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Background: Fine particulate matter (PM2.5), one of the major atmospheric

pollutants, has a significant impact on human health. However, the

determinant power of natural and socioeconomic factors on the spatial-

temporal variation of PM2.5 pollution is controversial in China.

Methods: In this study, we explored spatial-temporal characteristics and

driving factors of PM2.5 through 252 prefecture-level cities in China from

2015 to 2019, based on the spatial autocorrelation and geographically and

temporally weighted regression model (GTWR).

Results: PM2.5 concentrations showed a significant downward trend, with a

decline rate of 3.58 µg m−3 a−1, and a 26.49% decrease in 2019 compared

to 2015, Eastern and Central China were the two regions with the highest

PM2.5 concentrations. The driving force of socioeconomic factors on PM2.5

concentrations was slightly higher than that of natural factors. Population

density had a positive significant driving e�ect on PM2.5 concentrations, and

precipitation was the negativemain driving factor. The twomain driving factors

(population density and precipitation) showed that the driving capability in

northern region was stronger than that in southern China. North China and

Central China were the regions of largest decline, and the reason for the

PM2.5 decline might be the transition from a high environmental pollution-

based industrial economy to a resource-clean high-tech economy since the

implementation the Air Pollution Prevention and Control Action Plan in 2013.

Conclusion: We need to fully consider the coordinated development of

population size and local environmental carrying capacity in terms of control of

PM2.5 concentrations in the future. This research is helpful for policy-makers to

understand the distribution characteristics of PM2.5 emission and put forward

e�ective policy to alleviate haze pollution.
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1. Introduction

Rapid urbanization has resulted in serious air pollution,

such as haze, dust and other terrible weather frequently,

which bring a huge impact on people’s lives, industrial and

agricultural production (1–3). PM2.5 (particulate matter with

an aerodynamic diameter ≤2.5 µm), one of the major air

pollutants, has been a popular research topic for academics

in recent years (4–7). Many studies have shown that prenatal

exposure of pregnant women to PM2.5 increases the likelihood

of respiratory infection andmay even cause early-life respiratory

tract diseases to newborns (8), and children exposed to polluted

air for a long time may increase the possibility of hypertension,

asthma, obesity and metabolic disorders (9). Recent researches

have also shown that high concentrations of PM2.5 are associated

with high COVID-19 mortality (10). Thus, PM2.5 pollution

incidents have affected human and ecological health in the

course of rapid socioeconomic development.

Numerous scholars have done extensive research on PM2.5

in terms of components and sources, spatial variation and

impact factors, and have proposed many corresponding control

measures (11–16). Previous studies have shown that natural

and socioeconomic factors have a significant impact on

PM2.5 (2, 17–19). For example, the increase in temperature

is conducive to atmospheric flow, which enhances PM2.5

dispersion, alike the higher summer temperature (lower

heating energy consumption) are beneficial to the reduction

of PM2.5 concentrations (20). On the contrary, the higher

temperatures promote the formation of secondary aerosols

from gas precursors, thereby increasing PM2.5 concentrations

(21). The stronger air movement in areas with high levels of

surface fine particles was likely to increase PM2.5 concentrations,

and air movement also has a diffusion and transport effect

on PM2.5 concentrations (22, 23), Precipitation and relative

humidity played an important role in the deposition of PM2.5,

and increased relative humidity increases the water-soluble ion

content of the air (24).

Meanwhile, some researches have shown that there was an

inverted U-shaped relationship between PM2.5 concentrations

and the economic development in socioeconomic terms (25).

Extensive economic development relying on energy and

resource consumption will increase pollution sources and

cause deterioration of air quality. Yet, the residents will pay

attention to environmental conservation and health impacts

from pollutants with improving standards of living (26). The

Environmental Kuznets Curve (EKC) relationship was observed

between per capita GDP and air contaminant (27, 28). Industrial

structure is an important indicator of local social and economic

development. It is generally believed that secondary industry

generally refers to heavy industrial production, which is easy

to cause greater environmental pollution. The tertiary industry

mainly refers to business, finance, trust and service industries,

which are generally considered to have low environmental

pollution. The population density has a significant impact

on PM2.5 emissions across all sectors (3). For instance, the

increase in population density led to increased consumption,

increased travel and production activities, thereby increasing

PM2.5 emissions. However, the drivers of natural and social

factors on PM2.5 at different spatial and temporal scales are not

well understood. Therefore, it is necessary to further clarify the

effects of natural and social factors on PM2.5 drivers at different

scales.

China became the world’s second-largest economy in 2010

after only 30 years of rapid economic evolution since the reform

and opening up, and it has been one of the regions with the

highest PM2.5 concentrations in the world (13). There had

been many studies on the temporal and spatial distribution

characteristics and influencing factors of PM2.5 in China (29–

33). And yet, China is a country with a vast territory, a large

population, complex landforms and climate, and unbalanced

economic development. It poses major challenges for the

research and governance of PM2.5. Due to the differences

in spatial-temporal scale and methods, the research results

of dominant factors for spatial-temporal variation of PM2.5

concentrations are different. Many studies indicated that PM2.5

concentrations showed a spatial distribution characteristic of

high overall in the north and low in the south. The pollution

hotspots of PM2.5 were mainly concentrated in eastern and

central China, especially in the Beijing-Tianjin-Hebei region

and its surrounding area. The Chinese government has taken

a series of strategies to control air pollution such as the Air

Pollution Prevention and Control Action Plan (Action Plan)

from 2013. Since the implementation of the Action Plan, PM2.5

concentrations have been effectively controlled and have shown

a downward trend (34, 35). But there are few studies on the

driving forces of the temporal and spatial variation of PM2.5 in

China since the implementation of the Action Plan using natural

and socioeconomic factors.

