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The COVID-19 virus’s rapid global spread has caused millions of illnesses

and deaths. As a result, it has disastrous consequences for people’s lives,

public health, and the global economy. Clinical studies have revealed a

link between the severity of COVID-19 cases and the amount of virus

present in infected people’s lungs. Imaging techniques such as computed

tomography (CT) and chest x-rays can detect COVID-19 (CXR). Manual

inspection of these images is a di�cult process, so computerized techniques

are widely used. Deep convolutional neural networks (DCNNs) are a type

of machine learning that is frequently used in computer vision applications,

particularly in medical imaging, to detect and classify infected regions. These

techniques can assist medical personnel in the detection of patients with

COVID-19. In this article, a Bayesian optimizedDCNNand explainable AI-based

framework is proposed for the classification of COVID-19 from the chest X-ray

images. The proposed method starts with a multi-filter contrast enhancement

technique that increases the visibility of the infected part. Two pre-trained deep

models, namely, E�cientNet-B0 and MobileNet-V2, are fine-tuned according

to the target classes and then trained by employing Bayesian optimization

(BO). Through BO, hyperparameters have been selected instead of static

initialization. Features are extracted from the trained model and fused using

a slicing-based serial fusion approach. The fused features are classified using

machine learning classifiers for the final classification. Moreover, visualization

is performed using a Grad-CAM that highlights the infected part in the image.

Three publically available COVID-19 datasets are used for the experimental

process to obtain improved accuracies of 98.8, 97.9, and 99.4%, respectively.
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corona virus, multi-filters contrast enhancement, deep learning, Bayesian
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Introduction

The coronavirus has recently spread throughout the world

as a new infection. Coronavirus is typically spread by animals

or humans (1, 2). It is discovered to be transmitted by bats

as a result of animal transmission. Coronavirus also replicates

in the human body with several other common coronaviruses,

including 229E: Alpha, NL63: Alpha, OC43: Beta, and HKU1:

Beta (3). The coronavirus disease outbreak was dubbed the

coronavirus global pandemic or COVID-19 pandemic by the

World Health Organization (WHO) in March 2020 (4). The

disease known as COVID-19 is caused by a virus (SARS-CoV-

2). Lung diseases range in severity from a common cold to a

potentially fatal illness. Coronavirus illnesses were frequently

accompanied by respiratory system diagnoses. Individuals may

occasionally contract minor, self-limiting infections with severe

consequences, such as influenza. Symptoms of respiratory

problems, fatigue, and a sore throat include fever, cough,

and breathing difficulties (5). The majority of researchers

have emphasized the need for COVID-19-specific diagnostic

methods, medications, or vaccinations to prevent its spread

(6). Because of its higher sensitivity and specificity in terms

of observations, the reverse transcription-polymerase chain

reaction (RT-PCR) is the current gold standard for diagnosing

COVID-19 (7).

Visual indicators could be used as an alternative strategy

for quickly screening infected individuals (8). This infection’s

most prevalent symptom is respiratory sickness. For chest

radiography, images (X-rays of the chest) are thought to be the

most reliable visual signal. Radiologists examine these images

physically to identify visual patterns that indicate the presence of

COVID-19 (9). Even though traditional diagnosis has improved

over time, it is still vulnerable to medical staff errors. It is also

more expensive because each patient requires a diagnostic test

kit. Medical-based imaging procedures, such as CXR and CT

scans, are much faster, safer, and more widely available for

screening (10). For COVID-19 screening, CXR image screening

is superior to CT scans because it is more accessible and

less expensive (11, 12). However, it may take some time to

manually diagnose the virus using X-ray scans. If there is little

or no prior knowledge and expertise about the infection and

its characteristics, it may result in several inaccuracies and

human-made mistakes. As a result, there is a compelling need

to automate such operations on a large scale, and it should be

accessible to all, so that treatment can become more effective,

precise, and timely (13).

Previous research has used computer vision (CV) and

artificial intelligence (AI) methods involving deep learning (DL)

algorithms; specifically, CNNs have been validated as a realistic

method for analyzing medical images (14, 15). A deep learning

technique called a convolutional neural network was previously

utilized to accurately identify pneumonia in CXR images of

a patient’s chest (16–18). The researchers introduced several

CNN models for classification tasks, including ResNet50 (19),

AlexNet (20), InceptionV3 (21), and a few others (22). Computer

vision researchers have used pre-trained deep learning models

in medical imaging, particularly for COVID-19 diagnosis and

classification (23, 24).

Loey et al. (25) presented a Bayesian-based optimization

DCNN model to classify coronavirus illness by using CXR

images. The presented approach tuned the hyperparameters

of DCNN models and extracted the high-level features. The

data used in the experimental process were large in size and

achieved 96% accuracy. This approach is limited by its high

computing time due to the Bayesian optimization because it

takes too much iteration during the training process. Yoo et al.

