could use to build

a model. This process is called vectorizing. Vectorizing

encodes the text as integers to create feature vectors.

A feature vector is a n-dimensional vector of numerical

features that represents some object. Simply stated, we took text
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tokens of each project description and converted them into a

numeric vector that represents this text in a way the algorithm

can understand and use to train the model. In our analysis, we

used the Term frequency-inverse document frequency (TF-IDF)

method for vectorizing the text for each project as this is the

most widely used algorithm (28, 29). TF-IDF creates a document

termmatrix, where there is one row for each project description,

and the columns represent single unique terms/tokens. Each cell

in this matrix has a number that represents a weighting that

identifies how important a word is to each project description.

The following formula shows how the weighting of each word in

the text is determined:

wi,j = tfi,j∗ log(
N

dfi
)

tfi,j = number of times i occurs in j divided by total number

of terms in j

dfi = number of documents containing i

N = total number of documents

We used R (The R Foundation, Vienna, Austria), RStudio

(RStudio, Boston, Massachusetts), and Python for data pre-

processing and analysis.

Data analysis/classification

Training

For training, we explored four supervised learning

algorithms—random forest (RF), XGBOOST, support vector

machine (SVM), and multinomial naïve bayes (MNB) (10, 30).

We also implemented 5-fold cross validation for performance

evaluation during the model training, and for parameter tuning

of various ML algorithms. Accuracy, precision, recall, and

F1-score are generally used statistical tests for validating models

in a multiclass classification task (31). To balance both precision

and recall for our final prediction, we used the weighted average

F1-score as the metric to compare and pick the best ML model

for the current multiclass classification task.

Testing

After training and validation, we applied the selected ML

model on the 20% unseen projects in the test dataset as the

final step in model evaluation. Except for the data preprocessing

step of creating synthetic text, all other steps were implemented

separately on both the training set and test set (Figure 1A).

Synthetic text was only created to balance the training dataset,

and we kept the test data as completely unseen. Once the test

data were classified using the selected model, we calculated

the aggregated amount of funding for each CGH category and

compared the ML classified results with those coded manually.

Application of pretrained, and tested
model

The last step of this study was to apply the pretrained

and tested ML model to the 2019 dataset that was not coded

manually. The purpose of this final step was to estimate

the funding for CGH using the pretrained and tested ML

model. We downloaded the health projects for 2019 for the

same purpose codes as described in the methods sections. We

excluded non-communicable disease (NCD) projects from the

2019 data as these projects were not available in the training

dataset. However, it is technically feasible to include the latest

purpose code in the training dataset to retrain the model in

future analyses.

There were 2,233 projects in the 2019 dataset. We

followed most of the same data processing procedure as

TABLE 1 F1-scoresa of RF, XgBOOST, SVM, and MNB.

Categories

(number of

projects)

RF XgBOOST SVM MNB

R&D of new health tools

(330)

0.73 0.74 0.73 0.72

Development/

harmonization of

international health

regulations (53)

0.82 0.85 0.79 0.76

Knowledge generation

and sharing (585)

0.76 0.78 0.76 0.73

Market shaping activities

(224)

0.96 0.97 0.96 0.93

Epidemic and pandemic

preparedness and

response (328)

0.88 0.89 0.86 0.82

Responses to marketing

of unhealthful products

(60)

0.81 0.86 0.80 0.77

Control of cross border

disease movement (310)

0.95 0.94 0.91 0.85

Health advocacy and

priority setting (203)

0.91 0.90 0.88 0.87

Promotion of aid

effectiveness and

accountability (57)

0.48 0.48 0.56 0.65

Not a global function

(484)

0.80 0.80 0.78 0.77

Total weighted average

(2,634)

0.83 0.83 0.81 0.79

aThe model with higher F1 score has the better performance.
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TABLE 2 Comparing human and machine classified CGH funding (in million USD).

