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Background:High precision segmentation of retinal blood vessels from retinal

images is a significant step for doctors to diagnose many diseases such as

glaucoma and cardiovascular diseases. However, at the peripheral region of

vessels, previous U-Net-based segmentation methods failed to significantly

preserve the low-contrast tiny vessels.

Methods: For solving this challenge, we propose a novel network model

called Bi-directional ConvLSTM Residual U-Net (BCR-UNet), which takes

full advantage of U-Net, Dropblock, Residual convolution and Bi-directional

ConvLSTM (BConvLSTM). In this proposed BCR-UNet model, we propose a

novel StructuredDropout Residual Block (SDRB) instead of using the original U-

Net convolutional block, to construct our network skeleton for improving the

robustness of the network. Furthermore, to improve the discriminative ability of

the network and preserve more original semantic information of tiny vessels,

we adopt BConvLSTM to integrate the feature maps captured from the first

residual block and the last up-convolutional layer in a nonlinear manner.

Results and discussion: We conduct experiments on four public retinal

blood vessel datasets, and the results show that the proposed BCR-UNet can

preserve more tiny blood vessels at the low-contrast peripheral regions, even

outperforming previous state-of-the-art methods.

KEYWORDS

segmentation, retinal blood vessels, U-Net, residual convolution, Bi-directional

ConvLSTM

Introduction

Retinal vascular features play an essential role in physicians’ diagnosis of early

ophthalmic and cardiovascular diseases, as these diseases lead to morphological changes

in retinal blood vessels. A typical example is diabetic retinopathy (DR), a retinal disease

that is one of the leading causes of blindness and requires special attention if retinal

vasodilation is observed in diabetic patients (1–3). In addition, hypertensive patients may

observe vascular tortuosity due to vascular stenosis or elevated arterial blood pressure,
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a condition known as hypertensive retinopathy (HR) (4–

7). Morphological information such as density, curvature,

and thickness of retinal vessels can serve as vital signal for

the diagnosis and detection of these diseases (8). To advice

physicians make scientific diagnoses of these diseases, it is

important to generate accurate images of retinal blood vessels

of patients. However, accurately extracting retinal blood vessels

is an extremely difficult challenge for the following reasons.

First, retinal blood vessels vary widely in shape and size. Second,

there are many complex structures and regions in retinal images,

covering pathological regions, optic disc regions, hemorrhages,

and exudates, which easily lead to wrong segmentation of

blood vessels. Third, the weak contrast makes it difficult to

distinguish vessels from the background in many edge regions.

Therefore, in this task, automated algorithms and precise vessel

segmentation from retinal images are in high demand, and

numerous algorithms for automatic retinal vessel segmentation

have been proposed (9).

Generally, retinal blood vessel segmentation algorithms

can be roughly classified into two categories: unsupervised

algorithms and supervised algorithms, wherein unsupervised

algorithms do not provide manual annotations as reference

during training. Filter-based algorithms are typical unsupervised

methods. Zhang et al. (10) proposed a filter-based method,

which adopts two 3D rotated frames for retinal vessel

segmentation. Azzoprardi et al. (11) proposed a shift filter-

response combination that can automatically detect blood

vessels. Examples of other unsupervised algorithms include the

method of Zhang et al. (12), which utilizes a self-organizing map

for pixel clustering and further employs the Otsu algorithm to

classify each neuron in the output layer as a retinal vascular

neuron or a non-retinal vascular neuron. Vessel-based tracking

algorithms (13) are also popular to solve the above methods.

However, since the ground truth is lack, the performance

of unsupervised algorithms is generally lower than that of

supervised algorithms.

In recent years, deep learning models have been utilized to

the field of retinal image segmentation, which shows advanced

performance due to their strong data processing capabilities to

capture high-level semantic features. In particular, convolutional

neural networks are extensively used in numerous image

processing tasks, and are also rapidly gaining traction among

researchers in retinal blood vessel segmentation. Ronneberger

et al. (14) proposed a well-known neural network architecture

for biomedical image segmentation, called U-Net, which was

originally applied to cell segmentation task and was the

state-of-the-art method at that time. In addition, medical

image datasets, such as retinal blood vessel image datasets,

are often hard to obtain due to patient ethics and privacy

concerns, resulting in the small scale of available datasets.

In order to avoid overfitting, model design usually needs to

pursue lightweight, and U-Net can productively enhance the

performance of deep learning models in small-scale datasets.