(26) employed a hybrid technique model on CXR images by

classifying the coronavirus using a decision tree classifier and

deep learning. The created method achieved 95% accuracy.

Wang et al. (27) designed a deep learning model-based transfer

learning approach to identify the coronavirus. CXR images

were utilized for this method. COVID-19 and healthy images

were 565,537, respectively. The created deep learning technique

gained 96.7% accuracy. They extracted high-level features

and ML-based classifiers to create an efficient technique for

improving the sensitivity of DCNN models. Chowdhury et al.

(28) implemented a novel framework based on a CNN. They

used a multiclass dataset that included COVID-19, pneumonia,

and the healthy class. They constructed a CNN in the parallel

pipeline and supplied crucial elements for the classification

method. The suggested approach attained an accuracy of 96.9%,

which was superior to the current techniques. Khan and Aslam

(29) utilized the DCNN networks such as ResNet, DenseNet,

and VGGNet and performed transfer learning concepts for

training the models on the Chest X-ray dataset. The dataset

includes 195 COVID-19 images and 862 normal images. On the

selected dataset, the provided method achieved an accuracy of

99%. Che Azemin et al. (30) designed a ResNet CNN based on

a deep learning algorithm to diagnose COVID-19 from CXR

images. They considered the binary class problem—COVID-

19 and healthy classes. The selected dataset was utilized for

the training of the CNN model through transfer learning. The

trained model achieves 72% accuracy, which is higher than

the recent methods. Khan et al. (31) presented a DL and

explainable AI-based framework for COVID-19 classification

from CXR images. Transfer learning was utilized to train pre-

trained deep models on enhanced images, and features were

merged for greater information. Following that, the Whale–

Elephant herding method is used to choose the best features,

which are then classified using the ELM classifier. Few other

techniques such as meta-classifier with deep learning approach

for COVID-19 classification (32), novel CNN approach called

CNN-COVID (33), optimization algorithm called novel crow

swarm (34), and multi-agent deep reinforcement learning (35).
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FIGURE 1

Proposed classification architecture for COVID-19 utilizing deep transfer learning and Bayesian optimization.

Themodels in the preceding studies were retrained using the

transfer learning concept, which involves freezing the weights

of a few layers to save computational time. They also used

fixed hyperparameters like learning rate, momentum, mini-

batch size, epoch count, etc. When there is a lot of variation in

the results due to different hyperparameter values, this method

is inefficient. In this work, we proposed a multimodal Bayesian

hyperparameter optimization method for the training of deep

learning models for COVID-19 classification. Moreover, an

explainable AI-based diagnosis has been performed. Our major

participation in this work is as follows:

• A multi-filter fusion-based hybrid technique is proposed

for contrast enhancement that increases the local and global

information of an image.

• Bayesian optimization is employed on deep learning

models for the optimization of hyperparameters that helps

in the better training of selected data.

• High-level features are extracted by both models and fused

by a novel slicing-based serial fusion.

• Grad-CAM visualization is performed on the final

classification, resulting in the colored visualization of the

COVID-19, pneumonia, and tuberculosis-infected regions.

The manuscript is organized as follows. The proposed

methodology such as multi-filters fusion-based hybrid

contrast enhancement technique, Bayesian optimization of

hyperparameters of DCCN models, deep transfer learning,

feature extraction, fusion, and Grad-CAM for explainable AI, is

presented in Section Proposed methodology. The findings of the

proposed approach are shown in Section Experimental results

and analysis, and Section Conclusion presents the conclusion.

Proposed methodology

The proposed methodology for the COVID-19 classification

and explainable AI-based diagnosis is presented here. In the

proposed method, multi-filter contrast enhancement and deep

transfer learning with Bayesian optimization are employed.

Figure 1 shows the proposed architecture based on Bayesian

optimization and features fusion for COVID-19 classification.

This figure illustrates that, in the first phase, data augmentation

is performed on the selected datasets using a multi-filter contrast

enhancement method and a few additional filters. Two pre-

trained models, namely, EfficientNet-B0 and MobileNet-V2, are

modified and trained using deep transfer learning and optimized

the hyperparameters by employing Bayesian optimization.

Features are extracted from both optimized models and fusion is

performed by utilizing a newmethod named, slicing-based serial

fusion. Finally, the samples are subjected to Grad-CAM analysis

in order to pinpoint the source of the infection.

Contrast enhancement

Enhancing contrast is one of the most important and

useful steps to enhance the vital objects in the images (36).

Another goal of this step is to enhance the overall image quality.

Medical image identification and interpretation mainly rely
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FIGURE 2

Samples enhanced images of multi-filters fusion technique.

on image enhancement methods (37). When segmentation is

performed, poor contrast is always detected incorrectly. In the

classification process, the enhanced images can extract more

important features than the feature extraction through the

original images. In this work, the images of the selected datasets

have low contrast and poor quality. These problems may lead

us to misclassification. Therefore, we designed a multi-filter

technique by utilizing the fusion of different filters. First, top-hat

and bottom-hat filtering are implemented and combined with

information. After that, intensity values are adjusted by using a

mathematical formula.