CGH categories Human classified

funding (number

of projects)a

Machine classified

funding (number

of projects)b

Absolute change between

human classified and

machine predicted

fundingc

Percentage change

between human classified

and machine predicted

funding (%)d

R&D of new health tools 293.64 (330) 316.07 (394) 22.43 7.64%

Development/harmonization

of int. health regulations

22.02 (53) 19.17 (52) 2.85 −12.94%

Knowledge generation

and sharing

222.27 (585) 220.50 (588) 1.77 −0.80%

Market shaping activities 611.52 (224) 628.95 (218) 17.43 2.85%

Epidemic and pandemic

preparedness and

response

276.48 (328) 271.72 (301) 4.76 −1.72%

Responses to marketing

of unhealthful products

18.40 (60) 21.81 (54) 3.41 18.53%

Control of cross border

disease movement

527.31 (310) 485.64 (310) 41.67 −7.90%

Health advocacy and

priority setting

242.07 (203) 239.70 (202) 66.93 −0.98%

Promotion of aid

effectiveness and

accountability

32.14 (57) 35.69 (26) 3.55 11.05%

Total CGH 2,245.85 (2,150) 2,239.25 (2,145) 6.60 −0.29%

Not a Global function 905.36 (484) 911.98 (489) 6.62 0.73%

aThe values in the bracket are Schäferhoff et al. manually classified projects in each CGH category in the test set. Funding in each category was calculated using manually classified projects

in the test set.
bThe RF model was used to predict the CGH category for each project in the test set. The values in the bracket are the machine predicted projects in each category. Funding in each CGH

category was calculated using the machine predicted projects in the test set.
cDifference between machine predicted funding and human classified funding for each CGH category.
dPercentage change: (Machine classified funding - Human classified funding)/Human classified funding.

undertaken for the test dataset. After the preprocessing

step we included 2,013 projects in the analysis. We used

the selected pretrained and tested model to classify the

projects in the 2019 data into different CGH categories.

Figure 1B shows the pipeline of predicting CGH classifications

for the unseen 2019 dataset using a pretrained and tested

ML model.

Results

The cleaned dataset with 13,168 projects comprised of 10

categories—nine CGH and one “not a global function” category.

In the first part of the results section below, we report findings

from the training and testing of ML models, including the F1-

scores for the four ML algorithms and comparison between the

human and machine classified CGH funding. In second part,

we report prediction of CGH classifications for 2019 using the

pretrained and tested ML model.

Part 1: Training and testing of ML models

We trained the four ML models on the training dataset and

tested the performance on the test datasets. Table 1 shows the

F1-scores for the four ML algorithms for each CGH category on

the test dataset. The total average weighted F1-score on the test

dataset was highest for the RF and XgBOOST algorithms (0.83),

indicating better performance. RF was finally selected for the

final application to 2019 data because it takes less time to train.

Using the selected RF model, we predicted the category for

each project in the test dataset. The total donor support for CGH

projects predicted by the RF model was $2.24 billion across 3

years, which was very close to the finding of $2.25 billion derived

from coding and classification by humans. Table 2 presents the

comparison between the predicted and human classified CGH

funding amount, and the number of projects in each category in

the test set.

In classification of the test data, the number of projects

predicted by the ML model and the human coder were
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FIGURE 2

Confusion matrix to compare the human classified (True Label) and ML prediction (Predicted Label) projects.

similar in most CGH categories. However, there were some

misclassifications of projects from one CGH category into

another. To capture this misclassification, a confusion matrix

(Figure 2) was used, which provides two important pieces of

information: (1) the number of projects from each category

that were incorrectly classified, and (2) the categories into

which these misclassified projects were placed. In Figure 2,

“True Label” rows indicate the projects classified by a human

classifier, and the “Predicted Label” columns list the projects

classified by the ML model, disaggregated by CGH categories.

The diagonal of the matrix shows the actual number of

projects that matched the predicted projects in a category.

For example, as per the human classifier, “promotion of

aid effectiveness and accountability” had 57 projects. Of

these 57 projects, only 20 projects (diagonal) were correctly

predicted by the RF model, 33 projects were misclassified into

“knowledge generation and sharing,” one project each was

misclassified into “development/ harmonization of international

health regulations” and “responses to marketing of unhealthful

products,” respectively, and two projects were misclassified as

“not a global function.” Figure 2 shows similar misclassifications

for other CGH categories.

