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Ovarian cancer is a serious threat to the female reproductive system. Precise

segmentation of the tumor area helps the doctors to further diagnose

the disease. Automatic segmentation techniques for abstracting high-quality

features from images through autonomous learning of model have become

a hot research topic nowadays. However, the existing methods still have

the problem of poor segmentation of ovarian tumor details. To cope with

this problem, a dual encoding based multiscale feature fusion network

(DMFF-Net) is proposed for ovarian tumor segmentation. Firstly, a dual

encoding method is proposed to extract diverse features. These two encoding

paths are composed of residual blocks and single dense aggregation blocks,

respectively. Secondly, a multiscale feature fusion block is proposed to

generate more advanced features. This block constructs feature fusion

between two encoding paths to alleviate the feature loss during deep

extraction and further increase the information content of the features.

Finally, coordinate attention is added to the decoding stage after the feature

concatenation, which enables the decoding stage to capture the valid

information accurately. The test results show that the proposed method

outperforms existing medical image segmentation algorithms for segmenting

lesion details. Moreover, the proposed method also performs well in two other

segmentation tasks.

KEYWORDS

ovarian cancer, dual encoding, residual block, single dense aggregation block,

multiscale feature fusion

1. Introduction

Ovarian cancer is one of themalignant tumors that themedical field has been devoted

to treatment. Some data shows that the incidence of ovarian cancer ranks third below

cervical cancer and endometrial cancer. However, the mortality rate of ovarian cancer

is higher than both of them and ranks first among gynecological cancers, which is the

biggest hidden threat to women’s life and health (1). Accurate and rapid localization

of the tumor area is beneficial for the diagnosis of ovarian cancer. Medical imaging
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technologies have matured in recent years, many imaging

methods can visualize the lesion area and help the physicians

diagnose the disease (2–4). Computed tomography (CT) is a

method commonly applied to visualize ovarian tumor lesions,

and its visualized slices are shown in Figure 1. The proliferation

of CT data has led to a surge in physician review of CT

images. The long and intense review work inevitably leads to

misdiagnosis or missed diagnosis, so there is an urgent need for a

computer aided diagnosis (CAD) technique to assist physicians

in accurately outlining the lesion area.

Semi-automatic segmentation method is an early technique

used to assist physicians in segmenting lesions. Sarty et al.

(5) proposed a semi-automatic follicle segmentation method

based on prior knowledge. The method first determines the

approximate inner follicle wall boundary by a combination of

interactive adjustment and computer detection, and then utilizes

this boundary as the prior knowledge to automatically find the

outer follicle wall boundary. The semi-automatic segmentation

method alleviates some of the physician’s work, but it still

requires someone with professional knowledge to operate

and is more expensive to use. Subsequently, some automatic

segmentation methods no longer require prior knowledge, and

Nawgaje and Kanphade (6) introduced a genetic algorithm for

choosing the optimal threshold of image segmentation. The

crossover probability and mutation probability of this algorithm

are adjusted by the variance of the target and background.

The deep learning-based segmentation methods can better

deal with the diversified images and the noise in the images,

and have better robustness compared to the traditional methods

(7–13). FCN proposed by Long et al. (14) has pioneered the

development of encode-decode structure by replacing the fully

connected layer at the end with a convolutional layer to obtain

the class information of each pixel. Ronneberger et al. (15)

proposed a symmetric U-shaped structure inspired by FCN

specifically for segmentation of medical images. This method

fuses features from the encoding stage relatively independently

to the decoding stage, so that features can be utilized more

completely. This design improves the uncertain segmentation of

details by FCN, and many models have continued this structure

thereafter. Li et al. (16) designed a new composite model. This

model incorporates a spatial recurrent network into a simple

U-Net for segmenting ovary and follicles. Wang et al. (17)

proposed an improved U-shaped network. This model replaces

the ordinary convolution with a convolutional layer combined

with recursive and residual blocks, and embeds an attention

mechanism in the skip connection.

