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Introduction: Accurate sleep staging is an essential basis for sleep quality

assessment and plays an important role in sleep quality research. However,

the occupancy of di�erent sleep stages is unbalanced throughout the sleep

process, which makes the EEG datasets of di�erent sleep stages have a class

imbalance, which will eventually a�ect the automatic assessment of sleep

stages.

Method: In this paper, we propose a Residual Dense Block and Deep

Convolutional Generative Adversarial Network (RDB-DCGAN) data

augmentation model based on the DCGAN and RDB, which takes two-

dimensional continuous wavelet time–frequency maps as input, expands

the minority class of sleep EEG data and later performs sleep staging by

Convolutional Neural Network (CNN).

Results and discussion: The results of the CNN classification comparison

test with the publicly available dataset Sleep-EDF show that the overall sleep

staging accuracy of each stage after data augmentation is improved by 6%,

especially the N1 stage, which has low classification accuracy due to less

original data, also has a significant improvement of 19%. It is fully verified that

data augmentation by improving the DCGAN model can e�ectively improve

the classification problem of the class imbalance sleep dataset.

KEYWORDS

EEG, data augmentation, DCGAN, sleep stage, time–frequency analysis

Introduction

Sleep is of great importance in people’s daily life (1), long-term sleep disorders

can seriously threaten people’s physical and mental health (2). A valid sleep quality

assessment method is essential for people to understand their sleep situation and to

carry out sleep improvement activities. Sleep staging is an important basis for assessing

the quality of sleep and is the first step in diagnosing sleep disorders and helping to

improve sleep (3). The electroencephglogram (EEG) signal is widely used in sleep staging

as a bioelectrical signal that can directly reflect brain activity. The traditional manual

interpretation based on polysomnography can complete the sleep staging well, but it is

also easily affected by personal experience to a certain extent and has strong subjectivity,

Besides, this manual calibration method is time consuming and labor intensive.
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With the introduction of the concept of deep learning by

Hinton et al. at the University of Toronto in 2006 (4–6), more

and more scholars and research experts tend to use this method

that can automatically extract signal features for sleep staging,

which has greatly improved the efficiency of sleep staging.

However, due to the serious imbalance in the proportion of

different sleep stages in the whole sleep process, there is a

serious imbalance in the amount of sleep data in the existing

sleep EEG dataset, where the N2 stage accounts for 45–55% of

the whole sleep time, N3 stage accounts for ∼20%, Rapid Eye

Movement (REM) stage accounts for ∼25%, and the N1 stage

accounts for only 2–5% (7). This kind of imbalance greatly

affects the accuracy of sleep staging. In the literature (8), the

authors obtained an overall classification accuracy of 76%

using Convolutional Neural Networks (CNNs) for automatic

sleep stage classification but only 60% for the minority class

S1 (N1). In the literature (9), the automatic sleep staging

method using Convolutional Neural Network—Uni-Directional

Long–Short-Term Memory Network (CNN-Uni-LSTM)

and Convolutional Neural Network—Bi-Directional Long–

Short-Term Memory Network (CNN-Bi-LSTM), respectively,

obtained staging accuracy of 80.7% and 82.5%, but only 30.1%

and 38.9% for stage N1, respectively. In the literature (10),

a depth model classifier was proposed for sleep staging with

single-channel EEG signals by combining representation

learning (RL) network and Temporal Convolutional Neural

Network + Conditional Random Field (TCNN+CRF) and

achieved an overall sleep staging accuracy of 81.86% but only

40.2% for stage N1. It has been shown that the imbalance of

data classes in all stages of sleep can be effectively improved by

data augmentation (11, 12). However, these traditional minority

class EEG data augmentation methods, such as time-shifted

rolling augmentation (13), overlapping (14), and boundary

synthetic minority oversampling algorithm (SMOTE), and its

modified model (15), have certain limitations. For example, it

is only possible to repeatedly test how many neighbor samples

to select according to the specific dataset which results in the

blindness of neighbor selection and if the negative class samples

are at the distribution edge of the negative class sample set, then

the “artificial” samples generated by the neighboring samples

and the negative class samples will also be at this edge and will

become more and more marginalized which resulting in the

limitations of the marginalization of distribution.