Therefore, it is necessary to explore the driving of natural

and socioeconomic factors on PM2.5 concentrations in whole

China. The present study focuses on the following questions

by collecting the measured data of PM2.5, natural and

socioeconomic from 252 prefecture-level cities in China during

2015∼2019: 1) The ability of natural and socioeconomic factors

to drive the spatial distribution of PM2.5 concentrations. 2)

Whether natural or social factors dominate the main causes

of PM2.5 concentrations changes over time at different spatial

scales. The result of this study may be useful to the government

in the prevention and control of PM2.5 concentrations in

industrial restructuring and population development planning.

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1051116
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


She et al. 10.3389/fpubh.2022.1051116

2. Materials and methods

2.1. Study area and data source

The data in this study was primarily divided into PM2.5 data

from 252 prefecture-level cities in China from 2015 to 2019,

as well as related to urban natural and socioeconomic factors.

PM2.5 data were obtained from hourly PM2.5 monitoring

data by the China National Environmental Monitoring Centre

(CNEMC, http://www.cnemc.cn/). Hourly PM2.5 data were

compiled into the daily average data of 252 cities according

to the China Ambient Air Quality Standards (GB3095-

2012), the China Ambient Air Quality Assessment Technical

Regulations (HJ663-2013) and other relevant regulations. Cities

with multiple monitoring stations had their data averaged

and treated as daily urban average data. Based on previous

studies and the physical geographic features of the country,

252 cities in the country were divided into seven major zones

(Supplementary Figure S1 and Supplementary Table S1).

According to previous research (17, 20, 30, 36), eight main

influencing factors were finally selected from the twelve factors

preliminarily screened by the collinearity treatment. Natural

factors include relative humidity (RH), temperature (TEMP),

wind speed (WS) and precipitation (PCP), which were taken

from the National Weather Science Data Centre (NWSDC). The

annual-average values of RH, TEMP and WS were obtained on

the average daily data. PCP was the total annual precipitation

of the city. The secondary industry was selected as the driving

factor of industrial structure on PM2.5 in the majority of

previous research. With the increase of the proportion of

tertiary industry, its impact on PM2.5 concentrations needs to be

studied. Per capita GDP indicators generally represent the level

of local economic development. So the socioeconomic factors

included per capita GDP (GDPP), secondary industry share

(SI), tertiary industry share (TI) and population density (PD)

(year-end total population/total area of jurisdiction) from the

China Urban Statistical Yearbook, with the missing data was

interpolated by contemporaneous neighboring or around areas.

The statistical description and overall spatial distribution of the

eight selected driving factors from 2015 to 2019 are showed in

Table 1 and Supplementary Figures S2, S3.

2.2. Study methods

2.2.1. Spatial autocorrelation analysis

Spatial autocorrelation analysis is a model to explore

the similarity or correlation of spatial proximity observation

results. Global spatial autocorrelation analysis focused on the

correlation between observations in close proximity (37). Global

Moran’s I is the most widely known and used statistic to test for

the presence of spatial dependence in observations. The Moran’s

I can be calculated using Eq:

I =
∑n

i−1

∑n
j−1 wij(xi − x̄)(xj − x̄)

1
n

∑n
i−1(xi − x̄)2 ∗

∑n
i−1

∑n
j−1 wij

(1)

where x̄ = 1
n

∑n
i−1 xi, n is the number of spatial units (in

this study, n =252); xj and xj are the observations of spatial

units i and j, respectively; wij is an element of the spatial weight

matrix W which describes the spatial arrangement of all the

spatial units in the sample, where wij = 1 if spatial units i and

j share a common border and wij = 0 otherwise. Values of Global

Moran’s I range from –1 to 1; a positive (or negative) correlation

exists among the observations if 0 <I <1(or -1 <I <1), and the

observations are distributed randomly (no correlation) in the

space if I is close to or equals 0.

The significance of Global Moran’s I is commonly measured

by the standardized statistic Z as shown in Eq:

Z(I) = I − E(I)√
Var(I)

(2)

where E(I)and Var(I) are the expected value and variance of

Moran’s I, respectively; the methods used to calculate them are

listed in the Supplementary materials.

The specific location and distribution pattern of local

spatial clustering were further determined by a local spatial

autocorrelation. The local Moran’s I was represented by local

indicators of spatial association (LISA), which were calculated

as follows:

LISA = (xi − x̄)√
S2

∑

j

wij(xi − x̄) (3)

S2 = 1

n

n
∑

i=1

(xi − x̄) (4)

A local spatial autocorrelation analysis can detect four cluster

types with statistical significance: high-high clusters (high-

incidence areas enclosed by high incidence areas); high-

low clusters (high incidence areas enclosed by low-incidence

areas); low-high clusters (low-incidence areas enclosed by high-

incidence areas); and low-low clusters (low-incidence areas

enclosed by low-incidence areas). The results were visualized in

ArcGIS 10.6 software.