Consider, the COVID-19 datasets D having k images

D∈ R
k, where each image represented by T k

(

h,w
)

and
(

h,w
)

∈

R. Each sample has resized into N ×M = 224. Suppose that

the kernel σ with a value of 13. The top-hat is based on • opening

operation and the bottom-hat is based on � closing operation. So,

the top-hat and bottom-hat filtering are derived as:

Ttop
(

h,w
)

= T k (

h,w
)

−

(

kk
(

h,w
)

◦ σ

)

(1)

Tbottom
(

h,w
)

=

(

kk
(

h,w
)

� σ

)

− T n (

h,w
)

(2)

f ′
(

h,w
)

= T n (

h,w
)

+ Ttop
(

h,w
)

− Tbottom
(

h,w
)

(3)

where f ′
(

h,w
)

represents the fused image of top-bottom

filtering. In the next step, the adjust filter is employed on the

resultant images from the top-hat and bottom-hat filters. Adjust

filter boosts an image’s lightness by transforming the points of

the input pixels’ intensities to new ones, with the mean amount

of data absorbed in the low and high intensities being about

1.5%. The symbol p is the pixel value of the image, the gamma

(γ ) is a variable, which evaluates the form of the procedure

among the coordinating coefficients
(

q, f
)

and (r, e ).

Adjk
(

h,w
)

=

(

p− q

r − q

)γ
(

e− f
)

+ e (4)

Fk
(

h,w
)

= f ′
(

h,w
)

+Adjk
(

h,w
)

(5)

where Fk
(

h,w
)

is the final enhanced image, visually illustrated

in Figure 2.

Dataset collection and description

This study adopts an experimental technique that makes

use of three publicly accessible datasets: COVID-GAN and

COVID-Net small chest x-ray (https://www.kaggle.com/yas

h612/covidnet-mini-and-gan-enerated-chest-xray), COVID-19

radiography (https://www.kaggle.com/datasets/tawsifurrahman

/covid19-radiography-database). CXR (pneumonia, COVID-19,

TB) (https://www.kaggle.com/datasets/jtiptj/chest-xray-pneum

oniacovid19tuberculosis). There are three classes in COVID-

GAN and COVID-Net small chest x-ray datasets. COVID-

19 radiography and CXR (pneumonia, COVID-19, and

tuberculosis) consist of four classes. The original images are
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FIGURE 3

sCXR instances for the classification of COVID-19 and other infections.

TABLE 1 Complete explanation of selected datasets.

Classes Original

images

Augmented

images

Training/testing

images

COVID-19 radiography database

COVID-19 3,616 6,000 3,000/3,000

Lung opacity 6,012 6,000 3,000/3,000

Normal 10,192 6,000 3,000/3,000

Viral pneumonia 1,345 6,000 3,000/3,000

COVID-GAN and COVID-Net mini–Chest X-ray

Corona 461 6,000 3,000/3,000

Normal 1,575 6,000 3,000/3,000

Pneumonia 4,481 6,000 3,000/3,000

CXR (pneumonia, COVID-19, tuberculosis)

COVID-19 566 6,000 3,000/3,000

Normal 1,575 6,000 3,000/3,000

Pneumonia 4,265 6,000 3,000/3,000

Tuberculosis 491 6,000 3,000/3,000

shown in Figure 3. These datasets are highly imbalanced as

shown in Table 1. For balancing the dataset, we set 6,000

images in each class for all the datasets by utilizing data

augmentation. Using the augmented dataset, 50% of images have

been utilized for the training, while the rest of the 50% were

used for the testing. In the data augmentation process, three

primary functions are used: flip-left, rotate 90, and flip-right. The

augmented images are visually shown in Figure 4.

E�cientNet deep features

The EfficientNet model, which ranks among the top models,

achieved 84.4% accuracy on ImageNet for the classification

task with a parameter size of 5.3M (38). Deep learning

architectures are intended to find simple but efficient solutions.

By uniformly increasing depth, breadth, and resolution while

reducing model size, EfficientNet outperforms competitor state-

of-the-art models. The first step in the compound scaling

technique is to find a grid that identifies whether distinct

scaling dimensions of the baseline network connect to one

another within the limits of a constrained set of resources. The

optimal scaling factor for height, breadth, and resolution may

be determined using this procedure. These coefficients are then

added to the original network to make the final network the

appropriate size (17).