Therefore, numerous recent applications of retinal blood vessel

segmentation are derived from U-Net. Fu et al. (15) improved

the vessel segmentation performance by employing a model

that combines the lateral output layer and a conditional

random field. Zhang et al. (16) introduced AG-Net, which

integrates the attention gate into the traditional guidance

filter to obtain the attention guidance filter, and remove the

introduced complexity noise components in the background.

Wang et al. (17) proposed the DEU-Net model, in which

contextual paths can capture more semantic information, and

spatial paths are used to retain specific information. Zhang

and Chung (18) proposed an edge-based mechanism in U-Net

to achieve a bettered performance. Hu et al. (19) proposed

a U-Net variant by using a saliency mechanism. Guo et al.

(20) introduced Dense Residual Network (DRNet) to segment

blood vessels in Scanning Laser Ophthalmoscopy (SLO) retinal

images. Zhang et al. (21) proposed Pyramid U-Net, which

proposed Pyramid Scale Aggregation Block (PSAB) for U-Net

to aggregate multi-level features for more accurate segmentation

of retinal vessels. Although the above U-Net-based methods

have achieved considerable results to a certain extent, there are

still the following problems. For one hand, at many peripheral

regions, low contrast makes it difficult to distinguish small blood

vessels from the background. For another, there are few samples

used for the model, which can easily lead to overfitting problem.

To address these challenges, we propose an innovative

U-Net-based network named as Bi-directional ConvLSTM

Residual U-Net (BCR-UNet). The main contributions of this

work are summarized as follows:

(1) In order to solve the problem of overfitting caused by small

samples, instead of using the data augmentation techniques,

a novel Structured Dropout Residual Block (SDRB) is

proposed, which introduces Dropblock regularization to

enhance the robustness of the network. In this article, we

replace the basic blocks of the original U-Net with SDRB

to form a novel U-shaped network. In the experimental

section, we explore the performance of different residual

blocks to demonstrate the effectiveness of SDRB.

(2) Inspired by the ability of BConvLSTM (22), we integrate

BConvLSTM to the skip connections between the first

residual convolutional block and the last up-convolutional

layer to improve the discriminative power of the network

and preserve more original semantic information of tiny

blood vessels. We argue that this design is effective in

handling low-contrast tiny blood vessels, and verify its

effectiveness through ablation experiments.

(3) Based on the above work, an innovative Bi-directional

ConvLSTM Residual U-Net (BCR-UNet) is proposed to

comprehensively address the challenges of retinal vessel

segmentation. By comparing the segmentation results

with the state-of-the-art models, the proposed BCR-UNet

achieves promising performance.
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Proposed method

Dropblock

In order to avoid the over-fitting problem of deep neural

networks, a simple regularization method like Dropout is

usually utilized. The main point of Dropout is that some

features are randomly discarded during the training process.

However, this character is effective for the fully connected layer,

and it is not obvious for the convolutional layer due to the

correlation between the activated cells. In other words, for the

convolutional layer, even if Dropout is used, the input semantic

information can still be sent to the next layer, resulting in

overfitting. Intuitively, we need a structured Dropout method.

Therefore, Ghiasi et al. (23) proposed Dropblock to standardize

convolutional neural networks and this method has been

effectively verified in SD-UNet (24). Compared with Dropout,

the main difference is that Dropblock drops continuous regions

in the feature map instead of randomly dropping independent

units. Dropblock has two important parameters s and y,

represents the size of the control discarded block, and denotes

the number of active units that are discarded, which can be

calculated as:

y =
1− p

s2
f 2

(f − s+ 1)2
(1)

where p denotes the probability of keeping a certain

unit active, and f represents the size of the feature map at

that location.

Structured dropout residual block

In the field of deep learning, residual network (ResNet)

(25) is a milestone breakthrough, and has received extensive

attention in the area of computer vision due to its excellent

performance. In recent years, the residual module has become

the basic module for many deep neural networks to be applied

to the area of biomedical image segmentation (20, 26–28), and

these methods achieve advanced performance. Inspired by the

above methods, we also adopt the residual block as the basic

unit to construct a neural network for automatically segmenting

retinal vessels.

Many variants of residual blocks have been proposed in

the past researches. The original residual block consists of

two convolutional layers, followed by a batch normalization

(BN) and ReLU layer (16) (shown in Figure 1A). In (29),

He et al. introduced a new kind of residual structure named

“pre-activation residual block” (see in Figure 1B). It is worth

noting that this residual block achieves improved performance

because it benefits from backpropagation gradient. Li et al.

(30) proposed a novel residual structure named “before-

activation residual block” (shown in Figure 1C), which performs

better than the “pre-activation residual block,” indicating that

batch normalization (BN) position plays an important role.