The simple replacement of the sub-structure of network has

limited improvement on the network performance, and more

ideas are being developed.Many studies have shown that shallow

features contain more positional and detailed information but

low semantics; deep features have more semantic information

but lack detailed features; different sizes of convolution kernels

can obtain features of various receptive fields. Therefore, some

methods have emerged to study multiscale feature fusion to

improve segmentation performance. Xia et al. (18) addressed

a multiscale dilated convolution model. The model utilizes

different sizes of dilated convolution to form a feature pyramid

to extract semantic information, which integrates features at

different scales. Zheng et al. (19) designed a two-channel

separated convolution module with residual connections in

the coding layer. This module fuses the input image with

the feature maps after two-channel separation convolution for

multiscale feature fusion. Hu et al. (20) addressed a hybrid

encoding structure. The method feeds the preprocessed images

into a hybrid attention mechanism and a densely connected

convolutional network to extract features, respectively. Then,

the outputs of the two encoding paths are fused at the terminal

to produce multiscale features. Shareef et al. (21) introduced

a segmentation network containing multiple encoding paths.

The network uses convolution kernels of different sizes to

obtain multiscale features, and then the multiscale features of

each level are fused to the corresponding decoding blocks by

skip connections.

The encoding stage is the main process of feature extraction.

The above multi-coding methods all perform the fusion of

multiscale features at the end of the encoding path or between

the encoding path and the decoding path, and there is no

communication between the encoding paths to share feature

information. This results in insufficient multiscale feature fusion

in the encoding stage, which affects the final segmentation

effect. In order to remedy the deficiencies of the above works,

we propose a dual encoding multiscale feature fusion network

(DMFF-Net) for ovarian tumor segmentation. Firstly, a multi-

resolution 2D image input is proposed to reduce the network

training burden and retain the detailed information of the

high-resolution image. High-resolution images are input to a

path consisting of single dense aggregation blocks, and low-

resolution images are input to a path consisting of residual

blocks. Secondly, a multiscale feature fusion block is proposed

to perform feature exchange between two encoding paths. The

multiscale features extracted by different modules can be fused

with each other to enrich feature information. Finally, in order

to highlight the effective information of the feature maps in

the decoding stage, coordinate attention (22) is used after the

feature concatenation.

2. Materials and methods

In this paper, a multiscale feature fusion network with two

different encoding paths is proposed, and the model enhances

the communication of features in the encoding stage to make

it superior in detail segmentation, and the proposed model is

shown in Figure 2. The proposedmodel consists of the following

main components: residual block, single dense aggregation

block, multiscale feature fusion block and coordinate attention.
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FIGURE 1

CT slices of ovarian tumor and their corresponding ground truth.

FIGURE 2

The structure of the proposed DMFF-Net in this paper.

2.1. Dataset

Our dataset is 377 CT scans of ovarian tumor provided by

the affiliated hospital of Qingdao University, and all data are

desensitized and do not contain patients’ personal information.

The data involved in training and testing are randomly selected

from this dataset, of which 80% is used as the training set and

20% as the testing set. In addition, a 5-fold cross-validation

(23, 24) is performed on the training set with a 4:1 ratio of

data used for training and validation, and the best model is

tested in an unseen test set to obtain the final results, with

all models involved in the comparison undergoing the above

process. We extended the training data with rotation, Gaussian

noise and mixup.

2.2. Data preprocessing

The size of the original CT images is 800 × 600, and we

cropped the CT images with the ovarian tissue as the center

to remove part of the black background which is irrelevant to

the training.

The CT images are limited by the imaging principle, which

leads to an unreasonable distribution of grayscale values in the
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FIGURE 3

E�ect and pixel histogram before and after image enhancement.

FIGURE 4

The process of CT image preprocessing.

generated images. We filtered the effect of black background

and some extreme colors on the pixel histogram during the

statistics, the comparison of the enhanced image with the

original image is shown in Figure 3.We can see by the histogram

of unprocessed image that the pixel values are too concentrated

in some areas, and this causes a low contrast between the

lesion and non-lesion areas of the ovarian tumor CT images we

used. We enhanced the images using contrast limited adaptive

histogram equalization (CLAHE), which is achieved by limiting

the degree of contrast enhancement of the adaptive histogram.

The histogram distribution of image pixels is more balanced and

the image contrast is stronger after enhancement by CLAHE

algorithm. The process of CT image preprocessing is shown in

Figure 4.