The main building block for EfficientNet-B0 is the

asymmetrical bottleneck MB Conv. Blocks in MB Conv consist

of an expansion layer followed by a compression layer. Later, it

was possible to connect bottlenecks directly while connecting

a much smaller number of channels. When compared to

conventional layers, the computational cost of this design’s deep

separable convolutions is around k2, where k is the kernel size

that determines the width and height of the 2D convolution

window (39). In this work, we utilized the EfficientNet-B0model

for the features extraction. The model was originally trained

on 1,000 classes and accepts the input size of 224 × 224 ×

3. We fine-tuned the FC Layer with the new FC Layer which

consists of COVID-19 classes. The updated model was trained

by utilizing deep transfer learning and BO. The detail of Bayesian

optimization (BO) is provided below. The objective of BO was

to find the best hyperparameters for EfficientNet-B0 which

gives the minimum error rate and increase the accuracy. The

hyperparameters are selected dynamically via BO. The high-

level features extracted from the average global pooling layer

after the model has been trained on selected COVID-19 datasets

and obtained a feature vector of size N × 1,280. Visually,

the process of fine-tuning and deep transfer learning is shown

in Figure 5.

MobileNet-V2 deep features

MobileNet-V2 employs depth-wise separable convolutions

(DSCs) for portability and to solve the problem of data loss
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FIGURE 4

Sample images after data augmentation.

in non-linear layers inside convolution blocks. MobileNet-V2

has 5.3 million parameter values (40). The building block of

MobileNet-V2 is shown in Figure 6. We used the MobileNet-

V2 model in our proposed work for deep feature extraction.

The model was pre-trained on the ImageNet dataset, which

has 1,000 classes, and it takes input sizes of 224 × 224

× 3. The FC Layer was replaced with a new FC layer. As

described in Section Hyperparameters optimization using BO,

the updated model was trained using deep transfer learning,

and the hyperparameters were optimized using BO. The trained

model was utilized for the feature extraction. The activation is

performed on global average pool (GAP) layer and retrieved

features have a dimension of N × 1280. Visually, the process of

deep transfer learning is shown in Figure 6.

Hyperparameters optimization using BO

When using deep learning architectures, we need to adjust

all of the hyperparameters in order to obtain classification

accuracy. The selection of hyperparameters has a significant

impact on the accuracy of the correct prediction (41). The goal

of optimizing hyperparameters is to choose the values that get

the best validation results. The hyperparameter optimization is

calculated as:

x∗ = argmin f (x) (6)

where f (x) is the objective score to minimize error rate

when compared to the validation set, and x is the set

of hyperparameters with a value in the domain where

hyperparameter optimization evaluation is more expensive. It

takes longer to train and is nearly impossible to achieve by hand

with deep neural network models with many hyperparameters.

BO has been used in simulations and machine learning

models. To improvemodel performance, computer vision-based

approaches use feed-forward network architectures to adjust

hyperparameters. It simplifies the time-taking task of optimizing

a number of parameters (42). Deep learning models need

particular hyperparameter (HP) tuning. These parameters can

bemanually or automatically set. Althoughmanual optimization

produces adequate results, it is highly dependent on expertise

and lacks consistency, making it less than ideal. HPs can be

modified automatically by random and grid searches; however,

some ineffectual sites may be unavoidable due to the inability

to gain knowledge from previous searches. BO has garnered a

lot of attention in parameter modification because of its distinct
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FIGURE 5

Visually representation of modified building block of e�cient Net b0.

advantages. BO differs from other approaches in that it takes

into account historical parameter information by updating the

prior with Gaussian progress (GP). Also, BO has a very low

number of iterations and a very fast convergence time. The BO

method may also avoid local optimality when dealing with non-

convex situations. The strong convergence and robustness of BO

make it an excellent choice for optimizing HPs (43, 44). In our

work, we utilized Bayesian optimization for a deep convolutional

neural network to optimize the hyperparameters for achieving

the minimum error of models. Section Depth, learning

rate, momentum, and L2Regularization are the optimization

parameters. The ranges of these parameters are shown

in Table 2.

Proposed feature fusion

Feature fusion is an important step in which multi-

directional information is combined to get a better output. As

shown in Figure 1, features are extracted from two pre-trained

models; therefore, fusion is important to combine the only

important information (36). We proposed a novel feature fusion

technique called slicing-based serial fusion in our study.

Consider, the first vector Vk1
N , which has a dimension of

N × 1280, and the size of second vector Vk2
N , which also has

a dimension of N × 1280 and is obtained by selected models

EfficientNet-B0 and MobileNet-V2, respectively. Suppose Vk3
N

is fused feature vector having dimension N × K . We selected

a mid-point based on any from the selected vectors, which are

computed as follows:

m =
N

2
(7)

wherem represents themid-point of vector andN represents the

total number of images used for feature extraction. Based on the

m-value, Vk1
N and Vk2

N are divided into slices. The slices equation

is calculated as:

V11
N = Vk1

N

(

f1,f2,f3 . . . fm
)

(8)

V12
N = Vk1

N

(

fm+1 . . . fend
)

(9)

V21
N = Vk2

N

(

f1,f2,f3 . . . fm
)

(10)

V22
N = Vk2

N

(

fm+1 . . . fend
)

(11)

where V11
N and V12

N represent the slicing that contains half and

half of the features of vector Vk1
N , and V21

N and V22
N represent the

slicing that contains half and half of the features of vector Vk2
N .