In addition, in DRNet (20), the combination of pre-activation

residual block and Dropblock brings advanced performance in

retinal vessel segmentation (shown in Figure 1D). Based on the

above discussion, we propose a new residual structure as the

basic unit of our proposed BCR-UNet, as shown in Figure 1E,

which is hereinafter referred to as the “Structured Dropout

Residual Block (SDRB).” The effectiveness of SDRB has been

experimentally verified and outperforms the “pre-activation

residual block,” “before-activation residual block” and residual

block in DRNet.

Bi-directional ConvLSTM residual U-Net

According to the design idea of UNet, BCR-UNet is

primarily separated into two parts: encoder and decoder, which

can realize end-to-end training. The network architecture is

shown in Figure 2. The capability of the encoder is to extract

a representative image feature which has a dramatic impact

on the final performance of segmentation. In BCR-UNet, the

encoder consists of three steps. Each step consists of a SDRB

and a 2×2 max pooling function. The encoder captures features

with high-level semantic information, and the decoder can

recover the initial image information. The decoder also has three

steps, and each step starts by executing an upsampling function

on the output of the former step. Upsampling is performed

using a transposed convolution with stride 2, followed by a

BN. In the original U-Net, the matched feature maps from the

encoder are replicated to the decoder, and these feature maps are

then concatenated with the output of the upsampling function.

Unlike U-Net, for BCR-UNet, BConvLSTM is applied to handle

both feature maps in amore sophisticatedmanner by combining

the output of the first SDRB in the encoder and the output

of the last step upsampling function in the decoder. Let Xe ∈

RF×W×H be the feature maps replicated from the encoder, and

Xd ∈ RF×W×Hbe the output of the last upsampling function in

the decoder, where F is number of feature maps, and W × H is

the size of each feature map. As shown in Figure 3, Xd is first

passed to a BN, producing Xbn
d
∈ RF×W×H . In subsequent

experiments, we verify the superior performance of this design.

Bi-directional ConvLSTM

Standard LSTM networks utilize fully connected input-to-

state and state-to-state conversions, so the primary drawback

of these models is that they ignore the spatial correlations. To

overcome this problem, Shi et al. (22) proposed ConvLSTM,
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FIGURE 1

Variants of residual blocks: (A) Original residual block, (B) pre-activation residual block, (C) before-activation residual block, (D) residual block in

DRNet, and (E) Strutured Dropout Residual Block (SDRB).

FIGURE 2

The network architecture of BCR-UNet.
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FIGURE 3

The flowchart Bi-directional ConvLSTM.

which utilized convolution operation to input-to-state and state-

to-state conversions. It is composed of an input gate it , a forget

gate ft , a memory gate mt , and an output gate ot . Input, forget

and output gates act as control gates for accessing, clearing and

updating the memory unit. In terms of formula, ConvLSTM can

be expressed as follows:

it = σ (Wxi ⊗ Xt +Whi ⊗ ht−1 +Wmi ⊗mt−1 + bi)

ft = σ (Wxf ⊗ Xt +Whf ⊗ ht +Wmf ⊗mt−1 + bf )

mt = ft ⊙mt−1 + it tanh (Wxm ⊗ Xt +Whm ⊗ ht−1 + bm)

ot = σ (Wxo ⊗ Xt +Who ⊗ ht−1 +Wmo ⊙mt + bo)

ht = ot ⊙ tanh (mt) (2)

where ⊗ and ⊙ represent convolution and Hadamard

functions, respectively.Xt is the input tensor (i.e.,XeandX
bn
d
), ht

is the hidden sate tensor,Wx◦ andWh◦ are convolution kernels

corresponding to the input and hidden state, respectively, and

bi, bf , bm and bo are the bias terms.

Although ConvLSTM is improved, it only deals with

forward dependencies, which does not fully consider all the

information in the sequence. Therefore, the model should

consider both backward dependencies and analyze both forward

and backward dependencies to improve forecasting accuracy

(31). BConvLSTM employs two ConvLSTMs to deal with the

input data into both forward and backward directions, and then

makes decisions for the current input by processing the data

dependencies in the two directions. Therefore, in this work, we

utilize BConvLSTM (22) to encode Xe and Xbn
d
. The output

formula of BConvLSTM is:

Yt = tanh

(

W
Eh
y ⊗
Eh+W

←
h
y ⊗

←

h + b

)

(3)

where Eht indicates the hidden state tensors for forward

states, while
←

h tfor backward states, b is the bias term, and

Yt ∈ RF×W×H represents the final output considering two-

way spatiotemporal information. In addition, Tanh stands for

hyperbolic tangent, which is used to combine the outputs of the

forward and backward states in a non-linear fashion.