2.2.2. Geographically and temporally weighted
regression model

The geographically and temporally weighted regression

(GTWR) model (38) can effectively deal with Spatial-temporal

non-stationarity by introducing a temporal dimension based

on spatial heterogeneity. This model can simulate PM2.5

concentrations at a higher spatial resolution and accuracy across
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TABLE 1 Description of the data used in this study.

Indicators Data source Symbol Unit Mean SD Minimum Maximum

Relative humidity Resource and RH % 68.74 10.74 29.81 99.61

Temperature Environmental TEMP ◦C 14.43 5.31 –0.20 25.44

Wind speed Science data WS m/s 2.21 0.67 0.74 6.44

Precipitation Center PCP mm 1034.85 602.39 21.45 4102.50

Per capita GDP GDPP CNY 69110.59 36309.00 15356.00 217313.00

Secondary industry share China City SI % 42.41 10.08 10.68 72.90

Tertiary Industry share Statistical TI % 48.12 9.67 26.12 83.52

Population density Yearbook PD person/km2 408.73 347.95 1.66 2836.22

China than some previous models (39). The basic formula is as

follows (40):

Yi = β0(µi, νi, ti)+
∑

βk(µi, νi, ti)Xit + εi (5)

where (µi, νi, ti) is the spatial-temporal coordinate of the ith

sample; µi, νi, ti are the longitude, latitude and time of the ith

sample point, respectively; β0(µi, νi, ti) denotes the regression

constant at the ith sample point, i.e., the constant term in the

model; Xit is the value of the kth independent variable at the

ith point; εi is the residual; βk(µi, νi, ti) is the kth regression

parameter for the ith sample point, which is estimated as follows:

β̂(µi, νi, ti) = [XtW(µi, νi, ti)X]
−1XTW(µi, νi, ti)Y (6)

where β̂(µi, νi, ti) is the estimated value of βk(µi, νi, ti); X is

the matrix of independent variables; Xt is the transpose of

the matrix; Y is the matrix of composition in the sample;

W(µi, νi, ti) is the spatial-temporal weight matrix. W is chosen

as the Gaussian distance function, the spatial-temporal weight

matrix is obtained using the bi-square spatial weight function,

and the spatial-temporal distance between sample i and sample

j is:

dij =
√

δ[(Ui − µj)2 + (vi − µj)2 + µ(ti − tj)2] (7)

where the choice of bandwidth affects the establishment

of spatial-temporal weights, this paper adopts the Akaike

Information Criterion (AICc) law for adaptive bandwidth.

2.2.3. Stability estimation of coe�cients

To analyze the spatiotemporal heterogeneity of each

variable, we applied the Kernel function to check the stability of

the correlation coefficients, and use the coefficient distribution

to observe the spatiotemporal characteristics (41). The density

function of the variable x is as follows:

f (x) = 1

Nh

n
∑

i−1

k(
xi − x̄

h
) (8)

where xi is the coefficients subordinated to independent and

identical distributions. n, h, x̄ represent the number of x,

bandwidth and mean value, respectively. The Epanechnikov

function was adopted as the kernel function for estimation in

this work.

3. Results and analysis

3.1. Spatial-temporal characteristics of
PM2.5 concentrations

The Central, East, Northwest and North China were the

regions with high mean PM2.5 concentrations, which were 54.03

± 13.86, 44.71 ± 14.52, 40.38 ± 12.55, and 37.34 ± 18.53 µg

m−3, respectively, (Figures 1, 2). The mean concentrations of

PM2.5 in southwest China was lowest (26.50 ± 13.41 µg m−3),

followed by South China (33.98 ± 5.95 µg m−3). The area-

weighted mean concentrations of PM2.5 in China from 2015

to 2019 were 44.24 ± 17.68, 40.24 ± 15.76, 37.54 ± 14.66,

33.19 ± 12.60, 32.52 ± 13.77 µg m−3, respectively, and it was

37.55 ± 15.62 µg m−3 in 5 years. The mean concentrations

FIGURE 1

Variation characteristics of PM2.5 in di�erent regions from 2015

to 2019 (I) Northeast China, (II) North China, (III) East China, (IV)

Central China, (V) South China, (VI) Southwest China, and (VII)

Northwest China (Letters denote the result of One-way ANOVA).
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FIGURE 2

Spatial variation characteristics of PM2.5 concentrations during 2015-2019 [(A–E) denote the spatial distribution of PM2.5 concentrations in 2015,

2016, 2017, 2018, and 2019, respectively, and (F) denotes the slope of PM2.5 concentrations from 2015 to 2019, slope (5-year linear trend slope)].