Goodfellow et al. (16) proposed a semi-supervised feature

learning algorithm based on game scenarios—Generative

Adversarial Network (GAN), which provides a more efficient

method for data augmentation and brings new ideas for EEG

data augmentation. In the literature (17), an artificial EEG

signal that is very similar to a single-channel real EEG signal

in both the time and frequency domains is stably generated by

gradually relaxing the gradient constraints of the Wasserstein

GAN (WGAN). However, the instability of GAN networks

is highly likely to lead to the phenomenon that the output

is not ideal during the training process, and the system is

prone to collapse. To address these problems, Radford et al.

(18) proposed a Deep Convolutional Generative Adversarial

Network (DCGAN), which introduces a supervised learning

CNN model into the GAN network to realize the unsupervised

learning process of the GAN, generating relatively good quality

samples and effectively improving the performance of the GAN.

Fahimi et al. (19) proposed a DCGAN-based framework for

generating 1D synthetic EEG signals to enhance the training

set. Aznan et al. (20) used DCGAN, WGAN, and variational

autoencoder to create synthetic EEG data to improve the steady-

state visual evoked potential classification task. Choo S et al.

(21) proposed a new EEG data augmentation framework using

DCGAN to improve the performance of CNN classifiers in

motion picture tasks. Xu et al. (22) proposed a DCGAN model

to generate artificial EEG data for scaling up stroke datasets,

and finally, demonstrated the effectiveness of the generated

artificial EEG data. The literature (23) used DCGAN networks

to generate synthetic epileptic EEG data in a patient-specific

manner thereby improving epilepsy prediction performance.

From the above studies, it can be seen that data augmentation

models based on DCGANs networks have been widely used in

EEG with relevant results, but it was found that the following

problems still exist in the application of sleep EEG:

• For the more complex sleep EEG signals, traditional

GANs and DCGANs have limited ability to extract

their one-dimensional data features, and it is difficult

to guarantee the quality of EEG signal generation at

each stage.

• Traditional DCGANs models suffer frommodel instability,

inability to extract deep features of images, and lack of

details in the generated images during the training process

of image data.

To address these problems, this paper proposes a sleep

EEG data augmentationmodel RDB-DCGANbased on Residual

Dense Block (RDB) and DCGAN. First, the original 1D

EEG signal is converted into the 2D time–frequency map

for data augmentation, and the Residual Dense Network

(RDN) formed by the RDB is fused in the generator to

strengthen feature propagation and alleviate the problem of

gradient disappearance. The discriminator loss function of

the RDB-DCGAN network is improved by combining the

perceptual loss with the cross-entropy loss function and adding

the gradient penalty to obtain more image details and make the

network trainingmore stable. Finally, CNN is used to classify the

sleep EEG signals after data augmentation.

GAN and DCGAN theory

Generative Adversarial Network consists of two parts, a

generator G and a discriminator D. The generator G uses the

input noise Z to generate generative samples G(Z) that can

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1038742
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ling et al. 10.3389/fpubh.2022.1038742

FIGURE 1

A schematic diagram of the GAN network.

deceive the discriminator through continuous feature learning,

and the discriminator D is used to discriminate whether the

input samples are real samples x or generative samples G(Z)

and then reverse the parameters of the generator to make the

generator generate more realistic samples. In this process, the

generator (G) and the discriminator (D) are trained alternately

and continuously confronted, and finally, the generated samples

G(z) generated by the generator G are indistinguishable from

the real data (24, 25). The training process of GAN is shown in

Figure 1.