Experiments and results

Materials and implementation details

To evaluate the performance of BCR-UNet, we select four

publicly available retinal image datasets, including DRIVE (32),

CHASE DB1 (33), STARE (34) and IOSTAR (10), whose specific

information can be found in Table 1. In addition, in order

to quantitatively evaluate the performance of BCR-UNet, we

choose accuracy (ACC), Sensitivity (SEN), specificity (SPE), F1-

score (F1), the area under the curve (AUC) of the receiver

operating characteristic curve (ROC), Intersection-over-Union
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TABLE 1 The detail information of four datasets.

Datasets Source Count Train/Test Resolution

DRIVE Dutch Diabetic Retinopathy Screening Program 40 20/20 565× 584

CHASE DB1 Children’s Heart and Health Study in England 28 20/8 999× 960

STARE Structural Analysis of the Retina 20 15/5 (4-fold cross-validation) 700× 605

IOSTAR EasyScan Camera (i-Optics Inc., Netherlands) 30 20/10 1024× 1024

(IOU) andMatthews correlation coefficient (MCC) as evaluation

metrics. These metrics are defined as follows:

SEN =
Tp

Tp+ Fn
(4)

SPE =
Tn

Tn+ Fp
(5)

ACC =
Tp+ Tn

Tp+ Tn+ Fp+ Fn
(6)

IOU =
Tp

Fp+ Tp+ Fn
(7)

F1 =
2Tp

2Tp+ Fp+ Fn
(8)

MCC =
Tp× Tn− Fp× Fn

√

(Tp+ Fp)× (Tp+ Fn)× (Tn+ Fp)× (Tn+ Fn)

(9)

where Tp denotes as true positive, which means that when a

predicted pixel is compared with a pixel at the same position in

the ground truth value, the predicted pixel is accurately classified

as a blood vessel. Tn denotes as true negative, which denotes

that when a predicted pixel is compared with a pixel at the

same position in the ground truth value, then the predicted pixel

is correctly divided as a non-vascular. Correspondingly, Fp is

a false positive value, which represents that one of the pixels

is classified as a blood vessel in the segmented image, and the

corresponding pixel with the same position in the ground truth

image is a non-vascular pixel. Fn is defended as a false negative

value, which means that one of the pixels is classified as non-

vascular in the predicted image, and the corresponding pixel

with the same position in the ground real image is the vascular

pixel. In addition, ACC is an area under the receiver operating

characteristic curve (ROC), which measures the segmentation

performance based on recall and precision, and is not affected

by imbalanced data such as retinal blood vessel images. IOU

is a number that evaluates the degree of overlap between two

regions (i.e., group truth and detection region). F1 is defined as

a weightedmean of precision and recall, where precision denotes

as the number of Tp divided by sum of Tp and Fp, while recall

defines as the number of Tp divided by the total number of Tp

and Fp. MCC is a very effective evaluation metric, which often

used to test the performance of a classification model under the

two classes are imbalance case.

The implementation of our proposed BCR-UNet is based

on Keras with Tensorflow as the backend and a Tesla V100

graphics card with 32GB of memory. For the training images

of the four datasets, we adopt random horizontal, rotation and

diagonal and vertical flips for augmentation, and randomly

select 10% of the augmented images as the validation set. In

training phase, we employ Adam with a learning rate of 0.001

as the optimization method and binary cross-entropy as the loss

function. In our experiments, the batch size is set to 2, except

for the STARE dataset, which is trained for 300 epochs, and the

other datasets are trained for 100 epochs. In addition, for the

setting of Dropblock, we uniformly set the drop block size to 7

and the dropout rate is 0.2.

Ablation studies

In order to verify the effectiveness of our proposed

BCR-UNet model, we conduct ablation studies to prove the

effectiveness of each component in the first experiment. As

mentioned before, the Structured Dropout Residual Block

(SDRB) includes Dropblock. In order to be able to verify the

effectiveness of Dropblock, SDRBs without Dropblock is used to

construct a U-shaped network (i.e., BCR-UNet w/o Dropblock

and Bi-ConvLSTM) and treat the obtained model as Baseline.

Table 2 shows the segmentation performance of Baseline,

Baseline+BConvLSTM, Baseline+Dropblock and BCR-UNet

(i.e., Baseline+Dropblock+BConvLSTM) from top to bottom,

respectively. The visual effects of different components are

shown Figure 4.

