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Background: Computed tomography (CT) is an e�ective way to scan for

lung cancer. The classification of lung nodules in CT screening is completely

doctor dependent, which has drawbacks, including di�culty classifying tiny

nodules, subjectivity, and high false-positive rates. In recent years, deep

convolutional neural networks, a deep learning technology, have been shown

to be e�ective in medical imaging diagnosis. Herein, we propose a deep

convolutional neural network technique (TransUnet) to automatically classify

lung nodules accurately.

Methods: TransUnet consists of three parts: the transformer, the Unet, and

global average pooling (GAP). The transformer encodes discriminative features

via global self-attention modeling on CT image patches. The Unet, which

collects context by constricting route, enables exact lunge nodule localization.

The GAP categorizes CT images, assigning each sample a score. Python was

employed to pre-process all CT images in the LIDI-IDRI, and the obtained

8,474 images (3,259 benign and 5,215 lung nodules) were used to evaluate

the method’s performance.

Results: The accuracies of TransUnet in the training and testing sets were

87.90 and 84.62%. The sensitivity, specificity, and AUC of the proposed

TransUnet on the testing dataset were 70.92, 93.17, and 0.862%, respectively

(0.844–0.879). We also compared TransUnet to three well-known methods,

which outperformed these methods.

Conclusion: The experimental results on LIDI-IDRI demonstrated that the

proposed TransUnet has a great performance in classifying lung nodules and

has a great potential application in diagnosing lung cancer.

KEYWORDS

lung cancer, computed tomography, lung nodules classification, deep convolutional

neural networks, LIDI-IDRI

Introduction

According to the latest statistics, lung cancer remains the leading cause of cancer

death worldwide (18.0% of all cancer deaths) (1, 2). Despite the development in diagnosis

and treatment, approximately 70% of patients are still diagnosed at the advanced stages,

with a 5-year survival rate of only 10 20% (2, 3). Early detection of lung cancer is

associated with a better prognosis, increasing the 5-year survival rate to 57% for localized
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stage disease (4, 5). In recent years, computed tomography (CT)

has been proposed for the early detection of lung cancer to

improve patient survival and extend life expectancy. It has been

shown to reduce mortality by 20-43% and has the advantages of

high spatial resolution, cost-effectiveness, and non-invasiveness

(6, 7).

Traditionally, the classification of lung nodules as benign

or malignant depends entirely on the clinician or radiologist

(8). This pattern has some major disadvantages: (1) it is time-

consuming and labor-intensive; (2) it requires extensive clinical

experience, and even experienced doctors have difficulty in

accurately classifying small nodules; and (3) it is subjective and

difficult to generalize. As a result, developing a method for

the automatic classification of lung nodules is critical. With

recent advancements in the field of medicine, the application

of artificial intelligence may provide the potential to overcome

current obstacles.

Deep learning and machine learning have been able to

attain state-of-the-art performance on various tasks in the

past 10 years (9, 10), including picture classification, objection

detection, and semantic segmentation. In deep learning, deep

convolutional neural networks, also known as DCNNs, have

demonstrated impressive results in image-processing endeavors

(11). Cancer diagnosis using deep learning is also a hot

research topic that can assist the clinician in making the right

decision (12). For example, Shen et al. proposed a multi-scale

convolutional neural network (MCNN) to extract discriminative

features of CT images based on stacked layers for lung nodule

classification (13). This method is based on deep learning

and can automatically learn image features. To improve the

performance of deep learning on an imbalanced dataset, Liang

et al. proposed a filtering step to remove irrelevant images and

reduce the level of imbalance (14). Besides, to improve the

detection accuracy of lung nodules, Anirudh et al. developed a

3D CNN for lung nodule detection that can use weakly labeled

data to train the network (15). The experimental results were

better than the traditional methods.

In contrast to more conventional methods for image

classification, such as SVM, logistics, and decision trees,

which rely on manually constructed features, the feature

extraction process in DCNNs was carried out in a sophisticated

manner, owing to the utilization of convolution layers. In

addition, upsampling and deconvolution operations were used

in most DCNNs to decode the powerful hierarchical feature

representation from raw data. Finally, the Softmax layers were

used to achieve efficient image classification. Thus, it was crucial

to develop a novel DCNNs method to classify the CT image

automatically and achieve an intelligent diagnosis of lung cancer.