Deep Convolutional Generative Adversarial Network

improves the generator and discriminator of the original GAN

network into a deep convolutional network structure specifically

for generating image samples. In DCGAN, the discriminator

retains the overall architecture of CNN, while the generator

replaces the convolutional layer with a Convolution Transpose

layer. Finally, the DCGAN generator uses the ReLU activation

function for all layers except the output layer, which uses the

Tanh activation function, while the discriminator uses the

Sigmoid activation function for the output layer to prevent

gradient sparsity and the Leaky ReLU activation function for all

other layers.

Data augmentation model based on
improved DCGAN network

The overall network model in this paper is divided into

two main parts: the improved DCGAN sleep EEG data

augmentation model and the CNN sleep EEG staging model.

The design of the improved DCGAN data augmentation

model is mainly divided into three parts as follows: generator,

discriminator, and loss function. The model adds an RDN

formed by RDB to strengthen the propagation between features,

obtain more global dependencies within the features, generate

higher-quality images, and finally, form an RDB-DCGAN

data augmentation model. The loss function part combines

perceptual loss with cross-entropy and adds a gradient penalty

to make the network training more stable. In addition,

compared with the traditional method of feature extraction for

classification, CNN has the powerful feature extraction ability

for image data, which can better achieve the classification of

different sleep stages. The samples of different sleep stages are

expanded by the improved DCGAN network, and the original

samples are mixed with the generated samples to form a new

dataset with the same number of samples of each type. The new

dataset is used to train the CNN for sleep staging with class

imbalance. The general framework of the model is shown in

Figure 2.

Generator improvement

In the improved DCGAN network, the generator is mainly

used to generate a minority class of sleep EEG time–frequency

maps. In this paper, the generator adopts the structure of

transposed convolution, which consists of four layers of

transposed convolution operations, and the RDN consisting

of six RDBs is added between the first and second layers

of transposed convolution and between the second and third

layers of transposed convolution. Additionally, after the RDN,

the input and output features are fused as the new output.

The combination of shallow features and different layered

features extracted from each unit of the RDN through the

input–output fusion provides richer image details, which is

helpful to generate more realistic sleep EEG time–frequency

maps. The improved RDB-DCGAN generator model is shown
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FIGURE 2

The general framework of the model.

FIGURE 3

RDB-DCGAN generator model.

in Figure 3. Among them, the RDB is a combination of

both the residual block and the dense block, which mainly

contains two parts: the dense connection and local feature

fusion. In the RDB (structure as shown in Figure 4) structure,
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FIGURE 4

Schematic diagram of residual dense cell structure.

two layers are directly connected, dense connection can well

strengthen the propagation between features, reduce the number

of parameters, and better extract the deep features in the image,

and the residual structure can effectively alleviate the problem

of gradient disappearance with the deepening of the network

layers, making the network more stable; in addition, because the

cumulative splicing of RDB will lead to too many feature layers,

so by the 1∗1 convolutional layers after dense concatenation

is used for the fusion of local features and play the role of

dimensionality reduction.

The generator of the RDB-DCGAN model reshapes a 100-

dimensional noise vector into (6,6,512) feature maps using the

reshape function; after a two-dimensional transpose convolution

operation for shallow feature extraction, and converts the output

dimension to (12,12,256); after passing through six RDBs in the

RDN, and the output of RDB will be combined by stitching

and feature fusion using a 1∗1 convolutional layer, after which

the dense feature fusion is completed by adding the results of

the first convolution through a convolutional layer with the

first convolution, at this time, the input and output image

dimensions are the same, then after a transpose convolution

and again into the RDB, and finally, through two transpose

convolutions and using the Tanh activation function to output

it as the required image sample size (96,96,3). The convolution

kernels of all transposed convolution layers in the generated

network are set as small as 3∗3 and the step size is set as 2.