of PM2.5 exceeded the annual PM2.5 grade II standard (35 µg

m−3) (GB3095 2012) in 2015, 2016 and 2017, which exceeded

26.4 % in 2015, and 5.2%, 7.1% below annual PM2.5 grade II

standard in 2018,2019, respectively. The downward trend of

PM2.5 concentrations was 3.58 µg m−3 from 2015 to 2019,

with a percentage decrease of 26.49% in 2019 compared to

2015. PM2.5 concentrations of 240 cities showed a decreasing

trend among the 252 cities, with the proportion of decreasing

cities reaching 95.24%, of which 42 cities had a decrease rate

of more than 5 µg m−3 a−1, accounting for 16.67% of the

total number of decreasing cities (Figures 1, 2). Although whole

regions presented a downward trend from 2015 to 2019, PM2.5

concentrations exhibited an obvious spatial heterogeneity in the

different regions. The largest decline occurred in North China

(–3.99 µg m−3 a−1), followed by central China (–3.41 µg m−3

a−1). The region with the smallest decline was North China

(-1.80 µg m−3 a−1). In this study, the slope of change was

divided into four classes according to the natural breakpoint

method [strong negative (-11.5∼ -6.21 µg m−3 a−1), mid

negative (-6.21∼ -3.49 µg m−3 a−1), weak negative (–3.49 µg

m−3 a−1) and weak positive (0∼5.03 µg m−3 a−1)]. It can

be found that the strong negative area was mainly located in

the Beijing-Tianjin-Hebei region and parts of the northeast,

the mid negative region was mainly located in Central China

and Cheng-Yu Region, East China, Northeast China and the

majority of the other areas were weak negative growth regions.

The weak positive area was scattered throughout the country

without obvious aggregation areas (Figure 2F).

To further detect local agglomeration of PM2.5

concentrations, we adopted a local Moran’s I test (Table 2).

From 2015 to 2019, the average value of the global Moran’s

I was 0.57(p <0.01), indicating that PM2.5 concentrations

showed a club convergence trend. In addition, we also

calculated local Moran’s I, the results of which revealed

a detailed local pattern of spatial clustering with changes

in PM2.5 concentrations. The Moran’s I value showed

a trend of decreasing and then increasing, with the

lowest value in 2017 and the highest values in 2018
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TABLE 2 Global spatial autocorrelation test.

Year Moran’I Z P

2015 0.57 26.55 0.001

2016 0.56 26.17 0.001

2017 0.52 22.83 0.001

2018 0.59 27.26 0.001

2019 0.59 26.35 0.001

FIGURE 3

Average of spatial clustering for PM2.5 concentrations from 2015

to 2019.

and 2019, which indicated that an overall trend toward

aggregation.

It was discovered that high-high clusters regions were

primarily distributed in China’s East-central region, including

Beijing, Tianjin, Hebei, Shaanxi, Shanxi, Henan, Hubei, Anhui,

and Shandong provinces through local spatial autocorrelation

analysis. In contrast, low-low clusters were mainly located

in the south and southwest provinces of China, including

Tibet, Sichuan, Yunan, Guangxi, Hainan, Guangdong, and

Fujian. In addition, low and low aggregation areas also

appeared in northeastern Inner Mongolia and northwestern

Heilongjiang. The high-low agglomeration area and the

low-high agglomeration area were small in scope and are

distributed near the high-high and low-low agglomeration areas

(Figure 3).

3.2. Driving forces of variation of PM2.5

concentrations

This study selected the GTWR model to analyze the driving

forces of temporal and spatial variation of PM2.5 concentrations.

In order to avoid the deviation of the estimation results caused

by the interaction between the indicators, eight driving factors

were determined by collinearity test. The results showed that

the variance inflation index of each factor was less than 10,

and the condition index was also less than 30, indicating that

the factor selected in this study does not have a collinear

relationship (Table 3). At the same time, in order to avoid

the influence of data on the magnitude, PM2.5 concentrations

and eight driving factors were standardized before modeling.

Then the temporal and spatial non-stationary relationships were

modeled using the plug-in for ArcGIS 10.6 (with automatic

optimal bandwidth settings) in GTWR produced by Huang

et al. (38). The AICc value of the GTWR model was -

2736.53. The determination coefficient (R2) and adjustment

determination coefficient (R2
adj

) of the GTWR model were

0.78. To evaluate the validity of GTWR results, ordinary

least squares regression (OLS) was chosen to compare with

geographically weighted regression (GWR), which describes the

relationship between variables by building a global model, while

GWR expresses the spatial non-stationarity of the relationship

between variables through a local model with spatial dependence

of parameters. The results showed that AICc values of the

GTWR model were lower than those of the OLS and GWR

models, and the R2 was significantly higher, indicating that

GTWR results were better than those of the OLS and GWR

models (Table 4). The GTWR model coefficients can reflect

the direction and intensity of PM2.5 driving capability. The

positive value indicates the positive driving effect of explanatory

variables on PM2.5 concentrations, and higher values indicate

higher drive capacity, while negative coefficients indicate the

opposite.