The structure of slicing vectors is visually shown in Figure 7.
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FIGURE 6

Modified building block of MobileNet-V2.

TABLE 2 Hyperparameters ranges for Bayesian optimization.

Hyperparameters Ranges

Section depth (1, 3)

Learning rate [0.001, 1]

Momentum [0.8, 0.98]

L2Regularization [1e−10 , 1e−2]

After slicing both vectors, the information is aggregated in

the initial fused vector Vfused. The sliced vectors are fused in this

sequence V11
N ,V21

N , V12
N ,V22

N , respectively.

Vfused =











V11
N

V21
N

V12
N

V22
N











K×N

(12)

The output vector Vfused are attained with dimensions N ×

2560 but these features are mixed with each other by utilizing the

slicing technique. In the next phase, features are refined further

using a Kurtosis-based function.We tried to select the important

features in the fused vector using this function.

Kr =
µ4

σ 4
(13)

µ4 =
E

[

(V − µ)4
]

σ 4
(14)

σ 2
=

√

E
[

(V−µ)2
]

, σ =

√

σ 2 (15)

Fusion =

{

Vk3
N for Vfused ≥ Kr

Ignore, Elsewhere
(16)

Based on this equation, we obtained a final vector having

dimension N × 1422. This resultant vector is fed to machine

learning classifiers for final classification.

Experimental results and analysis

For the experimental process, the datasets are split 50:50,

indicating that 50% of the images are used to train the

models and the remaining 50% are utilized for the testing

process. The entire experimental process is carried out using
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FIGURE 7

Structure of slicing vectors.

TABLE 3 Classification accuracy of modified E�cientNet-B0 Bayesian optimization features on COVID-19 radiography dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 97.12 97.15 0.0075 97.13 97.2 19.996

CSVM 97.22 97.22 0.0075 97.22 97.2 21.042

M G SVM 97.02 97.05 0.01 97.03 97.0 21.943

C G SVM 96.70 96.75 0.01 96.72 96.08 21.283

ESD 96.75 96.77 0.01 96.75 96.9 82.864

LSVM 97.05 97.07 0.10 97.05 97.0 18.952

SVM Kernel 96.92 96.95 0.0075 96.93 96.9 688.63

LRK 96.55 96.57 0.035 96.55 96.5 212.31

LD 96.55 96.57 0.010 96.55 96.5 18.935

WNN 95.52 96.57 0.015 96.04 96.5 18.004

Bold represent best values.

10-fold cross-validation. The static hyperparameters that are

used during the training of deep models are epochs and mini-

batch sizes having values 200 and 16, respectively. Moreover,

the initial learning rate, stochastic gradient descent, momentum,

L2Regularization, and section depth are optimized by utilizing

Bayesian optimization. Multiple classifiers are used in this

work for the classification results, including a support vector

machine, wide neural network, ensemble subspace discriminant,

and linear regression kernel. The classifier’s performance

parameters are sensitivity, precision, false positive rate, F1-score,

accuracy, and computation time. Moreover, Grad-CAM analysis

is conducted for further verification of the infected COVID-

19 region in the image. All the simulations are conducted in

MATLAB2022a executing on a workstation from MSI’s GL75

Leopard series equipped with an 8 GB NVIDIA GTX graphics

card, 512 SSD, and an Intel Core i7 10th generation processor.

COVID-19 radiography database results

Modified E�cientNet-B0 features

In this experiment, features are extracted from modified

EfficientNet-B0. This model was trained through BO and

transfer learning on the augmented dataset. Table 3 shows the

classification accuracy of this updated model on the COVID-

19 radiography dataset. In this table, it is noted that the QSVM

classifier has a higher accuracy of 97.2% than the other classifiers

listed. This classifier has a sensitivity rate of 97.12%, a precision

rate of 97.15%, and an F1-score of 97.13%. Additionally, these

values are determined for the remaining classifiers. During the

classification process, the computation time of all classifiers is

also recorded, with the wide neural network consuming the least

time 18.004 (s) and the SVM kernel classifier taking the most

time (688.63) (s).