Part 2: Application

The RF model was chosen for application to the 2019 data

as it showed the best performance on the test data. Table 3

shows the number of predicted projects in the 2019 data

classified into various CGH categories. The largest number of

projects predicted by the model was in “Health advocacy and

priority setting,” followed by “Control of cross border disease

movement” and then “R&D of new health tools.” The funding

for “Health advocacy and priority setting” at about $2 billion

was many times more than the second highest funded category

of “Control of cross border disease movement.” The funding

for “Control of cross border disease movement” was about two-

and -half times more than the funding for “R&D of new health

tools.” The model predicted zero projects for “Promotion of aid

effectiveness and accountability.” The total predicted funding
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TABLE 3 Predicted projects and funding in di�erent categories in

2019 by RF model.

Categories Predicted

number of

projects (N)

Predicted funding

(in million USD)

R&D of new health tools 116 112.17

Development/

harmonization of int.

health regulations

6 5.35

Knowledge generation and

sharing

102 34.01

Market shaping activities 27 45.12

Epidemic and pandemic

preparedness and response

115 97.08

Responses to marketing of

unhealthful products

8 13.56

Control of cross border

disease movement

139 293.67

Health advocacy and

priority setting

217 2,091.06

Promotion of aid

effectiveness and

accountability

0 0

Total CGH 730 2,692.02

Not a Global function 1,283 1,062.22

Total 2,013 3,754.24

for global CGH in 2019 was about $2.7 billion for a total of

730 CGH-related projects, less than the funding for CGH in

2017, 2015, and 2013 reported by Schäferhoff et al. (these authors

estimated funding to be $4.4, $4.6, and $3.3 billion, respectively).

As noted earlier, NCD projects were removed from the 2019

data as these projects were not available in the training dataset.

Inclusion of projects in this category in the analysis could

increase the CGH funding for 2019.

Certain categories had lots of projects and yet the total

funding for the category was relatively low. For example, the

number of projects for “Knowledge generation and sharing”

was 102, but the total funding was only $34.01 million. In

comparison, the predicted number of projects for “R&D of new

health tools” and “Epidemic and pandemic preparedness and

response” were only a little higher at 116 and 115, respectively,

but the total funding for these categories was $112.17, and 97.08

million, respectively.

Discussion

This study explored the feasibility and accuracy of applying

machine learning methods to classify funding for different types

of global CGH. We applied four widely used machine learning

algorithms—RF, XGBoost, SVM, and MNB—and found almost

all the models performed well on the test data, with RF and

XGBoost outperforming other models by small margins. We

applied the RF model on test data and found the ML model

predicted total donor support for CGH projects was very close

to the human classified finding ($2.24 billion across 3 years

for the ML model vs. $2.25 billion over 3 years for the human

classification). However, the confusion matrix indicated that

with the ML model there was misclassification in all CGH

categories and categories with small numbers of projects tended

to have more misclassifications. We further applied the trained

and tested model to 2019 data and found that funding for CGH

decreased in 2019, compared with 2017, 2015, and 2013, and

health advocacy and priority setting, and control of cross border

disease movement were the top two global CGH categories by

the predicted number of projects.

The COVID-19 pandemic has changed the financing

landscape for global health significantly. However, it also

illustrated the importance of investing in CGH including R&D

for pandemic control tools (e.g., vaccines, diagnostics, and

antiviral drugs), pandemic preparedness, and control of cross-

border diseases. We explored the application of ML in regularly

tracking financing for CGH, which can be an essential step to

inform the financing for CGH. We identified the decreasing

trend of CGH between 2013 and 2019 and low financing

for certain CGH sub-categories (such as R&D of new health

tools, responses to marketing of unhealthful products and cross

border disease control) called for more attention and efforts in

fund raising.