3.3. Stability analyzes of coe�cients

From the Kernel distribution of coefficients of different

variables (Figure 4), we can see that the coefficients of RH,

TEMP, WS and PCP in natural factors were concentrated at

approximately –0.01, 0.2, –0.1, and –0.7, respectively. This

result indicates that the increase in WS and PCP had a

opposite effect on PM2.5 concentrations in most cities, while

the increase in TEMP had the promotion effect. Among the

four socioeconomic factors we analyzed, the largest density of

coefficients of PD was distributed at 0.5 (almost no negative

values), which illustrates that with the increase in PD, PM2.5

concentrations in most cities were promoted. Simultaneously,

the coefficients of SI was distributed at 0.2, indicating that

the increase in SI will increase PM2.5 concentrations of

most cities. In contrast, the coefficients of GDPP was left-

distributed, and the peaks emerged at approximately –0.16,

indicating that the increase of GDPP is beneficial to reduce

the urban PM2.5 index in most cities during our study

period.
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TABLE 3 Co-linearity test and coe�cients statistic description of variables.

Factors Co-linearity test GTWR coefficients statistic description

Standardization coefficient Tolerances VIF Median Mean SD Minimum Maximum

Intercept - - - 0.38 0.42 0.23 –0.22 1.43

RH –0.04 0.60 1.68 –0.02 0.08 0.10 –0.44 0.29

TEMP –0.01 0.31 3.22 0.00 0.26 0.31 –0.69 0.81

WS –0.10 0.80 1.26 –0.11 0.13 0.12 –0.44 0.27

PCP –0.30 0.41 2.44 –0.42 0.43 0.34 -3.13 0.22

GDPP –0.19 0.66 1.51 –0.09 0.11 0.11 –0.29 0.49

SI 0.34 0.34 2.94 0.19 0.22 0.21 -1.47 0.62

TI 0.14 0.36 2.77 0.01 0.11 0.16 –0.91 0.47

PD 0.39 0.66 1.52 0.44 0.55 0.74 0.00 8.65

The mean value is the average of the absolute values of the coefficients.

TABLE 4 Result of accuracy evaluation of di�erent model.

Model AICc R2 R2adj

OLS –1606.03 0.34 –

GWR –2501.28 0.71 0.70

GTWR –2736.53 0.78 0.78

3.4. Spatial distribution characteristics of
the factor driving force

TheGTWRmodel demonstrated that the force of the driving

factor presented different driving distribution characteristics in

China (Figure 5). The coefficients of natural factors on PM2.5

concentrations were bidirectional at the national scale. RH, WS

and PCP showed predominantly negative correlations. Through

the analysis of the absolute value of the coefficient, influence

intensity of natural factors on the regional PM2.5 concentrations

was as follows: PCP (0.43) >TEMP (0.26) >WS (0.13) >RH

(0.08). The RH coefficient was between –0.13 and 0.17. The

proportion of cities with negative driving factors accounts for

about 66.67% of all cities. The core region with the strongest

negative impact of RH was the northeast, northwest and north

China, while central China, southwest and southern China were

dominated by weak positive regression coefficients. The TEMP

coefficient showed positive and negative equivalence (–0.56 ∼
0.66), and positive correlation regions (48.41%) were mainly

distributed in North China, Northeast China and Northwest

China. The WS coefficient was mainly negative, accounting for

86.11%, and it was mainly located in the eastern, northeastern

and southwestern, and the positive effect was mainly in the

northwest region. The PCP coefficient of most cities (95.24%)

was negative, and the high negative value area was mainly

distributed in northwest and north China.

In socioeconomic factors, except that PD was positively

correlated with the PM2.5 concentrations in each region, other

factors presented a two-way impact on PM2.5 concentrations.

The order of the absolute values of the driving factors for

PM2.5 was PD (0.55) >SI (0.22) >GDPP (0.11) >TI (0.11).

The coefficient of GDPP has a positive effect on PM2.5

concentrations in Southwest and Northwest China (21.03%),

while North, Northeast and East China showed a negative

driving relationship. The SI coefficient was mainly positive

(94.05% of the total number of cities), which was negatively

correlated only in the underdeveloped western region, while

positively correlated in the central and eastern regions. The

TI coefficient range from –0.63 to 0.26. Positively driven

cities (67.46% of the total) were mainly distributed in North,

Northeast and East China, but the number of cities is

significantly lower than that of SI (94.05%). In particular,

PD coefficient was positive throughout the region and vary

considerably (0.04 to 6.93).There was an increasing trend from

southeast to northwest. The lowest region was located in

Guangdong and Fujian, the highest region was distributed Tibet,

Inner Mongolia, Gansu and Xinjiang (Figure 5).

3.5. Temporal characteristics of driving
factors

The result of the GTWR model demonstrated that the

capability of driving factor was different in time scale (Figure 6).

The coefficient value of the eight driving factors was between –

0.50 and 0.71 in the whole region. PD (0.55) was highest average

positive driving factor, followed by SI. The highest negative

driving factor was PCP (–0.42), followed byWS, and the absolute

values of the average coefficient of the other factors were all

less than 0.05. From the analysis of the time trend, PD has the

obvious downward trend (slope = 0.07), WS has the significantly
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FIGURE 4

Kernel density distribution of each variable coe�cient.

upward trend (slope = 0.06), and the trends in other factors were

not significant (|slope| ≤ 0.04).