Discriminator design

The improved RDB-DCGAN discriminator model is shown

in Figure 5. The discriminator converts the image of size

(96,96,3) into a scalar through four layers of convolutional

operations, converts the sample data of dimension (96,96,3)

into dimension (6,6,512) by four convolutional kernels of size

5∗5 and two-dimensional convolutional operations of step size

2, converts the multi-dimensional input into one-dimensional

through the Flatten layer, and finally, converts the output

estimate through the fully connected layer to determine whether

the given image is true or false, and the output value is 0 or 1.

In the actual training process of the RDB-DCGAN data

augmentation model, the training of the discriminator and

generator is carried out alternately, and the original EEG

signal time–frequency map and the generated EEG signal

time–frequency map are put into D for training to maximize

the discriminative accuracy of D; the generator G is optimized,

and the 100-dimensional noise vector is put into G for training

to generate new EEG signals to minimize the discriminative

accuracy. The alternating training cycle continues, and the

generated data of the generator are so close to the real data

that the discriminator cannot accurately identify the real data

and the generated data to reach the Nash equilibrium, and

the gradient of the generator and discriminator is updated

through continuous training to finally output high-quality EEG

signal maps.

Loss function design

To further improve the quality of images generated by

the RDB-DCGAN network, this paper improves the original

loss function of RDB-DCGAN by combining the content loss

function and the adversarial loss function to further optimize the

network model.

Content loss function

Perceptual loss is selected as the content loss function.

Perceptual loss is to compare the features obtained by

convolving the real image with the features obtained by

convolving the generated image to make the generated image

more semantically similar to the target image, thus enhancing

the image details and generating a more realistic image. Since

perceptual loss uses neural networks to extract deeper feature

maps, deeper network layers are more conducive to extracting

deeper semantic information, so VGG19 (26) is used. The deep

convolutional layers of the pre-trainingmodel are used to extract
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FIGURE 5

RDCGAN discriminator model.

the features of the generated and original maps separately, and

then the Euclidean distance between the two maps is calculated

with the following equation:

LVGG (G)=
1

wjhjdj
‖VGG (G (z))−VGG (x)‖2F (1)

where wjhjdj represents the width, height, and depth of the i-

th feature space, G(z) is the generated image, and x is the real

image, respectively.

Contrast loss function

The cross-entropy loss function is commonly used in

DCGAN networks to describe the degree of difference between

two different probability distributions. During the training of

the network, the actual is G(z) should be as close as possible

to the data distribution of the real image Pdata(x). Based on the

cross-entropy loss function, the loss function can be constructed

as follows:

V (D,G)=Ex∼P(data(x))
[InD (x)]+Ez∼Pz(z) [In (1− D (G (z)))] (2)

where Ex∼P(data(x))
is the real sample obtained from the training

data x; Ez∼Pz(z) is the sample obtained in the noise distribution;

D (x) represents the probability of D judging whether the real

images are real or not, so forD, the larger this value is, the better;

D (G (z)) is the probability of D judging whether the images

generated byG are real or not, soGwantsD (G (z)) to be as large

as possible, i.e., the smaller Ez∼Pz(z) [In (1− D (G (z)))]is, the

better. From this, the objective function Lais obtained as follows:

La = V (D,G)=Ex∼P(data(x))
[InD (x)]

+Ez∼Pz(z) [In (1− D (G (z)))] . (3)

The final loss function of the RDB-DCGAN network is

the weighted sum of the adversarial loss function and the

content loss function, which are jointly used to optimize the data

augmentation network model, i.e.,

L=La+λ1LVGG (G) (4)

where λ1 is empirically set to 0.1.

Classification model

In this paper, a classification model with a typical

convolutional neural network architecture is used to verify

the impact on classification accuracy before and after data

augmentation. The CNN classifier used consists of four

convolutional layers, three fully connected layers, and a pooling

layer is added between each convolutional layer. A fused time–

frequency map of the sleep EEG signal is used as the input to the

CNN. The two-dimensional time–frequency image is convolved,

pooled, and fully connected, and the output is staged into five

categories of sleep EEG signals. The structure of the CNNmodel

is shown in Figure 6.