Although 2019 data have not been manually coded and

no information about CGH has been published, we have

proven the prediction accuracy of our ML model on the

test dataset. Therefore, our findings could suggest a funding

trend for global CGH. Our study found that using the ML

model to track financing for CGH was quick and required

minimal labor to classify the projects. Additionally, we identified

several opportunities to further improve the ML approach

and automate the process of tracking CGH financing with

better prediction.

At data collection and cleaning level, our analysis excluded

certain projects from the training set, which limited the

prediction power of ML models on those types of projects.

First, we only focused on projects with English descriptions and

dropping non-English projects may have resulted in the loss of

important information on CGH funding. However, the goal of

the current analysis was to show the feasibility of using ML in

predicting CGH categories and financing, which we were able to

successfully demonstrate. Therefore, in future research, models

can be developed, using a similar ML pipeline described in the

current research, to classify non-English projects and expand the

scope of the analysis.

Second, we dropped two CGH categories with small

numbers of projects to balance the number of projects for
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each CGH category— “Sharing of intellectual property” and

“Responses to antimicrobial resistance (including to counterfeit

drugs)”. However, these CGH categories, though in small

numbers, are present every year in the OECD CRS database.

Therefore, when we apply the model to new 2019 data, it

would be advisable for us to incorporate the differences in the

funding due to exclusion of these two categories as our model

will only predict categories that it encountered in the training

dataset. Having said this, given the small number of projects and

funding in “Sharing of intellectual property” and “Responses to

antimicrobial resistance” in the training data, exclusion of these

two categories will not have a major impact on overall CGH

funding levels in 2019.

Third, we had to remove NCD related projects from the 2019

data as our model was not trained on these projects. Since 2020,

the OECD CRS started to include COVID-19 related projects.

These projects can be added to the training dataset, and the

ML model can then be retrained with the new categories in the

database. Therefore, once we have a trained model, it can be

quickly updated and retrained every few years to incorporate

the changes/new project categories in the database. This could

further improve the accuracy in prediction of CGH funding.

Moreover, in the current analysis, we included projects from

the CRS database. The G-FINDER survey is another resource

where additional projects on global CGH can be found (a subset

of G-FINDER projects are captured in the CRS database, so we

would have captured this subset). G-FINDER tracks the annual

spending on product development for 33 poverty-related and

neglected diseases (PRNDs) (32). Including G-FINDER data

could increase the number of projects in some of the categories

which had small number of projects in our training data.

As seen in Table 2, there were some differences in the

financing for categories between ML prediction and human

classification, which could be attributed to the misclassified

projects. A small sample size is another reason for the low F1-

score, which inhibits the model’s classification ability, and often

leads to misclassification of projects. To increase the sample size

for the categories with small number of projects in the training

dataset, we created synthetic projects but the lack of diversity

of information from the small number of actual projects for

the model to learn from affected the model’s prediction power

in certain categories. Using synthetic projects instead of actual

projects to train the model could be a potential limitation of

the study. However, collecting and including actual projects in

categories with small numbers of projects could improve the

model’s learning and prediction power.

We also identified confounding project descriptions as

another reason for the low F1-score, and the misclassification

of projects. During our review on the project descriptions, we

found that some project descriptions contained ambiguous or

unclear information to classify projects into a certain category.

For example, many projects in the “knowledge generation and

sharing” category had text description that was very broad

and included information that a machine and even a human

classifier can easily group into multiple CGH categories. One

way to address the issue of combined project descriptions is that

instead of applying multiclass classification ML architecture, as

used in the current research, one can implement a multilabel

classification ML approach where a single project could be

classified into multiple CGH categories.

Conclusion

We developed and outlined a machine learning framework

to automate the process of classifying health projects into

different global CGH categories. Using this framework, we

demonstrated that applying a machine learning approach

in classification and tracking financing for global CGH is

feasible, efficient, and can be done routinely. We also identified

opportunities, based on the limitations of the study, for further

improvement in the accuracy of the model. We found that the

prediction accuracy can be increased by collecting more data for

categories with small numbers of projects. Further studies can

explore multilabel classification as some project descriptions are

combinations of more than one global CGH category, and this

might provide a more nuanced picture of CGH funding.
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