E�ectiveness of BConvLSTM

First, we just add the BConvLSTM module to the Baseline

(i.e., Baseline+ BConvLSTM) and apply it to the DRIVE,

CHASE DB1, STARE, and IOSTAR datasets. A typical example

of retinal blood vessel segmentation results in DRIVE is

shown Figure 4. This experiment results obviously shows that

the using BConvLSTM module can productively segment

blood vessels of various scales, especially some small blood

vessels that Baseline cannot handle well. As shown in Table 2,

compared with both Baseline, Baseline+BConvLSTM improves

the performance from 67.57% / 66.09% / 66.02% / 67.08%
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TABLE 2 The ablation experiments on four datasets.

Models ACC SEN SPE AUC F1 IOU MCC

DRIVE

Baseline 0.9681 0.7595 0.9881 0.9834 0.8065 0.6757 0.7910

Baseline+BConvLSTM 0.9681 0.7694 0.9872 0.9827 0.8084 0.6784 0.7922

Baseline+Dropblock 0.9693 0.7841 0.9870 0.9860 0.8171 0.6908 0.8012

BCR-UNet 0.9695 0.8183 0.9840 0.9866 0.8246 0.7015 0.8075

CHASE DB1

Baseline 0.9733 0.8253 0.9833 0.9867 0.7958 0.6609 0.7821

Baseline+BConvLSTM 0.9739 0.8115 0.9848 0.9869 0.7966 0.6619 0.7828

Baseline+Dropblock 0.9754 0.8327 0.9850 0.9891 0.8101 0.6808 0.7973

BCR-UNet 0.9755 0.8383 0.9847 0.9898 0.8118 0.6832 0.7992

STARE

Baseline 0.9702 0.7647 0.9870 0.9746 0.7948 0.6602 0.7800

Baseline+BConvLSTM 0.9706 0.7673 0.9872 0.9791 0.7975 0.6640 0.7832

Baseline+Dropblock 0.9742 0.8006 0.9883 0.9885 0.8238 0.7010 0.8115

BCR-UNet 0.9743 0.8308 0.9860 0.9873 0.8302 0.7103 0.8168

IOSTAR

Baseline 0.9709 0.7415 0.9909 0.9870 0.8030 0.6708 0.7905

Baseline+BConvLSTM 0.9705 0.7624 0.9886 0.9860 0.8055 0.6743 0.7911

Baseline+Dropblock 0.9706 0.7793 0.9885 0.9884 0.8152 0.6879 0.8009

BCR-UNet 0.9727 0.7965 0.9880 0.9882 0.8234 0.6999 0.8091

Bold values is the highest scores for the metrics.

FIGURE 4

(A) A typical image from DRIVE dataset, (B) Baseline, (C) Baseline+BConvLSTM, (D) Baseline+Dropblock, (E) BCR-UNet, and (F) ground truth.

to 67.84% / 66.19% / 66.40% / 67.43% in terms of IOU,

and for MCC, the performance is improved from 79.10%

/ 78.21% / 78% / 79.05% to 79.22% / 78.28% / 78.32%

/ 79.11%. Further, we evaluate the effect of BConvLSTM

by comparing the performance of Baseline+Dropblock and

BCR-UNet (i.e., Baseline+Dropblock+ BConvLSTM) on each

dataset. Compared with Baseline + Dropblock, we can

notice that for IOU, the performance of BCR-UNet has

improved by 1.07% / 0.23% / 0.93% / 1.2%, for MCC,

the performance is improved by 0.63% / 0.19% / 0.53% /

0.82% and for other metrics, there are increases to some

extent. Therefore, our experimental results and segmentation

results clearly prove the importance of BConvLSTM in

the application.

E�ectiveness of dropblock

In this subsection, we investigate the effectiveness of the

Dropblock. The results of different methods on the four datasets,

as shown in Table 2, compared with the Baseline, the introduced

Dropblock module (i.e., Baseline+Dropblock) increases IOU by

1.51% / 2% / 4.08% / 1.71% (from 67.57% / 66.09% / 66.02%

/ 67.08% to 69.08% / 68.09% / 70.1% / 68.79%), and MCC has

increased 1.02% / 1.52% / 3.15% / 1.04% (from 79.10% / 78.21%

/ 78% / 79.05% to 80.12% / 79.73% / 81.15% / 80.09%). For

F1, AUC and other indicators have also been improved due to

the addition of Dropblock. In addition, to verify the superiority

of Dropblock, we add Baseline+Dropout experiments, and

the results of Baseline+Dropblock and Baseline+Dropout

on four datasets are shown in Table 3. The results present
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TABLE 3 Comparative experiments of Dropblock and Dropout on four datasets.