Data processing and analysis

In this experiment, the Polysomnography (PSG) data of a

total of 40 individuals from the SC subset of Sleep-EDFDatabase

Expanded were used to verify that the proposed improved

RDB-DCGAN model could effectively improve the impact of

the data class imbalance problem on sleep staging. The overall

experimental process is shown in Figure 7. First, the sleep

EEG data from the original polysomnography database were

preprocessed, and the preprocessed sleep EEG data were fed into

the improved DCGANnetwork to realize the data augmentation

of EEG signals, and finally, the CNN network was used to

complete the staging of sleep EEG signals.
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FIGURE 6

Convolutional neural network (CNN) model structure diagram.

FIGURE 7

Overall experimental flow.

Data pre-processing

This paper was studied using the Sleep-EDF Database

Expanded (27) public sleep EEG database on the PhysioNet

system, which contains 2 days of PSG data from 197 subjects,

divided into two subsets, SC and ST, where the SC subset is

from the healthy population and the ST subset was having mild

difficulty in sleeping. In the PSG recorded signals, the EEG

signals were taken from Fpz-Cz and Pz-Oz electrode locations,

respectively, with a sampling rate of 100Hz, and the data were

sliced by 30 s. The sleep stages of each segment according to the

R&K criteria (28) were divided into WAKE, N1, N2, N3, N4,

REM, MOVEMENT, and UNKNOWN.

To ensure the consistency of the research data and exclude

the influence of sleep difficulties on the research, in this

experiment, we used the data of 40 people in Fpz-Cz leads

in the SC dataset for the experimental analysis (from SC4001

to SC4211, excluding the discontinuous SC4152 and SC4172

datasets). According to the AASM judgment rule (29), the

N3 and N4 periods were combined into the N3 stage data;

MOVEMENT and UNKNOWN data were excluded; the sleep

EEG signals from before sleep to 15min after waking were

intercepted; the intercepted signals were filtered through a

Butterworth eighth-order low-pass filter with a cut-off frequency

of 35Hz; and noise reduction was performed after removing

industrial frequency interference. The processed EEG signal is

transformed from a 1D signal to a 2D signal by wavelet time–

frequency transform to complete the data pre-processing. After

data pre-processing, the signal is sliced every 30 s into the

corresponding sleep stage to form the training dataset for the

corresponding stage.

Table 1 shows the data volume of each sleep stage in the

experimental dataset, where stage N1 only accounts for 8%

of the total data volume, which shows that the dataset is a

class imbalance dataset. Because of the lower data volume of

the N1 stage, the accuracy of sleep staging in the N1 class

during sleep staging is low compared with other classes. In this

paper, the data are expanded by the improved DCGAN data

augmentation method to obtain the same number of five-class

samples to alleviate the class imbalance in the original dataset,

which effectively improves the staging accuracy of sleep stages

with lower data volume.

Improved DCGAN data augmentation

The number of original datasets was first expanded

using the further improved RDB-DCGAN network for data

augmentation. To verify the effectiveness of the proposed

improved DCGAN data augmentation method for sleep EEG

signal image sample generation, this experiment compares the
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TABLE 1 Amount of data for each sleep stage in the experimental data.

Sleep period Wake N1 N2 N3(N4) REM

Quantity(pcs) 5,037 2,967 15,204 5,390 7,795

Percentage of 14% 8% 42% 15% 21%

samples generated by the RDB-DCGAN network, the RDB-

DCGAN network with altered loss, and the original DCGAN

network after data augmentation. The deep learning framework

used in the experiments is Keras, and the hardware platform

used is Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz and

NVIDIA GeForce RTX 2060Ti GPU.

