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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen

that causes coronavirus disease 2019 (COVID-19), infects humans through a

strong interaction between the viral spike protein (S-protein) and angiotensin

converting enzyme 2 (ACE2) receptors on the cell surface. The infection

of host lung cells by SARS-CoV-2 leads to clinical symptoms in patients.

However, ACE2 expression is not restricted to the lungs; altered receptors

have been found in the nasal and oral mucosa, vessel, brain, pancreas,

gastrointestinal tract, kidney, and heart. The future of COVID-19 is uncertain,

however, new viral variants are likely to emerge. The SARS-CoV-2 Omicron

variant has a total of 50 gene mutations compared with the original virus;

15 of which occur in the receptor binding domain (RBD). The RBD of the

viral S-protein binds to the human ACE2 receptor for viral entry. Mutations

of the ACE2–RBD interface enhance tight binding by increasing hydrogen

bond interactions and expanding the accessible surface area. Extracorporeal

membrane oxygenation, hyperbaric oxygen, and aggressive dialysis for the

treatment of COVID-19 have shown various degrees of clinical success. The

use of decoy receptors based on the ACE2 receptor as a broadly potent

neutralizer of SARS-CoV-2 variants has potential as a therapeutic mechanism.

Drugs such as 3E8 could block binding of the S1-subunit to ACE2 and restrict

the infection of ACE2-expressing cells by a variety of coronaviruses. Here, we

discuss the development of ACE2-targeted strategies for the treatment and

prevention of COVID-19.
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Introduction

Severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2)—the causative pathogen of coronavirus

disease 2019 (COVID-19)—is an enveloped non-segmented

positive strand ribonucleic acid (RNA) virus belonging

to the family Coronaviridae, order Nidovirales. SARS-

CoV-2 infects upper respiratory tract cells and lung

epithelial cells and can be detected in lower respiratory

tract samples (1–3). Upper and lower respiratory symptoms

are seen in individuals with COVID-19, and transmission

occurs before symptoms develop. Typical clinical features

are fever, sore throat, dry cough, rhinorrhea, sneezing,

dyspnoea, headache, pneumonia, and increased cytokine

levels (4). Severely infected individuals may succumb to

severe sepsis and acute respiratory distress syndrome. In

2020, a global COVID-19 outbreak gave rise to public

health concerns and warnings by the World Health

Organization (5).

Coronaviruses are prevalent and widely distributed,

in part attributable to their genetic diversity and genome

reassortment, and cross-species infection and occasional

spillover (6). Coronaviruses have an error prone RNA-

dependent RNA polymerase, resulting in frequent mutation

and reassortment events. For example, mutation of the

SARS-CoV-2 virus has resulted in improved binding to

its cellular receptors and optimized replication in human

cells (7). Our knowledge of coronaviruses remains limited,

however, and serious public health threats are likely to occur

in the future (8). The current outbreak of COVID-19, and

possible outbreaks of other coronaviruses in the future,

indicate that exploration of innovative therapeutic strategies

and methods is warranted (9). As one SARS-CoV-2 primary

receptor, recognizing the role of ACE2 in different pathways

would be key to evaluating the impact of SARS-CoV-2/ACE2

binding on the physiology of the organs and helping us

find better diagnostic tools and therapeutic approaches

of SARS-CoV-2 (10). It is currently documented that its

mechanism of action may be related to the imbalance of

renin-angiotensin-aldosterone system (RAAS) and kallikrein

system (KKS) (11–13). Here, we discuss the development

of angiotensin converting enzyme 2 (ACE2)-targeted

strategies for the treatment and prevention of COVID-19

(Figure 1).

Spike proteins and angiotensin
converting enzyme 2 receptors

SARS-CoV-2 gains entry into sensitive cells and achieves

human-to-human transmission via strong interactions between

viral spike proteins (S-protein) and angiotensin converting

enzyme 2 (ACE2) receptors on the cell surface (13). Wan

et al. (14) discovered that ACE2 is the receptor for COVID-

19. The S-protein–ACE2 binding pathway plays a significant

role in human transmission and the pathogenic process of

COVID-19 (15). The S-protein comprises two components:

S1 with a receptor binding domain (RBD), and S2 with a

fusion peptide (9). Sequence variation replacing Arg426 with

Asn426 in the SARS-CoV-2 S-protein resulted in the loss of

hydrogen bond interactions and an increase in binding free

energy. In the S-protein, substituted residues at positions 442,

472, 479, and 487 did not alter the three-dimensional structure

of the RBD domain and maintained certain van der Waals

and electrostatic properties on the interaction interface (16).

ACE2 is key for the entry of SARS-CoV-2 into HeLa cells

and is concentrated in a small subset of type II alveolar

cells (AT2).