Datasets Models AUC F1 IOU MCC

DRIVE Baseline+Dropout 0.9841 0.8147 0.6873 0.7994

Baseline+Dropblock 0.9860 0.8171 0.6908 0.8012

U-Net 0.9849 0.8170 0.6907 0.8007

CHASE DB1 Baseline+Dropout 0.9848 0.7976 0.6634 0.7844

Baseline+Dropblock 0.9892 0.8101 0.6809 0.7973

U-Net 0.9873 0.7989 0.6652 0.7853

STARE Baseline+Dropout 0.9802 0.8076 0.6781 0.7945

Baseline+Dropblock 0.9885 0.8238 0.7010 0.8115

U-Net 0.9813 0.8026 0.6709 0.7887

IOSTAR Baseline+Dropout 0.9874 0.8019 0.6694 0.7886

Baseline+Dropblock 0.9884 0.8152 0.6879 0.8009

U-Net 0.9873 0.8104 0.6813 0.7967

Bold values is the highest scores for the metrics.

that Dropblock is better than Dropout in all comprehensive

metrics in all datasets, which demonstrates that Dropblock

is obviously effective in this work. BCR-UNet incorporates

Dropblock and BConvLSTM into the Baseline (i.e., Baseline+

Dropblock+BConvLSTM) to evaluate the complementarily

between the twomodules. As shown in Table 2, the segmentation

accuracy has been greatly improved, in IOU, there is a significant

increase of about 2.58% / 2.23% / 5.01% / 2.91%, and for MCC

it is increased by about 1.65% / 1.71% / 3.68% / 1.86%, which

is enough to show that the combination of Dropblock and

BConvLSTM in our BCR-UNet is effective.

E�ectiveness of SDRB

In order to verify that the proposed SDRB is meaningful

in the application of retinal blood vessel segmentation, we add

the segmentation performance of U-Net to Table 3. Compared

with U-Net, the performance of Baseline+Droblock (i.e., the

model built with SDRBs) is better than U-Net in all indicators.

In addition, we conduct several experiments to study the

segmentation effect in different residual blocks. Specifically, we

consider the following variants of the residual block: (1) the

raw residual block (Figure 1A), (2) the pre-activated residual

block (Figure 1B), (3) the before activation residual block

(Figure 1C), (4) the modified residual block comes from DRNet

(Figure 1D), (5) the proposed SDRB (Figure 1E). We conduct

experiments by integrating the above blocks into Baseline. In

short, these residual block variants replace the basic residual

block of Baseline. For ease of reference, we refer to these five U-

shaped networks as RUNet_x, where x represents the subgraph

number of Figure 1, that is, RUNet_a is a residual network

constructed using the original residual block in Figure 1, and

so on. We report the results on the DRIVE dataset, the

highest scores for the metrics in Table 4 are shown in bold,

and the results show that RUNet_e (i.e., Baseline+Dropblock)

performs the best. The above discussion and the results from

Tables 3, 4 show that SDRB is effective for constructing novel

U-shaped networks.

Comparison with state-of-the-art models

We further compare the performance of BCR-Net with

multiple state-of-the-art and widely used methods. As shown in

Tables 5, 6, M-Net (35), AG-Net (16), RSAN (36), NFN+(37),

Pyramid U-Net (21), SCS-Net (38), Deng and Ye (39) and

Xu et al. (40) gave the experimental results of DRIVE and

CHASE DB1 in the original paper, and also gave STARE and

IOSTAR in part. For the other five methods, including U-Net

(5), Attention UNet (41), SD-UNet (24), MultiResUNet (27) and

DRNet (20), we conduct experiments on four datasets (DRIVE,

CHASEDB1, STARE, and IOSTAR) based on the same training

strategy and parameter settings as BCR-UNet. Quantitatively,

as shown in Tables 5–8, our proposed BCR-UNet achieves the

highest AUC of 0.9866 / 0.9898 / 0.9873 / 0.9882, the highest

F1 of 0.8246 / 0.8118 / 0.8302 / 0.8234, the highest IOU of

0.7015 / 0.6832 / 0.7103 / 0.6999, and the highest MCC of

0.8075 / 0.7992 / 0.8168 / 0.8091 on the four datasets, while

other three metrics are also comparable. From the perspective

of segmentation visual effects, the segmentation results of

BCR-UNet and other competing methods in four datasets are

shown in Figure 5. For four samples from four datasets, it is

clear that BCR-UNet can predict most of the thick and tiny

vessels (indicated by red and green arrows) compared to other

competing models. As a general benchmark for medical image
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TABLE 4 Comparative experiments of di�erent residual blocks on DRIVE dataset.