2.3. Residual block

Deeper networks are capable of extracting multi-level

features (25, 26), especially in the high-level features where
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the feature information of target is more representative. In

order to offset the performance degradation caused by network

deepening (27), we use residual block (RB) in the path of

low-resolution input to extract features. In the residual path,

firstly, the dimensionality of the input features is reduced by 1

× 1 convolution. Then, 3 × 3 convolution is used to extract

features in a larger receptive field. Finally, the features of each

channel are fused by 1 × 1 convolution. The residual block

utilizes an identity mapping approach. When the input features

have reached a relatively optimal state, they are fed directly

to the backend by identity mapping and the effect of residual

path is adaptively weakened. The residual block used in this

paper is shown in Figure 5. The formula for residual block is

shown below:

I1,i = ReLU
(

f1,0 + δ
(

f1×1
(

F3×3
(

F1×1
(

f1,0
)))))

(1)

where f1,0 and I1,i denote the input and output of the residual

block, respectively. Fn×n denotes n×n convolution, BatchNorm

(BN) and ReLU activation function, fn×n denotes n × n

convolution, δ denotes the BatchNorm. The feature map f1,0 of

the previous output utilizes residual block to generate I1,i which

is used as part of the feature fusion.

2.4. Single dense aggregation block

Dense connection learning and residual learning are two

different methods to preserve and fuse features. The study

by Huang et al. (28) shows the high correlation of the later

layers with their neighboring layers and the low correlation with

the more distant layers, which means that the deep features

have low utilization of the shallow features. A large number

of connections in the middle layers contribute little to the

performance improvement and instead add significantly to

memory redundancy, as shown in Figure 6A. Therefore, we

adopt the single dense aggregation block (SDAB) (29) in the

path of the high-resolution input as in Figure 6B. This method

reduces the feature connections in the middle layers, and all

the previous features are aggregated in the last layer by single

connection, respectively. The formula for this block is expressed

as follows:

f2,1 = θ
(

W0f2,0
)

f2,2 = θ
(

W1f2,1
)

. . . . . .

f2,l−1 = θ
(

Wl−2f2,l−2

)

I2,i = C
([

f2,1, f2,2, . . . , f2,l−1

])

(2)

where f2,0 and I2,i denote the input and output of the single

dense aggregation block, respectively, f2,j
(

1 ≤ j ≤ l− 1
)

denotes the intermediate features, Wj
(

0 ≤ j ≤ l− 2
)

denotes the jth layer 3 × 3 convolution, θ denotes ReLU

activation function and BatchNorm, and C
(

∗
)

denotes the

connecting operation.

Since shallow features are involved in the final feature

aggregation, this method can better retain the positional

information and details of the tumor region, thus improving

the efficiency of extracting features. The feature map f2,0 of

the previous output utilizes single dense aggregation block to

generate I2,i which is used as part of the feature fusion.

2.5. Multiscale feature fusion block

As stated in the introduction, some works on extracting

features by multiple encoding paths have emerged to seek a

relatively comprehensive aggregation of feature information

of images. However, most of them ignore the connection

between different encoding paths and do not effectively integrate

the diversified semantic information in a multi-encoding

feature flow.

To respond to these issues, a multiscale feature fusion block

(MFB) is proposed as shown in Figure 7.O1,i denotes the output

of the ith block at path 1, O2,i denotes the output of the ith

block at path 2, and the method of extracting features is different

for each path. This block connects and fuses the multiscale

features of each path in a different order, thus the proposedMFB

enhances the correlation and diversity of features. In addition,

the output of the previous layer is also directly involved in

feature fusion in this layer to reduce as much feature loss in the

deep network as possible. The first block does not have O1,i−1

and O2,i−1, and the fourth block does not have O1,i and O2,i.

The expression of the feature fusion connection is shown below:

O1,i = C[I1,i, I2,i,O1,i−1]

O2,i = C[I2,i, I1,i,O2,i−1] (3)

2.6. Coordinate attention

Adding attention mechanism after concatenation layer can

quickly filter out the valuable information and suppress the

useless information. The coordinates attention (CA) diagram

is shown in Figure 8. The global pooling is decomposed into

two 1D encoders to facilitate the attention mechanism to be

able to capture remote dependencies with precise positional

information. Specifically, the input feature maps are pooled with

pooling kernels of sizes (H, 1) and (1, W) performing average

pooling for each channel in the transverse and longitudinal

directions, respectively. The outputs of the features with width
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FIGURE 5

The residual block diagram.

FIGURE 6

(A) Is the original dense connection, (B) is the single dense aggregation block used in this paper.
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FIGURE 7

The proposed multiscale feature fusion block.

FIGURE 8

Coordinate attention.
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TABLE 1 Network parameters setting.