Modified MobileNet-V2 features

From this experiment, the modified MobileNet-V2 model

is fine-tuned and trained using BO on the COVID-19

radiography dataset. Table 4 shows the classification results of

this experiment. From this table, the ESD classifier has an

accuracy of 94.2% that is better than the other classifiers, listed

in this table. This classifier has a 94.25% sensitivity rate, 94.28%

precision rate, and F1-score is 94.28%. The numerical outcomes

support the conclusion that the ESD outperforms the other

classifiers. These values are also generated for the experiment’s
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TABLE 4 Classification accuracy of modified MobileNet-v2 Bayesian optimization features on COVID-19 radiography dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 92.85 92.92 0.022 92.88 92.8 28.351

CSVM 92.20 92.27 0.025 92.23 92.2 33.41

M G SVM 91.05 91.20 0.027 91.12 91.0 33.386

C G SVM 87.52 88.90 0.04 88.20 87.5 50.183

ESD 94.25 94.32 0.02 94.28 94.2 106.56

LSVM 93.75 93.80 0.022 93.77 93.8 20.353

SVM Kernel 94.25 94.32 0.017 94.28 94.2 89.6

LRK 90.45 90.62 0.032 90.53 90.8 127.41

LD 83.92 87.05 0.052 85.45 83.9 15.743

WNN 91.37 91.42 0.027 91.39 91.5 42.71

Bold represent best values.

TABLE 5 Classification results of proposed slicing-based serial fusion technique on COVID-19 radiography database.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 98.57 98.75 0.004 98.75 98.8 42.023

CSVM 98.56 98.68 0.004 98.68 98.7 44.317

M G SVM 97.14 97.46 0.008 97.43 97.4 52.454

C G SVM 97.32 97.60 0.008 97.60 97.6 69.348

ED 98.15 98.45 0.005 98.47 98.5 454.86

LSVM 98.25 98.48 0.005 98.42 98.5 38.901

SVM Kernel 98.35 98.56 0.006 98.51 98.6 95.00

LRK 97.69 97.73 0.007 97.88 97.9 147.65

LD 94.56 94.62 0.017 97.65 94.7 42.13

WNN 97.82 97.90 0.006 98.07 98.1 48.073

Bold represent best values.

remaining classifiers. In this experiment, the amount of time

for each classifier is noted and the linear discriminant classifier

required the least amount of time of 15.743 s. In contrast,

the LRK classifier was executed in 127.41 s, the highest of all

the classifiers.

Proposed fused results

In this experiment, the proposed fusion approach is opted

and fused the features of both optimized models. The fused

vector is passed to the classifiers, which yielded the best accuracy

of 98.8% on QSVM, which is higher than in experiments 1 and

2. Table 5 shows the detailed results of this experiment. QSVM

has a sensitivity rate of 98.57%, a precision rate of 98.57%, and

an F1-score of 98.57%. In addition, a QSVM confusion matrix

is shown in Figure 8. This statistic indicates that the correct

prediction rate for each class exceeds 97%. Also observed is the

computing time of each classifier, with the linear SVM classifier

executing faster than the others. This classifier’s execution time

is 38.901 s, while the longest execution time is 454.86 seconds

(s). Comparing Tables 3, 4, it is observed that the fusion process

improves accuracy, but time is increased due to the addition of

extra features.

COVID-GAN and COVID-Net mini chest
X-ray dataset

In this section, the results of the COVID-GAN and COVID-

Net Mini Chest X-Ray dataset have been presented. In the first

phase, features are extracted from the modified EfficientNet-B0

model. Thismodel was trained through BO and transfer learning

on the augmented dataset. Table 6 shows the classification

accuracy of this model and obtained the 97.4% on Cubic SVM.

The sensitivity, precision, and F1-score are 97.13, 97.26, and

97.15%, respectively. The classification computational time for

all classifiers in this phase experiment is also recorded; the

Quadratic SVM classifier has the shortest execution time of

14.318 (s) and the longest execution time of 128.74 (s). In

the next phase, features are extracted through the modified

MobileNet-V2 model. Features are passed to the classifiers and

obtained the maximum accuracy of 93.5% on Cubic SVM, as

shown in Table 7. This table shows that the sensitivity rate for
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FIGURE 8

Confusion matrix of quadratic SVM utilizing the proposed slicing-based serial fusion technique on the COVID-19 radiography dataset.

TABLE 6 Proposed modified E�cientNet-B0 Bayesian optimized features results on COVID-GAN and COVID-Net mini chest X-ray dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 97.13 97.16 0.01 97.14 97.1 14.318

CSVM 97.13 97.26 0.01 97.15 97.4 16.054

MG SVM 96.95 96.96 0.01 96.95 96.9 18.33

C G SVM 95.36 95.53 0.02 95.44 95.4 18.085

ESD 96.70 96.73 0.01 96.71 96.7 121.690

LSVM 96.50 96.56 0.01 96.52 96.5 15.486

SVM Kernel 96.60 96.66 0.01 96.62 96.6 347.63

LRK 96.00 96.06 0.01 96.02 96.0 128.74

LD 95.30 95.36 0.02 95.32 95.0 15.587

WNN 96.76 96.76 0.01 96.76 96.8 59.033

Bold represent best values.

Cubic SVM is 93.35%, the precision rate is 93.46%, and the

F1-score is also 93.47%. All classifiers’ processing times are

also noted down, and it is noted that modified EfficientNet-Bo

features work better than modified MobileNet-V2 features.