Models ACC SEN SPE AUC F1 IOU MCC

RUNet_a 0.9680 0.8091 0.9833 0.9831 0.8159 0.6891 0.7984

RUNet_b 0.9686 0.7988 0.9850 0.9826 0.8170 0.6906 0.8001

RUNet_c 0.9676 0.8246 0.9814 0.9836 0.8170 0.6906 0.7993

RUNet_d 0.9678 0.8219 0.9818 0.9853 0.8173 0.6911 0.7997

RUNet_e(i.e. Baseline+Dropblock) 0.9693 0.7841 0.9870 0.9860 0.8171 0.6908 0.8012

Bold values is the highest scores for the metrics.

TABLE 5 Results of BCR-UNet and other methods on DRIVE dataset.

Models ACC SEN SPE AUC F1 IOU MCC

M-Net (35) 0.9674 0.7680 0.9868 0.9829 - 0.6726 -

AG-UNet (16) 0.9692 0.8100 0.9848 0.9856 - 0.6965 -

RSAN (36) 0.9691 0.8149 0.9839 0.9855 0.8222 - -

NFN+ (37) 0.9668 0.8002 0.9790 0.9832 - - -

Pyramid U-Net (21) 0.9615 0.8213 0.9807 0.9815 - - -

SCS-Net (38) 0.9697 0.8289 0.9838 0.9837 - - -

Deng et al. (39) 0.9683 0.8363 0.9811 - 0.8211 - -

Xu et al. (40) 0.9689 0.8342 0.9821 0.9858 - - -

U-Net (5) 0.9690 0.7906 0.9861 0.9849 0.8170 0.6907 0.8007

Attention UNet (41) 0.9685 0.7663 0.9879 0.9834 0.8099 0.6805 0.7943

SD-UNet (24) 0.9695 0.7831 0.9874 0.9854 0.8182 0.6923 0.8025

MultiResUNet (27) 0.9697 0.7825 0.9876 0.9859 0.8188 0.6931 0.8033

DRNet (20) 0.9672 0.7967 0.9836 0.9815 0.8099 0.6804 0.7921

BCR-UNet 0.9695 0.8183 0.9840 0.9866 0.8246 0.7015 0.8075

Bold values is the highest scores for the metrics.

TABLE 6 Results of BCR-UNet and other methods on CHASE DB1 dataset.

Models ACC SEN SPE AUC F1 IOU MCC

M-Net (35) 0.9729 0.7922 0.9851 0.9845 - 0.6483 -

AG-UNet (16) 0.9743 0.8186 0.9848 0.9863 - 0.6669 -

RSAN (36) 0.9751 0.8486 0.9836 0.9894 0.8111 - -

NFN+ (37) 0.9735 0.7933 0.9855 0.9832 - - -

Pyramid U-Net (21) 0.9639 0.8035 0.9787 0.9832 - - -

SCS-Net (38) 0.9744 0.8365 0.9839 0.9867 - - -

Deng et al. (39) 0.9714 0.8541 0.9794 - - - 0.7900

Xu et al. (40) 0.9749 0.8477 0.9837 0.9881 - - -

U-Net (5) 0.9744 0.8074 0.9856 0.9873 0.7989 0.6652 0.7853

Attention UNet (26) 0.9750 0.8185 0.9856 0.9891 0.8053 0.6740 0.7921

SD-UNet (24) 0.9756 0.8167 0.9863 0.9893 0.8085 0.6786 0.7955

MultiResUNet (27) 0.9755 0.8178 0.9861 0.9891 0.8082 0.6781 0.7952

DRNet (20) 0.9755 0.8298 0.9853 0.9897 0.8100 0.6806 0.7971

BCR-UNet 0.9755 0.8383 0.9847 0.9898 0.8118 0.6832 0.7992

Bold values is the highest scores for the metrics.
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TABLE 7 Results of BCR-UNet and other methods on STARE dataset.