Parameters Values

Optimizer SGD

Initial learning rate 0.001

Momentum 0.9

Weight decay 0.0001

Learning rate change rule lr = lr ×
(

1− iter_num
max _iter

)0.9

w and height h in the cth channel are as follows:

zhc
(

h
)

=
1

W

∑

0≤i≤W

xc
(

h, i
)

(4)

zwc (w) =
1

H

∑

0≤j≤H

xc
(

j,w
)

(5)

We permuted the feature map of dimension C × 1 × W

to C × W × 1, and concatenated it with the feature map of

dimension C×H× 1 to obtain the feature map of dimension C

× (H + W) × 1, and the result is encoded by performing 1 × 1

convolution, BatchNorm and non-linear function in turn. Then,

the encoded feature maps are separated and then perform 1× 1

convolution, followed by sigmoid activation function to generate

the transversal and longitudinal attention. Finally, the obtained

two attention maps are able to reflect whether the object of our

interest exists in the corresponding rows and columns, which

enables us to locate the target object accurately.

3. Experiments and results

3.1. Parameters setting

The research in this paper was done using PyTorch

framework (30) and NVIDIA 3060Ti 8G GPU. The parameters

were set as shown in Table 1. The batch size is 8 and iterations

are 6,500. We used a loss function based on sample similarity,

which is shown below:

loss = 1−
2
∑N

i xiyi + 1
∑N

i x2i +
∑N

i y2i + 1
(6)

where xi is the pixel-wise network prediction and yi is the

corresponding ground truth.

3.2. Evaluation metrics

We utilized the dice similarity coefficient (DSC), Jaccard

index (JI), sensitivity (Sen), specificity (Spe), and accuracy (Acc)

to evaluate model performance. The evaluation results are

obtained by comparing the network prediction with the ground

truth pixel by pixel. The specific calculation of the metrics is

shown below:

DSC =
2TP

FN + FP + 2TP
(7)

JI =
TP

FP + FN + TP
(8)

Sen =
TP

FN + TP
(9)

Spe =
TN

TN + FP
(10)

Acc =
TP + TN

TP + FN + FP + TN
(11)

where TP, FP, TN, and FN are true positive, false positive, true

negative and false negative, respectively.

3.3. Quantitative analysis

To test the performance of DMFF-Net, we compared it

with FCN (14), U-Net (15), DeepLabv3+ (31), Attention U-Net

(32), STAN (21), and parallel deep learning algorithm (PDLA)

(20), which are existing medical segmentation networks, and

the comparison results are shown in Table 2. Table 2 shows that

DMFF-Net achieved 91.6%, 84.8%, 92.5%, 99.5%, and 99.1%

for DSC, JI, sensitivity, specificity, and accuracy, respectively,

which outperforms the other networks in all metrics. We also

counted the quantity of parameters for each network, where the

least quantity of parameters is U-Net, but the DSC improved

from 86.3% to 91.6%, while JI improved from 77.4% to 84.8%.

Although the DSC of DMFF-Net is only 2.1% higher than that

of STAN, its parameters are reduced by 42.05% compared to

STAN. In addition, we used a paired-wilcoxon test on the DSC

results to estimate the significant difference between the two

models. When P < 0.05, it means that there are significant

differences between the two models. It can be seen that DMFF-

Net is significantly improved than other models. Compared

with other networks, it can be concluded that the segmentation

performance of the proposed network is significantly improved

when the quantity of parameters is similar; the quantity of

parameters of the proposed network is significantly reduced

when the segmentation performance is similar.

We calculated the DSC of all the images in the test set,

as shown in Figure 9. Figure 9A is the overall distribution of

DSC, and it illustrates that DMFF-Net has the lowest percentage

of DSC below 0.7 and the highest percentage above 0.9.

Figures 9B, C are the results of the top 10 and bottom 10 of the

DSC ranking, respectively. The segmentation results of DMFF-

Net are basically at a high level for images that are easy to

segment; for images that are difficult to segment, DMFF-Net has

no cases of extremely poor segmentation or failure to segment.

It is obvious that DMFF-Net has strong robustness for the

segmentation of diverse ovarian tumor CT images.
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TABLE 2 Quantitative comparison of DMFF-Net with other medical image segmentation networks.