The RDB-DCGAN network and DCGAN network

models use cross-entropy loss function for the generator and

discriminator. The RDB-DCGAN network with modified

loss uses the improved loss function, the optimizer is Adam,

the discriminator learning rate is set to 0.0002, the generator

learning rate is set to 0.0005, the alpha in LeakyReLU is set to

0.2, the momentum in batch normalization is set to 0.9, the

number of network iterations is 25000, and the batch size is

selected as 64. Raw EEG signal, DCGAN generated EEG signal,

RDB-DCGAN, and RDB-DCGAN network with change loss

generated EEG signal are compared as shown in Figure 8.

Improved DCGAN generation data
analysis

In this paper, the Fréchet Inception Distance (FID) is used as

an objective evaluation index for the EEG signal time–frequency

maps generated by each network, and the FID is a good measure

of the similarity between the generated images and the real

images. FID is calculated as follows:

FID
(

x,g
)

=
∥

∥ux−ug
∥

∥

2

2
+Tr





∑

x+
∑

g−2

(

∑

x
∑

g

)
1
2



 (5)

where
(

ux,
∑

x
)

and
(

ug ,
∑

g
)

are the mean and

covariance of the true data distribution and the sample

data distribution, respectively.

The FID evaluation index is principled and comprehensive,

which can accurately reflect the similarity between the

generated samples and the real samples, and the smaller

the value, the higher the similarity between the samples

and the better the generation effect. The FID values of

the improved DCGAN are significantly reduced compared

with DCGAN on these five classes of the same dataset,

and the specific results are shown in Table 2, and the

FID values are reduced by 47.3, 51.7, 34.8, 49.8, and

41.8%, respectively.

Comparative analysis of
classification before and after data
augmentation

To further illustrate that data augmentation can effectively

improve the problem of low accuracy of sleep first stage

classification (N1) caused by class imbalance. The data-

enhanced samples were tested for classification with the original

samples using CNN. Both the original sleep EEG signal dataset

and the data-enhanced sleep EEG signal dataset were divided

into training and test sets in the ratio of 7:3 for classification

recognition. The initial learning rate of the designed CNN

network structure is 0.00005, and the learning rate gradually

decreases according to the step size. At the same time, the Adam

optimizer and the loss function of cross entropy are used for

training. In addition, dropout is set to 0.5.

Use CNN to classify the data before and after data

augmentation. Six simulations were performed in this test, and

the average of the sleep staging accuracy of each stage, the

average of the overall classification accuracy, and the standard

deviation were obtained as shown in Table 3.

As can be seen from Table 3, after the RDB-DCGAN

data augmentation, the staging accuracy of each stage has

been improved, and the overall recognition accuracy has

increased by 6%, especially the classification accuracy of the N1

stage has been significantly increased by ∼19%. Through the

calculation of standard deviation, we can also see that the model

achieves better classification stability, which further illustrates

the effectiveness of data augmentation for classification.

To further demonstrate the effect of the improved DCGAN

data augmentation and to comprehensively evaluate the

performance of the model, the classification performance was

evaluated using a confusion matrix, Precision (Pre), Recall (Re),

and F1 score (F1), and each criterion was calculated as follows:

Pre=
TP

TP+FP
(6)

Re=
TP

TP+FN
(7)

F1=
2× Pre× Re

Pre+Re
(8)

Acc=
(TP+TN)

(TP+TN+FP+FN )
. (9)
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FIGURE 8

Comparison of the original image and generated image.

TABLE 2 Comparison of FID values of data generated by di�erent models.

Models FID value

Wake N1 N2 N3 (N4) REM

DCGAN 160.7 165.4 162.9 185.0 166.1

RDB-DCGAN 125.0 119.8 120.8 136.7 125.0

L loss RDB-DCGAN 113.4 113.7 128.1 135.2 124.3

Among them, TP is predicted by the model as a positive-

positive sample, TN is predicted by the model as a negative–

negative sample, FP is predicted by the model as a positive–

negative sample, and FN is predicted by the model as a negative–

positive sample.