Models ACC SEN SPE AUC F1 IOU MCC

NFN+ (37) 0.9727 0.8096 0.9843 0.9844 - - -

SCS-Net (38) 0.9736 0.8207 0.9839 0.9877 - - -

Deng et al. (39) 0.9732 0.8272 0.9847 - 0.8196 - -

U-Net (5) 0.9713 0.7726 0.9876 0.9813 0.8026 0.6709 0.7887

Attention UNet (41) 0.9718 0.7553 0.9896 0.9807 0.8008 0.6687 0.7881

SD-UNet (24) 0.9719 0.7913 0.9865 0.9816 0.8094 0.6806 0.7957

MultiResUNet (27) 0.9730 0.7837 0.9883 0.9730 0.8137 0.6870 0.8017

DRNet (20) 0.9724 0.7855 0.9878 0.9805 0.8110 0.6830 0.7975

BCR-UNet 0.9743 0.8308 0.9860 0.9873 0.8302 0.7103 0.8168

Bold values is the highest scores for the metrics.

TABLE 8 Results of BCR-UNet and other methods on IOSTAR dataset.

Models ACC SEN SPE AUC F1 IOU MCC

NFN+ (37) 0.9683 0.7921 0.9812 0.9803 - - -

SCS-Net (38) 0.9706 0.8255 0.9830 0.9865 - - -

U-Net (5) 0.9714 0.7642 0.9894 0.9873 0.8104 0.6813 0.7967

Attention UNet (41) 0.9701 0.7711 0.9874 0.9865 0.8049 0.6735 0.7896

SD-UNet (24) 0.9717 0.7835 0.9881 0.9880 0.8159 0.6890 0.8014

MultiResUNet (27) 0.9712 0.7795 0.9879 0.9832 0.8125 0.6842 0.7978

DRNet (20) 0.9717 0.8191 0.9850 0.9880 0.8223 0.6983 0.8070

BCR-UNet 0.9727 0.7965 0.9880 0.9882 0.8234 0.6999 0.8091

Bold values is the highest scores for the metrics.

FIGURE 5

(A) Sample images from four datasets, (B) U-Net, (C) Attention UNet, (D) SD-UNet, (E) MultiResUNet, (F) DRNet, (G) BCR-UNet, and (H) ground

truths.
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segmentation, U-Net performs poorly in this task because many

peripheral blood vessels are not accurately segmented. Although

Attention U-Net introduces an attention mechanism, it does

not show superiority in this work compared to U-Net. The

performance of SD-UNet is improved due to the introduction

of Dropblock, but limited by the benchmark network itself,

it cannot adapt well to complex vessel trees, especially some

vessel intersection regions. MultiResUNet employs the residual

convolutionmechanism to improve the performance to a certain

extent, and the effect is better than U-Net, but the robustness is

relatively poor, because the performance is only better than SD-

UNet on the DRIVE and STARE datasets. DRNet performs well

on the IOSTAR dataset, confirming that it is more suitable for

segmenting blood vessels in Scanning Laser Ophthalmoscopy

(SLO) retinal images, but fails to preserve enough tiny vessels

on the other three datasets. For our proposed BCR-UNet, the

tiny blood vessels at the vessel terminals can be accurately

segmented on all four datasets, as indicated by the green

arrows. Overall, our BCR-UNet network generally outperforms

other state-of-the-art models because the combination of SDRB,

BConvLSTM modules makes the network more robust and

can effectively preserve tiny vessels at low-contrast vessel-

end regions.

Conclusions

U-Net is a neural network widely used in medical image

segmentation. But for specific tasks such as retinal vessel

segmentation, the original U-Net may not be the most suitable.

Therefore, in this paper, we propose a novel U-shaped network,

Bi-directional ConvLSTM Residual U-Net (BCR-UNet), for

accurate segmentation of blood vessels in retinal images.

In BCR-UNet, we propose a different residual block, which

changes the position of BN and ReLU compared with the

original residual block, and introduces Dropblock to replace

Dropout to better alleviate the overfitting problem. Structued

Dropout Residual Block (SDRB) is designed and is used

as the basic block to build a new U-shaped network. In

addition, we introduced BConvLSTM and applied it to the

skip connection between the first residual block and the last

residual block to improve the discriminative ability of the

network. We evaluate the proposed BCR-UNet on four publicly

available retinal image datasets, which are DRIVE, CHASE

DB1, STARE and IOSTAR. Through ablation experiments, we

verify the effectiveness of each module of BCR-UNet and by

comparing with some other commonly used and state-of-the-art

segmentation models. BCR-UNet has the best performance on

all four datasets, indicating that BCR-UNet achieves the state-

of-the-art performance. In the later research, we will conduct

in-depth research on multi-task learning/cross-domain learning

for solving the small sample problem in the field of medical

image processing.
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