ACE2 variants are strongly associated with susceptibility

to COVID-19 infection (17–20). Thirty two variants of ACE2

have now been identified by studying Asian, American, African,

and European populations (21), including seven hotspot

variants (lys26arg, ile468val, ala627val, asn638ser, ser692pro,

asn720asp, and leu731ile/leu731phe). Genetic variation among

different populations affects ACE2 function (20). For example,

analysis of ACE2 expression profiles in normal lung cells,

revealed that ACE2 expression is higher in Asian men

than in white or African populations (18). This result

suggests that Asian men may be more susceptible to viral

infection. Interference of viral transmission and pathogenicity

by regulating the S-protein–ACE2 binding pathway in ACE2-

expressing AT2 may be an effective strategy to prevent and

treat COVID-19.

Omicron and ACE2 receptors

The emergence of the SARS-CoV-2 Omicron variant in

Botswana and South Africa has influenced vaccine effectiveness

and antibody capacity (22). Omicron has 50 gene mutations

compared with the original strain, with 15 mutations in the

RBD of the S-protein that binds to the ACE2 receptor. Thirty

mutations of the Omicron S-protein are distributed over all

domains of the trimeric protein, where the mutated residues

are involved in intramolecular interactions, making it more

stable. Seven mutations occur on the interaction interface

between the RBD and the ACE2 receptor complex, including

two ionic interactions, eight hydrogen bonds, and seven van der

Waals interactions (23). Molecular features that have resulted

in rapid diffusion of the Omicron variant include an increase

in antibody evasion and the retention of strong interactions

at the ACE2 interface (24). Unlike the Alpha, Beta, and

Gamma variants, in Omicron the RBD binds to the human

ACE2 receptor with a similar affinity to the prototypical RBD,

likely owing to immune escape and compensation by multiple

mutations that are transmissible (25). The structural basis for
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FIGURE 1

Role of angiotensin converting enzyme 2 (ACE2) receptor, ACE2 mechanism of viral action, and development of ACE2-targeted strategies in

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

the binding of RBD-specific mutations to ACE2 receptors was

revealed through the complex structures of Omicron RDB–

ACE2 and Delta RDB–ACE2 (26). The Omicron RBD binds

more strongly to the ACE2 protein, mainly through increased

hydrogen bonding interactions and an enlarged accessible

surface area (27).
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ACE2 location and symptoms

Although infection of host lung cells by SARS-CoV-2 can

result in severe symptoms in patients, ACE2 expression is not

unique to the lungs and altered receptors have been found

in other tissues (28–30). ACE2 is highly expressed in the

oral cavity, which increases the risk of COVID-19 infection

(30). In addition, the expression of ACE2 decreases as the

virus replicates, which causes prolonged constriction of the

arteries, leading to increased dysfunction and inflammation,

thereby resulting in significant cardiovascular damage (31).

Symptoms such as “COVID toes” (chilblain-like acral lesions),

reported during the COVID-19 pandemic, are likely a result

of impairment of the vasculature (32). High expression levels

of ACE2 in the heart and kidneys makes them susceptible to

infection (33). Among hospitalized patients severely infected

with this virus, 58% had hypertension and 44% had arrhythmias

(8). ACE2 is highly expressed at the site of insulin production

in the pancreas—decreased insulin secretion and altered glucose

tolerance are associated with ACE2 deletion (34)—and diabetes

has been identified as a unique comorbidity of COVID-19 (28).

ACE2 is also highly expressed in the brain, especially in the

glial cells, neurons, and spinal fluid (35). Brain tissue edema and

partial neuronal degeneration have been found during autopsy

of patients with COVID-19.

ACE2 pathway and treatment

The renin–angiotensin II–aldosterone system plays a very

important role in the body’s regulation of circulatory and fluid

homeostasis. Angiotensin II has immunomodulatory effects

in the local pulmonary renin–angiotensin II system and the

ACE/ACE2 balance is important for regulating angiotensin II

levels. A homolog of ACE, ACE2 generates angiotensin 1–

7 from angiotensin II. ACE2 plays an opposing role to ACE

by counter balancing angiotensin II type 1 receptor (AT1R)-

mediated actions and negatively regulates angiotensin II levels

(10). Increased ACE and reduced ACE2 activities have been

suggested to increase clinical susceptibility to acute and chronic

pulmonary diseases. Loss of ACE2 expression increases vascular

permeability, causing pulmonary edema and worsening lung

function (36).

As a receptor for SARS-CoV-2, the downregulation of ACE2,

and upregulation of ACE, may play causal roles in COVID-

19 pathogenesis (37). ACE inhibitors have been confirmed

to reduce ACE ability and increase ACE2 ability, and may

prove beneficial in the treatment of COVID-19. Treatment of

acute lung injury with active recombinant ACE2 protein can

improve symptoms (37). ACE inhibitors can act as significant

immunomodulators and decrease systemic cytokine levels (38).