Methods DSC (%) JI (%) Sen (%) Spe (%) Acc (%) Para (M) p-value

FCN 69.3± 20.9 56.5± 21.4 80.4± 13.9 96.8± 3.5 95.9± 3.1 18.64 <0.001 (∗ ∗ ∗)

U-Net 86.3± 11.9 77.4± 15.1 84.8± 14.4 99.5± 0.4 98.8± 0.5 7.85 <0.001 (∗ ∗ ∗)

DeepLabv3+ 86.5± 13.2 78.0± 14.6 88.2± 13.8 99.2± 0.5 98.7± 0.6 59.22 <0.001 (∗ ∗ ∗)

Attention U-Net 88.6± 8.4 80.5± 11.6 88.0± 11.1 99.5± 0.3 98.9± 0.4 34.87 <0.05 (∗)

STAN 89.5± 7.0 81.6± 9.7 90.2± 9.8 99.4± 0.3 98.9± 0.5 31.79 <0.05 (∗)

PDLA 90.6± 5.3 83.3± 8.1 92.0± 6.4 99.4± 0.3 99.0± 0.4 9.6 <0.05 (∗)

DMFF-Net 91.6 ± 4.9 84.8 ± 7.6 92.5 ± 7.1 99.5 ± 0.2 99.1 ± 0.3 18.42 -

The bold values indicate the optimal result under the evaluation metrics.
∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE 9

(A) Indicates the DSC distribution of test results for each model, (B) indicates the top 10 DSC for each model, and (C) indicates the bottom 10

DSC for each model.

3.4. Qualitative analysis

To more visually represent the segmentation effect of

different models on the ovarian tumors, we visualized the

predictions and ground truth of the CT images participating

in the test as shown in Figure 10. FCN has the coarsest

segmentation and more false positive samples. U-Net and

Attention U-Net can basically segment the lesion regions,

which may be attributed to the shallow features providing

the positional information of the target for the deep features

through skip connections. But they both lack the segmentation

of some details. STAN and PDLA can segment lesion details, but

the results are not obvious. The proposed DMFF-Net can not

only segment the lesion regions basically, but also outperforms

other networks in detail segmentation. This is due to the fact

that DMFF-Net performs the communication and fusion of

multiscale features in the encoding stage, which makes the

feature information more diverse.

3.5. Ablation experiment

3.5.1. Ablation study for the quantity of
convolution layers

In the process of designing the network structure, we

explored the effect of setting the different number of 3 × 3

convolution layers in Figure 6B on the network performance,
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FIGURE 10

Qualitative comparison of segmentation results between DMFF-Net and other medical image segmentation networks.

and the experimental results are shown in Table 3. The best

performance is achieved when the quantity of convolution layers

L is set to 10, and the worst performance is achieved when it is

set to 4. This is because as the quantity of convolution layers

increases, the higher the abstraction of the features, the more

beneficial it is to segment the target accurately. In addition, the

improved performance also brings an increase in the quantity

of parameters.
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TABLE 3 E�ect of setting di�erent convolution layers in single dense aggregation block on network performance.

Layers DSC (%) JI (%) Sen (%) Spe (%) Acc (%) Para(M)

L= 4 90.7± 7.2 83.7± 9.8 91.6± 9.0 99.5± 0.2 99.1± 0.5 13.24

L= 6 90.9± 6.7 83.9± 9.3 92.6 ± 6.7 99.4± 0.4 99.0± 0.6 14.97

L= 8 91.4± 6.0 84.7± 8.8 92.4± 6.7 99.5± 0.2 99.1± 0.4 16.69

L= 10 91.6 ± 4.9 84.8 ± 7.6 92.5± 7.1 99.5 ± 0.2 99.1 ± 0.3 18.42

The bold values indicate the optimal result under the evaluation metrics.

TABLE 4 E�ect of di�erent encoding blocks in the dual encoding path on network performance.

Methods DSC (%) JI (%) Sen (%) Spe (%) Acc (%)

Without RB 90.2± 8.8 83.1± 11.6 91.6± 10.9 99.5± 0.2 99.1± 0.5

Without SDAB 85.6± 11.7 76.3± 14.4 87.2± 12.1 99.2± 0.7 98.5± 0.8

DMFF-Net 91.6 ± 4.9 84.8 ± 7.6 92.5 ± 7.1 99.5 ± 0.2 99.1 ± 0.3

The bold values indicate the optimal result under the evaluation metrics.

TABLE 5 Impact of multiscale feature fusion block and coordinate attention on network performance.