The confusion matrix generated before and after data

augmentation is shown in Tables 4, 5.

Each column of the confusion matrix represents the sample

situation predicted by the model and each row of the matrix

represents the true situation of the sample. As can be seen

from the confusion matrix before and after data augmentation

in Tables 4, 5, the staging accuracy of the original EEG signals

Wake, N1, N2, N3(N4), and REM are 72, 44, 73, 77, and 74%,

respectively, and the staging accuracy of the EEG signals Wake,

N1, N2, N3(N4), and REM after data augmentation are 73, 63,

81, 86, and 76%, respectively. Compared with the classification

process of the original data, a large number of N1 data were

wrongly assigned to the Wake, N2, and N4 stages, and the
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TABLE 3 Classification accuracy of each stage before and after data augmentation.

Training samples Sleep Stage

Wake N1 N2 N3 (N4) REM Mean Standard Deviation

Raw data 72.1% 42.6% 73.6% 76.6% 72.3% 69% 0.005

After data augmentation 74.5% 63.2% 80.7% 85.2% 75.2% 75% 0.006

TABLE 4 Confusion matrix for each stage before data augmentation.

Predicted Per-class metrics

Wake N1 N2 N3 (N4) REM Pre Re F1

Wake 0.72 0.06 0.06 0.03 0.12 0.72 0.72 0.72

N1 0.13 0.44 0.14 0.02 0.28 0.65 0.44 0.52

N2 0.03 0.02 0.73 0.11 0.11 0.73 0.73 0.73

N3(N4) 0.03 0.00 0.17 0.77 0.03 0.72 0.77 0.74

REM 0.05 0.06 0.13 0.02 0.74 0.65 0.74 0.69

The bold values in the Predicted section represent the classification accuracy of each stage.

accuracy of the N1 sleep stage increased significantly after data

augmentation. In addition, it can also be seen from Table 1 that

the classification accuracy of the Wake, N3, and N4 sleep stages

with a small proportion of original data increased after data

augmentation, but the classification accuracy of the Wake and

REM stages did not increase significantly. We can also see from

Tables 4, 5 that the recall of a few classes of N1 has increased

from 0.44 to 0.64, and the F1 value has increased from 0.52

to 0.69, both of which have improved more significantly, while

the Pre, Re, and F1 values of the remaining sleep stages have

also increased, thus verifying the effectiveness of the improved

RDB-DCGAN algorithm.

In Table 6, the data in Per-class Performance are the staging

accuracy of each stage, numbers in bold indicate the best

classification method for each sleep stage. Compared with Li

et al. (9) and Khalili et al. (10), although the authors use a more

optimized CNN algorithm for sleep staging, we can be seen that

the ideal classification effect is not achieved in the N1 stage.

To further illustrate the contribution of data augmentation to

improve sleep staging accuracy and ensure the validity of the

comparison, we compare the results with other papers that use

sleep EEG time–frequency maps as input to CNN classifiers for

sleep staging (8, 30–32). Compared with the sleep staging results

of other papers, the data augmentation method proposed in this

paper achieves the best sleep staging accuracy in the N1 stage

with the least amount of data. In addition, N2, N3, and REM

also achieved good performance. However, the results of the

Wake stage are not ideal. Combined with Jadhav et al. (31) and

Wei et al. (32) which have higher classification accuracy in the

Wake stage, both havemore data volume, especially forWei et al.

(32), where the Wake stage accounts for only 28% of the total

data volume, which is also advantageous for CNN classification.

Second, the design of the CNN network structure may also cause

differences in results, so the classification accuracy of the Wake

stage needs to be further discussed.