From 2015 to 2019, the coefficient ranges of driving factors

in Northeast and North China were –0.77 ∼ 0.75 and –0.76 ∼
0.91, respectively (Figure 6). Positive driving factors of highest

average value were PD (0.60, 0.67) in these two regions, followed

by SI (0.22, 0.29) and TEMP (0.21, 0.32). The highest negative

factor was PCP (–0.42, –0.76) in these two regions. Negative

driving factors included WS (–0.15), GDPP (–0.14) and RH (–

0.08) in Northeast China and included GDPP (–0.18) and RH

(–0.07) in North China, the slope of other factors tend to be

stable. From the analysis of the time change trend, the coefficient

of PD and SI has obvious downward trend in Northeast China

(slope = –0.04), PCP and WS has an upward trend (slope = 0.13,

0.06), and the annual trend of RH, TEMP, GDPP and SI were

no obvious (|slope| ≤ 0.02). In North China, PD and SI had

obvious downward trend (both slope = –0.04), PCP and WS had

an upward trend (slope = 0.13, 0.06), the annual trend of RH,

TEMP, GDPP, SI were no obvious (|slope| ≤ 0.02).

The coefficient ranges of driving factors in East, Central and

South China were –0.60 ∼ 0.44, –0.59 ∼ 0.53 and –0.63 ∼ 0.19

from 2015 to 2019 (Figure 6). The driving factor of the highest

positive coefficient was PD (0.31, 0.37, 0.10) in the three regions,

followed by SI. PCP (–0.51, –0.47) was the driving factor with

the highest negative coefficient in East and Central China. The

driving factor of the highest negative coefficient was TEMP (–

0.46) in South China. The coefficients of SI and PD decreased

significantly from 2015 to 2019 (slope = –0.04, –0.03) in East

China. The coefficients of PD in Central and South China had

a relatively obvious downward trend (slope = –0.06, –0.03). The

coefficients of WS and TEMP had an obvious upward trend in

East, Central and South China. The change trends of the other

driving factors were no obvious (
∣

∣slope
∣

∣ ≤ 0.03).

The coefficient ranges of driving factors were –0.32 ∼ 0.94

and –0.77∼1.70 in the southwest and northwest regions from

2015 to 2019 (Figures 6G,H and Supplementary Figure S2). The

driving factors of highest average positive coefficient were both

PD (0.66, 1.4) in these regions, followed by GDPP (0.06) and

TEMP (0.14,) respectively. The driving factor of the highest

negative was PCP (–0.15,–0.60) in both the southwest and

northwest, while other driving factors were no obvious (
∣

∣slope
∣

∣

≤ 0.08). The coefficient of PD decreased significantly in the

southwest and northwest from 2015 to 2019 (slope = –0.12, –

0.14). The coefficients of TEMP andWS in the southwest region

had an upward trend (slope = 0.07). The trends of the other

driving factors were insignificant (
∣

∣slope
∣

∣ ≤ 0.04).

The distribution characteristics of nuclear density of each

coefficient are given in Figure 7. The change of left-biased

peak distribution of RH was not obvious from 2015 to 2017,

and it was concentrated in positive values in 2018, whereafter

the largest density of coefficients of RH was distributed at

–0.4 in 2019. The temperature coefficient shown a bimodal

distribution, with a main peak of about 0.3, which indicates

that the rising temperature will increase the concentration of

PM2.5 in most cities. The coefficient of PCP was left-distributed

during 2015∼2019, but the peak has shifted significantly to

the right in 2019, indicating that the negative driving ability

was weakening. The coefficient of WS showed a multi-peak

distribution from 2015 to 2019, except that the peak distribution

was negative in 2018. Among the four socioeconomic factors, the

GDPP coefficient showed a multi-peak distribution from 2015

to 2019. The main peak was promotion effect in 2015, and then

turned negative. The coefficient of SI and TI showed a multi-

peak distribution from 2015 to 2019, compared with the TI, the

coefficient of SI showed a right distribution, and the coefficient

of TI showed a double distribution, which was close to zero,
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FIGURE 5

Spatial distribution of coe�cients for each driving factor (A) Relative humidity, (B) Temperature, (C) Wind speed, (D) Precipitation, (E) per capita

GDP, (F) Secondary industry share, (G) Tertiary Industry share, and (H) Population density; The white area represents no data.

indicating that the contribution of TI to PM2.5 is smaller than

that of SI. The coefficients of PD had almost no negative values

during 2015∼2019, and had a multi-peak distribution.

Generally, among the natural factors selected in this study,

except that temperature had obvious positive and negative

driving effects on PM2.5 concentrations, the driving effects of

PCP, WS and RH were mainly negative. In socioeconomic

factors, GDPP and PM2.5 concentrations was two-way driving,

PD, SI and TI had significant positive driving effects on

PM2.5. The order of driving capability was PD >PCP >TEMP

>SI >WS >TI >GDPP >RH. The coefficient of PD decreased

most obvious in the whole study period (slope=–0.07), and

the coefficients of SI and GDPP were decreased slightly, yet

the coefficients of WS and TEMP showed an upward trend

(0.06, 0.04; Supplementary Table S3). Using the global multiple

regression model, a similar conclusion was reached, namely PD
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FIGURE 6

Trends in driving capability of each factor in di�erent spaces from 2015 to 2019 (a) Whole region, (b) Northeast China, (c) North China, (d) East

China, (e) Central China, (f) South China, (g) Southwest China, and (h) Northwest China.