ACE inhibitors can also protect cardiopulmonary function

and even improve the long-term prospects of patients with

pulmonary disease (39). Current strategies for the treatment

of diabetes and hypertension include ACE inhibitor drugs,

angiotensin II receptor blockers, human recombinant ACE2,

endogenous ACE2 activators, and ACE2 gene therapy (40).

Soluble ACE2 (sACE2) can mediate viral entry into cells.

Recombinant human ACE2 is an exogenous sACE2 that can

complement endogenous ACE2, which may be an important

option for the effective treatment of COVID-19 (41).

Vaccines are being used for active immunization against

COVID-19 and drug repurposing and convalescent plasma may

also be feasible treatment options (42). However, vaccinated

persons have been infected with Omicron, and post-vaccination

sera showed poor neutralization of the variant (43). The binding

strength of the Omicron RBD to ACE2 is two-fold higher than

that of prototype SARS-CoV-2. Spike mutations have promoted

receptor binding to infect the respiratory system, and impaired

antibody binding to evade the immune response (44). Novel

treatments, including cocktail therapies, may be needed to treat

Omicron infection.

Treatment potential using ACE2

Molecular detection and close surveillance are essential to

identify potential COVID-19 cases and deliver timely treatment

(45). During the first contact of a clinician with a suspected

case, different diagnoses may be made based on clinical

symptoms and rapid pathogen detection. Urgent measures

include adopting the most effective control strategies to avoid

viral transmission in the community. For critically ill patients,

varying degrees of clinical success have been achieved using

extracorporeal membrane oxygenation, aggressive dialysis, and

hyperbaric oxygen. Remdesivir, an RNA polymerase inhibitor,

is the first Food and Drug Administration-approved treatment

(46). Broad-spectrum antivirals, such as lopinavir, ritonavir,

remdesivir, and interferon beta, are being evaluated for activity

against COVID-19 (47, 48). Corticosteroids are commonly

used to treat severely symptomatic patients by reducing

inflammation-induced lung injury. However, administration of

corticosteroids showed no effect on mortality and can delay

viral clearance (49). Therefore, corticosteroids should not be

routinely administered as a systemic treatment for COVID-19.

Further study is urgently needed to evaluate whether different

antiviral drugs and systematic corticosteroid treatment are

applicable for patients infected with COVID-19 (8).

The theoretical and clinical significance of the S-protein–

ACE2 binding pathway in viral transmission and pathogenicity

highlight its potential as a target for COVID-19 treatments.

ACE/ACE2-targeted therapeutic strategies are a cornerstone of

cardiovascular therapeutics, and the same methods may be valid

for the treatment of pulmonary disease, promoting the concept

of synchronous treatment of the heart and lungs. Further studies
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TABLE 1 Development of angiotensin converting enzyme 2 (ACE2) targeted strategies for the treatment and prevention of coronavirus disease 2019.

Name Function References

3E8 ACE2-targeting monoclonal antibody blocked the S1-subunits and pseudo-typed

virus constructs from multiple coronaviruses, without markedly affecting the

physiological activities of ACE2 or causing severe toxicity in ACE2

“knock-in” mice

Chen et al. (50)

h11B11 ACE2-blocking monoclonal antibody Du et al. (62)

GB-2 Inhibiting ACE2 mRNA expression and ACE2 and TMPRSS2 protein expression

in HepG2 and 293 T cells without cytotoxicity

Wu et al. (63)

Chloroquine phosphate Inhibiting terminal phosphorylation of ACE2 Al-Bari (64)

DX600 DX600 is a potent ACE2 inhibitor specific for only human ACE2 Pedersen et al. (65)

Luteolin (3,4,5,7-tetrahydroxy

flavone)

Luteolin can interact with Glu37, Lys353, Ala386, Met383, and Phe356 on the

ACE2 receptor while the critical SAR-CoV-2-ACE2 interaction by hydrogen

bonds is formed by three of them (Glu37, Lys353, and Met383)

Shahbazi et al. (66)

Chrysin (5,7-dihydroxy-2-

phenyl-4H-Chromen-4-one)

Chrysin can interact with the ACE2 through Ala348 and Arg393 by hydrogen

and hydrophobic bonds, respectively. This drug can interact with the ACE2 in a

compact and stable mode

Shahbazi et al. (66)

Corilagin Blocking the fusion of spike-RBD to ACE2 receptors Yang et al. (67)

Glycyrrhizin Binding to the ACE2 receptor Chrzanowski et al. (68)

Azithromycin and ambroxol Blocking the ACE2 receptor Alkotaji (69)

Doxepin Inhibiting viropexis of Spike pseudovirus by blocking ACE2 Ge et al. (70)