Discussion and conclusion

In this paper, we designed a sleep EEG data augmentation

model based on the improved DCGAN network, and in our

experiments, we found that:

• According to Figure 8, we can see that through the

continuous improvement of the data augmentation

network, we have generated a sleep EEG time–frequency

map that looks very good to the naked eye, it has also

achieved lower FID value through the continuous update

of the structure objectively. According to Tables 2–5,

we can also see that for the N1 and N3 stages where

the quality of the generated image is more improved,

the classification accuracy has also achieved a higher

growth value. Therefore, it can be concluded that if we

can obtain a better quality time–frequency map of sleep

stages during data augmentation, it will be of great help to

further improve the quality of sleep stages. But at the same

time, we found that the Wake stage with a lower FID value

(meaning that there are more similar samples in the arousal

state) did not achieve a significant improvement after data

augmentation. We analyze that the reason may be that due

to the similarity of the features of Wake and the features of

the N1 stage and the limitation of the CNN network, we

cannot further extract deeper features to classify these two

stages more accurately (the CNN classifier can be seen in
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TABLE 5 Confusion matrix for each stage after L loss RDB- DCGAN data augmentation.

Predicted Per-class metrics

Wake N1 N2 N3 (N4) REM Pre Re F1

Wake 0.73 0.12 0.04 0.03 0.08 0.80 0.74 0.74

N1 0.12 0.63 0.06 0.03 0.16 0.74 0.64 0.69

N2 0.03 0.01 0.81 0.07 0.09 0.76 0.80 0.77

N3(N4) 0.03 0.02 0.06 0.86 0.03 0.83 0.84 0.87

REM 0.05 0.06 0.09 0.04 0.76 0.69 0.79 0.71

The bold values in the Predicted section represent the classification accuracy of each stage.

TABLE 6 Comparison of classification results after data augmentation using the RDB-DCGANmodel with other classification results.

Author EEG Channel Per-class Performance Overall Performance

Wake N1 N2 N3 REM Acc

Tsinalis et al. (30) Fpz-Cz 70.0 60.0 73.0 91.0 74.0 74.8

Tsinalis et al. (8) Fpz-Cz 81.6 60.0 78.0 89.0 80.4 78.9

Li Q et al. (9) Pz-Oz 87.7 38.9 88.3 85.6 78.5 82.5

Khalili E et al. (10) Fpz-Cz 93.0 40.2 86.8 73.3 81.5 81.9

Jadhav et al. (31) — 90.2 27.6 92.2 74.0 86.0 83.3

Wei L J (32) Fpz-Cz 92.9 34.9 84.1 83.0 74.7 82.7

Our model Fpz-Cz 73.0 63.0 81.0 86.0 76.0 76.0

Table 6 misclassified a lot of Wake stage data to N1 stage),

so resulted in lower Wake stage growth.

• Second, to illustrate that our method contributes to the

classification of class-imbalanced EEG datasets, we use the

basic CNN network for classification training and compare

the results obtained before data augmentation at each

stage of sleep. It has a good classification effect, but the

classification accuracy of the Wake stage and REM stage

has a small increase. On the one hand, it is also because

when the original data were obtained, we intercepted the

awake data before going to bed and 15min after waking

up, so the Wake stage has no advantage over the original

data. On the other hand, due to the similarity between N1

and REM, as well as N2 and REM (the feature similarity

between sleep periods leads to similar EEG signals); more

N1 and N2 classes are misclassified as REM classes.

• In addition, it can be seen from Table 6 that through the

data augmentation method in this paper, we have achieved

superior classification results compared to other CNN

classifications in the N1 stage, and it further verifies that

the two-dimensional time–frequency map generated by the

data augmentation method proposed in this paper brings

advantages to sleep staging.

Finally, the use of EEG time–frequency maps for data

expansion by image data augmentation also provides a new

idea worth exploring for sleep staging. It should also be noted

that this paper only discusses the EEG time–frequency map

after wavelet transform, and further in-depth research will

be done in the future from the perspective of more input

features, and more in-depth classification methods will be

used to verify the validity and applicability of this paper from

more perspectives.
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