In the final step, fusion is performed using the proposed

approach, and results are shown in Table 8. According to the

data in this table, the Cubic SVM classifier has the highest

accuracy of 97.9%, which is higher than the previous two

steps (Tables 6, 7). The sensitivity and precision rates are

also improved−97.26 and 97.36%, respectively. A confusion

matrix, as shown in Figure 9, can be used to confirm the

performance of CSVM. In comparison to the previous two

experiments on this dataset, accuracy improves significantly

after the fusion of features of both optimized trained models.

Also, it is noted that the time is increased after the proposed

fusion step.
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TABLE 7 Proposed method modified MobileNet-V2 utilizing Bayesian optimization results on COVID-GAN and COVID-Net mini chest X-ray dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 93.43 93.44 0.032 93.37 93.4 21.75

CSVM 93.35 93.46 0.032 93.47 93.5 19.246

MG SVM 92.25 92.54 0.037 92.43 92.5 23.361

C G SVM 91.30 76.26 0.060 79.77 91.3 17.924

ESD 93.03 92.13 0.034 92.94 92.9 148.03

LSVM 93.16 93.24 0.034 93.09 93.1 15.974

SVM Kernel 92.37 92.41 0.038 92.28 92.4 396.83

LRK 91.82 91.83 0.040 91.73 91.7 140.18

LD 86.20 86.46 0.069 85.98 86.2 24.760

WNN 92.52 92.68 0.036 92.66 92.7 95.177

Bold represent best values.

TABLE 8 Proposed slicing-based serial fusion results on COVID-GAN and COVID-Net mini chest X-ray dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 97.42 97.56 0.012 97.59 97.6 36.804

CSVM 97.26 97.36 0.010 97.89 97.9 39.492

MG SVM 96.99 97.08 0.014 97.03 97.0 48.462

C G SVM 94.98 95.01 0.016 95.03 95.5 43.458

ESD 97.12 97.46 0.012 97.01 97.5 339.12

LSVM 96.91 96.97 0.013 97.00 97.1 34.862

SVM Kernel 96.95 96.99 0.012 97.02 97.3 432.8

LRK 95.97 96.01 0.015 96.04 96.5 169.25

LD 93.01 93.06 0.019 93.05 93.9 87.107

WNN 96.96 97.04 0.011 97.04 97.6 37.795

Bold represent best values.

Chest X-ray (pneumonia, COVID-19, and
tuberculosis)

The results of this dataset are shown in Tables 9–11. Table 9

shows the results after the feature extraction through a modified

EfficientNet-B0 model that was trained through BO. For these

features, quadratic SVM gives a better accuracy of 98.80%.

The linear SVM has the least execution time of 21.394 (s),

whereas the SVM Kernel classifier has the highest execution

time is 3,497.8 (s). Table 10 shows the classification results

of modified MobileNet-V2 features. In this table, the QSVM

obtained the best accuracy of 97.0%. The F1-score is 97.05,

the sensitivity rate is 96.02, and the precision rate is 96.6%.

The computational time of this model is a little high than the

modified Efficientnet-B0 features. Finally, fusion is improved,

and the outcomes are shown in Table 11. From this table,

the wide neural network classifier has the highest accuracy

of 99.4%. Other measures of this classifier are calculated

as well, including an F1-score of 99.38%, a sensitivity rate

of 99.63%, and a precision rate of 99.79%. The confusion

matrix of this classifier is also shown in Figure 10. Based

on this figure, the sensitivity rate can be verified. After the

fusion process, computational time increases but significantly

improves accuracy.

Grad-CAM visualization and comparison

Grad-CAM is a CAM generalization that offers a localization

map on the image based on the selected layer. In our work,

we utilized global average pooling convolutional (GAP) feature

maps that are directly fed into SoftMax (45). Grad-CAM needs

to acquire a localization map that discriminates based on

social status. Grad-CAM Dc
GRAD−CAM ∈ R

m×n in deep

convolutional neural networks, after a convolutional layer has

been trained, its feature mappings β are used to calculate the

layer’s gradient of gc. Weights αc
k
are calculated using global

average pooled interpretations of these gradients.

αc
k =

1

Z

∑

i

∑

j

∂gc

∂βk
ij

(17)

where weights are represented by αc
k
that defines the feature map

k for a specific class c and serves as a partial linearization of
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FIGURE 9

Confusion matrix of CSVM after proposed features fusion for COVID-GAN and COVID-Net mini chest X-ray dataset.