(positive) and PCP (negative) were the first two drivers of PM2.5

concentrations (p < 0.001; Supplementary Table S4).

4. Discussion

This research presented that the PM2.5 concentrations

in different areas decreased with varying degrees, with

an average decrease of 3.58 µg m−3 a−1. The series

actions of energy-saving, emission-reduction and clean air

proposed by the government in recent years have received

some achievement. Central and East China with the higher

mean PM2.5 concentrations have higher population densities,

developed industries, intensive human activities and particulate

matter emissions. The PM2.5 concentrations in North and

central China hugely dropped may because that the developed

industrial, agriculture and intensive human activities was

controlled by the above actions.

Many previous studies have concluded that the severely

polluted areas in China by PM2.5 were located in Beijing,

Tianjin and Hebei and the surrounding areas (35, 42, 43). Some

studies have also shown that Xinjiang has high concentrations

of PM2.5 in China (44–47). North China was not the region

with the highest PM2.5 concentrations in this study because it

included Inner Mongolia and other areas with relatively low

PM2.5 concentrations. The difference of these results may be

due to the spatial scale. In addition, the lack of data in parts

of Xinjiang also has some impact on the overall results of the

country.

We demonstrated that the capacity of driving factors was PD

>PCP >TEMP >SI >WS >TI >GDPP >RH. PD was the positive

main driving factor, indicating that the increase of population

density will lead to the rise of PM2.5 concentrations. The

higher population density is frequently accompanied by high

emissions from household activities (e.g., cooking, heating and

smoking) and local transportation (48, 49). Besides, the traffic

congestion caused by population agglomeration is unfavorable

for the complete combustion of motor fuel (50). In addition,

the region with higher population density is often accompanied

by dense buildings, which is not conducive to the diffusion of

PM2.5. The rational layout and design of urban buildings could

promote the dispersion of pollutants and improve air quality

(51), but the diffusion capacity of PM2.5 is rarely specified

in urban building design. Exposure risk of toxic pollutants in
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FIGURE 7

Kernel density distribution of each variable coe�cient in di�erent year.

densely populated areas is higher than that in sparsely populated

areas (46). Therefore,we should pay attention to the effect of

population density on PM2.5 concentrations.

PCP and RH were the negative main driving factors in

this study, possibly because that they can enhance airborne

PM2.5 condensation and deposition, thus reducing PM2.5

concentrations (52). SI had a positive driving effect on PM2.5

in most areas. It is well known that SI is dominated by heavy

industries such as machinery, chemicals, and energy, and that

it is the primary source of pollutants in the atmosphere. We

found that the driving coefficient of the TI (0.11) was obvious

small than that of the SI (0.22), which indicated that the TI

also had a positive driving effect on PM2.5, but its driving

capacity was equivalent to half of that of the SI. The nonlinear

relationship occurred betweenGDPP and PM2.5 concentrations,

such as PM2.5 concentrations in developed eastern regions was

being controlled by advances in science and technology, as

well as the optimization of industrial structure. Similar research

conclusion has previously been discovered (26). Therefore,

to ensure economic development while controlling pollution,

the government should formulate waste emission standards,

strengthen supervision and law enforcement, gradually optimize

the industry, transition from SI to TI, implement strict emission

standards, and compel polluting industrial enterprises to

improve production capacity. Furthermore, regional industrial

development should take into account the carrying capacity of

the local natural environment, particularly fragile areas like the

northwest.

The driving capability of PD was descending in space from

northwest to southeast, which was reverse with the spatial

distribution of population density. This might be because the

ecological environment in Northwest China was more fragile,

the environmental carrying capacity was lower, the available land

was limited, and the industrial and agricultural activities were

more concentrated. This study discovered that precipitation

driving capability was significantly stronger in the north than

that in the south, probably because the abundant rainfall in

the south and the PM2.5 condensed has reached the threshold.

Therefore, the precipitation appears to be more important for

PM2.5 deposition in the north of China compared to the south

China, due to the little rainfall, the dry climate, and the lower

vegetation cover. Similar findings have been found in previous

studies, which are subject to the law of diminishing marginal

effect (53, 54). The result in this study is generally consistent with

the that of previous studies (55).

In this study, the region of positive driving of temperature

was mainly distributed in the north China and the Qinghai-

Tibet Plateau with the lower annual-average temperature. The

possible reason was that the annual-average temperature in these

regions was relatively lower, and the increase in temperature

on the flow of the atmosphere was not enough to make PM2.5

diffusion, instead, promoting the flow of dry surface particulate

matter. On the contrary, even though the temperature was

high in the southern region, the diffusion ability was enhanced,

but the small surface dust is conducive to lower the PM2.5

concentrations. The driving capability of WS was stronger in the

north than that in the south (Figure 4), it may be caused by flat

terrain in the north which provides better diffusion conditions

for atmospheric pollutants, and the increase in wind speed is

more conducive to the diffusion of PM2.5, thereby improving

regional air pollution (56). It is worth noting that WS has

a stronger positive driving effect on PM2.5 concentrations in

central and western Inner Mongolia, Xinjiang, Shaanxi, Gansu,

and northeastern Sichuan. Due to these regions located on the

Loess Plateau or the edge of the desert, the soil is relatively

loose. When the wind speed reaches a certain level, it will also
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roll up loose dust on the ground, resulting in an increase in

the concentrations of PM2.5 in the downwind area (22). The

relationship of GDPP and PM2.5 concentrations were negative

correlation in the central and eastern regions of China, especially

in the Bohai Bay economic zone.While there was a weak positive

correlation in the central and western regions, indicating that

pollution may decrease as per capita GDP increases (57).