Methods DSC (%) JI (%) Sen (%) Spe (%) Acc (%)

Without MFB 90.4± 10.3 83.7± 12.5 91.2± 11.9 99.5± 0.2 99.1± 0.5

Without CA 91.2± 5.6 84.4± 8.6 94.5 ± 5.4 99.3± 0.3 99.1± 0.4

DMFF-Net 91.6 ± 4.9 84.8 ± 7.6 92.5± 7.1 99.5 ± 0.2 99.1 ± 0.3

The bold values indicate the optimal result under the evaluation metrics.

TABLE 6 Quantitative comparison of liver segmentation results between DMFF-Net and other medical image segmentation networks.

Methods DSC (%) JI (%) Sen (%) Spe (%) Acc (%) p-value

FCN 90.0± 7.5 82.6± 10.2 94.6± 7.7 98.6± 1.9 98.4± 1.7 <0.001 (∗ ∗ ∗)

U-Net 90.7± 6.7 83.7± 9.5 95.2 ± 7.0 98.7± 1.7 98.5± 1.5 <0.001 (∗ ∗ ∗)

DeepLabv3+ 88.4± 7.2 79.8± 9.9 91.4± 8.7 98.9± 0.9 98.3± 0.9 <0.001 (∗ ∗ ∗)

Attention U-Net 90.6± 6.7 83.4± 9.5 95.0± 6.8 98.7± 1.8 98.5± 1.7 <0.001 (∗ ∗ ∗)

STAN 90.1± 6.8 82.5± 9.7 93.8± 7.4 98.7± 1.7 98.4± 1.5 <0.001 (∗ ∗ ∗)

PDLA 90.9± 6.8 83.9± 9.5 95.0± 7.0 98.8± 1.7 98.5± 1.6 <0.01 (∗∗)

DMFF-Net 91.3 ± 7.1 84.7 ± 9.2 94.6± 7.9 99.0 ± 1.2 98.7 ± 1.2 -

The bold values indicate the optimal result under the evaluation metrics.
∗∗p < 0.01 and ∗∗∗p < 0.001.

3.5.2. Ablation study for di�erent encoding
blocks

To research the impact of residual blocks and single

dense aggregation blocks in DMFF-Net on the segmentation

performance, we designed ablation experiment before and after

module removal. The experimental results are shown in Table 4.

When the residual blocks are removed from the encoding path,

the DSC of DMFF-Net decreases from 91.6% to 90.2%, while

the JI decreases from 84.8% to 83.1%; when the single dense

aggregation blocks are removed from the encoding path, the

DSC decreases from 91.6% to 85.6%. Thus, it can be seen that

both the residual blocks and the single dense aggregation blocks

contribute to the performance improvement of DMFF-Net. The

contribution of the single dense aggregation block is larger.

3.5.3. Ablation study for multiscale feature
fusion block and coordinate attention

The multiscale feature fusion block and coordinate attention

utilized in this paper are two structures that barely increase

parameters. To illustrate the effect of these two structures

on the network performance, we removed them separately

and experiment again. The experimental results are shown in

Table 5. When the multiscale feature fusion blocks are removed,

the DSC of the DMFF-Net decreases by 1.2%. In addition,

the network performance also decreases when the coordinate

attention is removed. From this experiment, it can be concluded

that designing a high complexity model is not the only way

to enhance the segmentation performance, and a reasonable

structure can also contribute.
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FIGURE 11

Qualitative comparison of liver segmentation results between DMFF-Net and other medical image segmentation networks.
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FIGURE 12

The DSC distribution on the liver test set for each model.

TABLE 7 Quantitative comparison of skin lesion segmentation results between DMFF-Net and other medical image segmentation networks.

Methods DSC (%) JI (%) Sen (%) Spe (%) Acc (%) p-value

FCN 76.2± 23.0 66.2± 24.7 73.7± 26.1 97.8± 4.7 90.4± 13.3 <0.001 (∗ ∗ ∗)

DeepLabv3+ 75.1± 23.8 65.0± 25.7 78.5± 25.5 95.0± 13.2 89.5± 14.5 <0.001 (∗ ∗ ∗)

U-Net 78.6± 21.3 68.9± 23.7 76.7± 23.7 97.5± 5.6 91.2± 12.0 <0.05 (∗)

Attention U-Net 78.5± 21.6 68.8± 24.1 76.8± 23.9 97.4± 5.5 91.1± 12.3 <0.05 (∗)

STAN 79.3± 20.6 69.7± 23.3 76.5± 23.8 97.9 ± 4.7 91.5± 11.9 <0.05 (∗)

PDLA 79.3± 20.6 69.6± 23.5 77.2± 23.4 97.7± 4.9 91.3± 12.4 <0.05 (∗)

DMFF-Net 81.3 ± 19.8 72.3 ± 22.6 79.5 ± 22.6 97.5± 5.9 92.0 ± 11.8 -

The bold values indicate the optimal result under the evaluation metrics.
∗p < 0.05 and ∗∗∗p < 0.001.