TABLE 9 Proposed modified E�cientNet-B0 Bayesian optimized features results on chest X-ray dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 98.65 98.77 0.005 98.77 98.80 25.560

CSVM 97.45 97.67 0.006 97.67 97.99 24.728

M G SVM 97.24 97.67 0.006 97.67 97.70 34.803

C G SVM 98.49 95.57 0.005 97.04 98.01 28.913

ESD 98.15 98.67 0.005 98.67 98.07 149.33

LSVM 98.14 98.72 0.005 98.72 98.70 21.394

SVM Kernel 98.65 98.73 0.005 98.05 98.07 3,497.8

LRK 98.23 98.32 0.005 98.32 98.30 290.05

LD 98.35 98.57 0.005 98.57 98.60 22.809

WNN 96.30 96.45 0.016 96.60 96.60 22.083

Bold represent best values.

the deep network downstream of β . It is not necessary for gc

to be a class score; alternatively, it might be anything that can

be triggered in a different way. Our Grad-CAM heat map, like

CAM, is a weighted combination of feature maps, but we then

refine the findings using a ReLU:

Dc
GRAD−CAM = RELU





∑

k

αc
kβ

k



 (18)

This Dc
GRAD−CAM generates the primitive heat map that

is normalized for visualization. In our article, we utilized the

Grad-CAM for the analysis of the selected models. The Grad-

CAM creates a heap map of the infected area of the lungs

in the CXR images. A few resultant samples are shown in

Figure 11. Finally, Table 12 shows a comprehensive evaluation

of many computerized methods. This table contains a large

number of newly introduced strategies that all use deep learning
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TABLE 10 Proposed modified MobileNet-V2 Bayesian optimized features results on chest X-ray dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 96.02 96.6 0.009 96.05 97.0 23.671

CSVM 96.52 96.68 0.011 96.67 96.7 38.324

M G SVM 95.42 95.85 0.013 95.84 95.9 41.99

C G SVM 96.35 96.45 0.011 96.45 96.5 36.792

ESD 96.72 96.81 0.010 96.85 96.9 114.75

LSVM 96.58 96.83 0.010 96.82 96.9 30.087

SVM Kernel 96.69 96.75 0.010 96.82 96.8 878.01

LRK 96.06 96.21 0.012 96.40 96.4 276.76

LD 95.65 95.80 0.014 95.79 95.8 15.669

WNN 96.28 96.34 0.012 96.35 96.4 19.3

Bold represent best values.

TABLE 11 Proposed slicing-based serial feature fusion results on chest X-ray dataset.

Classifiers Sensitivity Precision FPR F1-score Accuracy Time

QSVM 98.90 99.23 0.002 99.1 99.4 54.639

CSVM 99.19 99.25 0.002 99.32 99.4 52.913

M G SVM 98.16 98.39 0.005 98.37 98.3 75.546

C G SVM 99.13 99.17 0.002 99.20 99.2 63.507

ESD 99.04 99.07 0.002 99.33 99.3 379.4

LSVM 99.21 99.25 0.002 99.35 99.4 43.302

SVM Kernel 99.26 99.34 0.0019 99.43 99.4 805.69

LRK 99.18 99.26 0.002 99.17 99.2 315.67

LD 98.56 98.65 0.003 98.95 99.0 116.59

WNN 99.63 99.79 0.002 99.38 99.4 33.657

Bold represent best values.

FIGURE 10

Confusion matrix of WNN for the proposed fusion on the chest X-ray dataset.
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FIGURE 11

Sample images of Grad-Cam-based analysis. (A) Original images and (B) Grad-CAM analysis.

TABLE 12 Comparison of the proposed method to existing techniques.

Sr. No References Year Method Accuracy (%)

1 (47) 2020 Detection of COVID19 infection by using deep features and Bayesian optimization 98.97

2 (48) 2022 COVID19 diagnosis using CNN architected and Bayesian Optimization 96.29

3 (46) 2022 Diagnosis of Corona virus on CT images using bayes optimized DCNN and ML 99.3

Proposed DCNN Bayesian optimization with slicing 98.8

Serial fusion method 97.9

99.4

Bold represent best values.

and Bayesian optimization concepts. Recently, the maximum

accuracy has reached 99.3% by (46). In contrast, the suggested

framework obtained a high degree of accuracy, as shown in

Table 12. This shows the improvement of the proposed method.

Conclusion

This article presents an automated COVID-19 classification

technique based on the hyperparameter optimization of pre-

trained deep learning models via BO. Initially, contrast is

increased to improve the visual quality of the input images,

which are later used to train selected pre-trained models.

Transfer learning is used to fine-tune and train both models.

BO was used to optimize the hyperparameters of selected pre-

trained models during training. Following that, features are

extracted and fused using a proposed slicing-based approach.

Three publicly available datasets were used in the experiment,

and the accuracy was higher than with previous techniques.

Based on the findings, we concluded that the proposed contrast-

enhanced approach improved training capability, allowing for

the later extraction of important features. Furthermore, the

BO-based hyperparameters selection trained selected models

more effectively than static initialization. Furthermore, the

proposed fusion method improved classification accuracy. The

computational time of the classification accuracy that was

increased after the fusion process is the work’s limitation. In

future, feature selection methods will be prioritized in order to

reduce the dimension of fused data.
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