The two regions with the largest decrease in PM2.5

concentrations were North and Central China (slope = -3.99

µg m−3 a−1, slope = -3.41 µg m−3 a−1) (Figures 1, 2).

Central China was the region with the highest mean PM2.5

concentrations in this study, and many studies have shown

that Beijing-Tianjin-Hebei in North China has always been

a high-value area of PM2.5 in China (53, 54). The two

regions are located in mid-eastern region of China and are

more developed in industry and agriculture. There are slight

differences (relative humidity stabilized, temperature increased

slightly, and precipitation and wind speed slightly decreased)

in trends of four natural factors in North China. The trend

of GDPP was increased, the trends of SI and PD decreased

significantly, and the trend of TI was no significant. The main

negative driving factors (PCP, RH, WS) and positive driving

factors (PD, SI) showed a trend of decreasing in two regions,

which indicated that the decline reason of PM2.5 concentrations

might be due to the capability weakening of the positive driving

factors (PD, SI). However, trends of TEMP and WS in Central

China were opposite (weakly increased in North China and

weakly reduced in Central China) that in North China, and

the other factors were the similar (Supplementary Figure S4),

but the driving directions of TEMP and WS were different in

these regions, indicating that the causes of PM2.5 concentrations

decrease in Central and North China were similarly. This result

further shows that in the case of constant or even adverse natural

factors, a series of emission reduction measures introduced by

the state after 2013, such as increasing green area, limiting

vehicles, industrial emission purification, coal gasification in

heating facilities, and industrial transformation, can alleviate or

even cover up the impact of population density increase on the

increase of PM2.5 concentrations.

Overall, this study found that the annual-average values

of the main negative driving factors (PCP and RH) showed a

downward trend (-42.78mm·a−1, –0.39%· a−1), and the trends

of WS and TEMP did not change significantly (0.01m·s−1·
a−1) (Supplementary Figure S4), indicating that natural factors

were not particularly favorable for driving the decrease of

PM2.5 concentrations. Among the socioeconomic factors, except

Northeast China, the trend of PD in other regions was rise, the

trend of SI was decline significantly (-1.21%· a−1), while the

trend of TI was increase (0.78%· a−1) (Supplementary Table S2).

However, the positive main driving factor (PD) showed an

upward trend, but the driving force of PD showed a significantly

downward trend. The shift trend of industrial structure was

from the secondary industry to the tertiary industry (the

driving capacity of the secondary industry was higher that

of the tertiary industry). It further demonstrated that the

main reason for the decrease of PM2.5 concentrations may

be the weakening of the driving ability of positive driving

factor (PD) and the transfer from secondary industry to

tertiary industry.

5. Conclusions

We comprehensively analyzed the spatial-temporal

characteristic of PM2.5 and investigated the factors influencing

PM2.5 concentrations by natural and socioeconomic factors

in China. The results showed that 1) The mean PM2.5

concentrations was 37.55 ± 15.62 µg m−3 during 2015-2019,

the decreasing trend of PM2.5 concentrations was 3.58 µg

m−3 a−1, a decrease of 26.49% in 2019 compared to 2015, The

regions with higher concentrations were mainly distributed in

North China and South China, which were also the regions

with the greatest decline in 5 years. 2) The capability of driving

factors was PD >PCP >TEMP >SI >WS >TI >GDPP >RH,

and the driving capability of socioeconomic factors on PM2.5

was slightly higher than that of natural factors. The strongest

positive and negative driving factors were population density

and precipitation, respectively. 3) North China and Central

China were the two regions with the largest decreases in

PM2.5 in the country from 2015 to 2019. The decrease in PM2.5

concentrations is primarily due to the implementation of a series

of energy-saving and emission-reduction control measures after

the Action Plan, such as clean air action and the adjustment of

industrial structures by secondary and tertiary industries, which

effectively offsets the impact of rising population density on

PM2.5 concentrations.

The analysis above revealed that we should reduce

PM2.5 concentration by improving socio-economic factors

rather than waiting for natural factors to change. The

industrial structure should be actively regulated and gradually

changed from secondary to tertiary industry under the

condition of ensuring stable economic growth, which is

an important measure to ensure the socioeconomic effect

while reducing PM2.5 concentrations. In the future, we

must formulate a reasonable population policy so that

population growth can be adapted to regional development,

especially ecologically sensitive areas. In addition to we

must consider environmental carrying capacity in urban

planning and construction, balance population distribution,

and other factors. Government departments should continue

to develop and implement energy conservation and emission

reduction measures in China, particularly densely populated

areas, achieving win-win between economic development and

environmental management.
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