Zidovudine and efavirenz Suppressing 2019-nCoV infection of ACE2-HEK293T cells by interacting with

ACE2

Wang et al. (71)

Triazavirin The interactions between TZV and given viral structures or the ACE-2 receptor

might effectively block both the entry of the pathogen into a host cell and its

replication

Hudecová (72)

Bispecific Antibody Blocking the ACE2 receptor by linker cleavage inside the infected host Ojha et al. (73)

Butein Binding with ACE2 receptor Kapoor et al. (74)

Stapled peptides Inhibiting the binding of ACE2 receptor Tzotzos (75)

IMM-BCP-01 Directly blocking Spike binding to the ACE2 receptor Nikitin et al. (76)

Gunnera perpensa L. Inhibiting SARS-CoV-2 spike glycoprotein-host ACE2 binding Invernizzi et al. (77)

are needed to investigate the use of therapeutic drugs based on

the S-protein–ACE2 binding pathway.

Spike-binding ACE2 decoys may be an effective treatment

for this viral infection as a result of their enhanced affinity and

neutralizing efficacy (44). The use of decoy receptors based on

ACE2 as a widely effective neutralizer of SARS-CoV-2 variants

could have a variety of therapeutic mechanisms (Table 1). Chen

et al. (50) found that 3E8, an antibody against human ACE2,

could block binding of the S1-subunit to ACE2 without affecting

the physiological activity of ACE2 or causing severe toxicities

in hACE2 “knock-in” mice. In addition, 3E8 may be a potent

“broad-spectrum” blocker of multiple SARS-CoV-2 variants,

such as Delta, Omicron, Alpha, Beta, Kappa, and Gamma,

which utilize ACE2 as the entry receptor (51). Studies have

explored the interaction of the SARS-CoV-2 S-protein RBD

with the ACE2 receptor in three variants (Omicron, Delta,

and WT). Despite the multiple mutations of Omicron and its

relatively high viral spread, the calculated binding affinities of

phytochemical limonoids and glycyrrhizic acid support that

traditional medicines can be used to formulate adjunctive

therapies to combat this variant (52, 53). The above treatment

strategies may be potential antiviral agents for Omicron-

infected patients.

Omicron is characterized by high transmissibility and rapid

spread, but its symptoms are less severe than those of previous

variants. Early and prudent preventive measures, including

vaccination, are key to inhibiting the Omicron variant (54). A

recent study found that three doses of messenger RNA vaccine

were more effective against the Omicron and Delta variants

than not vaccinating or receiving two doses (55). Mutations

in the S gene may generate novel variants with improved

viral fitness through selective or survival advantages, such as

increased ACE2 receptor affinity, replication, transmissibility,

infectivity, immune escape, resistance to neutralizing antibodies,

or disease severity (56). Quantitative analysis of the genetic

transformation rate of the virus showed that the modified
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TABLE 2 Omicron showed 30 amino acid mutations in S-protein.

Position The spike protein of the virus

In the N-terminal domain of

the spike

N211del/L212I, Y145del, Y144del,

Y143del, G142D, T95I, V70del, H69del,

A67V

In the receptor-binding

domain of the spike

Y505H, N501Y, Q498R, G496S, Q493R,

E484A, T478K, S477N, G446S, N440K,

K417N, S375F, S373P, S371L, G339D

In the fusion peptide of the

spike

D796Y

In the heptad repeat 1 of the

spike as well as multiple other

mutations in the

non-structural proteins and

spike protein

L981F, N969K, Q954H

candidate drug catechin gallate can be repelled by ACE2,

indicating that further modification of medical candidate drugs

could produce effective docking inhibitors (57). Therefore,

potential new solutions based on the ACE2 pathway could

involve bait receptors based on ACE2, or mutations of the

S gene.

Conclusion

To date, there have been more than 620 million confirmed

cases of COVID-19 worldwide and more than 6 million people

have died (58). Since the outbreak of the pandemic, vaccines

have been developed and administered, and the disease has been

controlled to some extent. However, as the future of COVID-

19 is uncertain, new viral variants may continue to emerge

(59). Omicron showed 30 amino acid mutations in the S-

protein, escaped the immunity of vaccinated individuals, and

has shown increased infectivity and reinfection risk (Table 2)

(60). Omicron has a lesser impact on the lower respiratory

tract than previous variants and a reduced likelihood of

hospitalization (61). Omicron remains infectious, however, and

continues to influence work health policies and public health

recommendations (54). New variants are likely to present

new challenges for global control of COVID-19. Finding

effective therapeutic drugs for COVID-19 is an urgent issue.

In this context, therapeutic strategies that focus on the S-

protein–ACE2 binding pathway are promising for treatment

of COVID-19.
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