3.6. Experiment on the generalization
ability of the model

To test the effectiveness of DMFF-Net for different

segmentation tasks, we validated our model in the LITS 2017

(33), where we performed segmentation experiment on the

liver. The dataset contains CT scans of the abdomen from 131

patients, we also performed a 5-fold cross-validation, and the

experimental results are shown in Table 6.

The proposed DMFF-Net outperforms other medical image

segmentation networks in the liver segmentation task as well.

DMFF-Net achieves a DSC of 91.3%, a JI of 84.7%, a Sen of

94.6%, a Spe of 99.0%, and an Acc of 98.7%. The visualized

segmentation results are shown in Figure 11. Figure 11 shows

that the segmentation of DMFF-Net for targets with large shape

differences is closer to ground truth compared to other models

and has fewer false positive pixels. Figure 12 shows the DSC

distribution of different models on the liver segmentation test

set, and the segmentation result of DMFF-Net has the highest

percentage of DSC > 0.9.

Both the ovarian tumor and liver datasets are CT images, and

the CT data are grayscale images with relatively single color. In

order to verify the segmentation effect of the proposed method

on non-CT data, we used the ISIC 2017 skin lesion dataset (34)

to train and test the model, and the experimental results are

shown in Table 7. The dataset was created for a skin damage
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FIGURE 13

Qualitative comparison of DMFF-Net with other medical image segmentation networks for skin lesion segmentation results. The red line is

ground truth and the green line is the prediction of the models.

TABLE 8 The comparison with the latest works on ISIC 2017.

Methods DSC (%) JI (%) Sen (%) Spe (%) Acc (%) Para (M)

Lin et al. (35) 79.0% 65.0% - - - -

Garcia-Arroyo and Garcia-Zapirain (36) 76.0% 66.5% - - 88.4% -

Lin et al. (37) 77.2% 70.5% 83.9% 94.5% 91.8% -

Schlemper et al. (38) 80.8% - 79.9% 97.7% 91.4% 45 M

DMFF-Net 81.3% 72.3% 79.4% 97.5% 92.0% 18.42 M

The bold values indicate the optimal result under the evaluation metrics.
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FIGURE 14

The DSC distribution on the skin lesion test set for each model.

analysis challenge calledmelanoma detection, where the number

of images for training, validation and testing were 2,000, 150 and

600, respectively.

Table 7 shows that DMFF-Net achieves the optimal

segmentation effect compared with other models, and DSC

is improved by at least 2.0%. Furthermore, compared to the

performance on the other two datasets, the proposed method

shows a greater improvement in segmenting skin lesions than

the other networks. The visual segmentation results of the skin

lesions are shown in Figure 13. We also compared with the

latest works on the ISIC 2017 dataset and the results are shown

in Table 8. It can be seen that the DSC of the DMFF-Net is 0.5%

higher than the method proposed by Schlemper et al. (38), and

the quantity of parameters is 40.93% of the latter. Figure 14

illustrates that DMFF-Net has a low percentage of DSC below

0.7 and the highest percentage above 0.9 in the test set.

4. Conclusions

A dual encoding multiscale feature fusion network (DMFF-

Net) for ovarian tumor segmentation is proposed in this

paper. The network extracts diverse features by using different

encoding structures. Multiscale feature fusion block explores

the diversity between features of different paths to enrich

feature information. In addition, the coordinate attention

in the decoding stage can highlight the representation of

effective information of the concatenated features. In the

ovarian tumor segmentation task and two other segmentation

tasks, the overall segmentation performance of the DMFF-

Net outperforms other segmentation algorithms, and our

segmentation is more accurate in details. Compared with other

algorithms, the segmentation performance of the DMFF-Net is

notably improved when the quantity of parameters is similar;

the quantity of parameters of the DMFF-Net is notably reduced

when the segmentation performance is similar. However, the

segmentation accuracy still cannot fully meet the requirements

of clinical diagnosis. In the next step, we will continue to

investigate more efficient multiscale feature fusion methods.
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