In this article, we studied the problem of classifying

pulmonary nodules in CT images as benign or malignant. Our

objective was to develop a method to enhance the precision

of intelligent lung cancer diagnosis. To do this, we proposed a

new DCNNs method, TransUnet, by exploiting the advantages

of deep learning. The TransUnet comprises a transformer that

learns abstract features with larger receptive fields for encoding

feature representations from input CT images. With the global

context modeled in the transformer, a simple decoder called

Unet was used to mine the general features of CT images.

Meanwhile, the global average pooling was introduced to

make a decision, such as whether the lung nodules are benign

or malignant, based on the above feature. Finally, we conducted

experiments on a popular, published lung dataset, LIDI-IDRI, to

verify the effectiveness of the proposed TransUnet. Furthermore,

the findings of the experiments indicate that the suggested

TransUnet system can accomplish high-quality categorization of

lung nodules with an accuracy of 84.62%, a sensitivity of 93.17%,

and a specificity of 70.92%.

Methods

The LIDC-IDRI (https://wiki.cancerimagingarchive.net/

display/public/LIDC-IDRI) dataset from the Lung Image

Database Consortium was used to test the proposed technique

approach. The complex steps of image feature extraction

in a traditional method can be simplified by inputting the

original image.

Data sets

We used the LIDI-IDRI database in this research; it

contained 1,018 patients and is a widely web-accessible resource

for evaluating lung cancer classification methods (16–18).

Multiple clinical thoracic CT scan images and an XML file were

included with each case. The size of the images was 512 × 512

pixels. The XML file details the nodule information, including

each nodule’s location, boundaries, and malignant level. Four

experienced medical professionals contributed this information.

The information about nodules contained in the XML indicates

that the size of nodules ranged anywhere from 3 to 30 mm.

In this study, the location information and the level

of lung nodules were obtained using Python. The code

is published on https://github.com/mikejhuang/LungNo

duleDetectionClassification. In this code, the nodule is classified

as benign or malignant according to its level of malignancy. In

addition, the images obtained from healthy people are removed

from the database. In total, we obtained 8,474 images to evaluate

the performance of the proposed method. Some examples of

vision CT images are shown in Figure 1.

TransUnet

Considering the fact that a nodule is a tiny object in CT

images and the background is complex, we proposed a novel
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FIGURE 1

Schematic diagram of lung nodules.

TransUnet to identify the nodule level as benign or malignant.

TransUnet is based on the transformer and the Unet network. In

addition, the structure of TransUnet, as well as the configuration

settings, are shown in Figure 2. In particular, the transformer is

presented for the purpose of encoding feature representations of

input CT scans. Then, the Unet was used to decode the hidden

feature for outputting the final classification results.

Transformer as encoder

Based on the research by Alexey (19), the first step in the

tokenization process involved reshaping the input into a series

of flattened 2D patches. Each patch was produced by dividing

the CT images used as input into the process. Given a CT

image, x∈ R
H×W×C , in which H and W denote the height and

width of the image, respectively, and C represents the number

of channels. The x was divided into small patch xp that the size

is p×p.

Then, the image patch was mapped into embedding space

using a trainable nonlinear projection. In this step, we learned

about the features of lung nodules by using 10 convolutional

layers that have a powerful ability to abstract the general features

from CT images. By conducting a number of experiments,

we set the convolutional kernel to 2 × 2 and the number

of convolutional kernels to 10. In addition, we used the

Batchnorm2d and ReLU layers to obtain significant image

features. After convolutional layers, a linear projection layer was

used to encode the features for generating embedding features.

The detailed structure is shown in Table 1.

Next, we applied a transformer for encoding feature

representations from decomposed image patches. The

transformer encoder mainly consisted of multi-head self-

attention (MSA) (20, 21) and multilayer perceptron (MLP)

(22) blocks. As shown in Table 2, the MSA is an extension with

multiple independent self-attention operations, and it outputs

the lung nodules featured by the concatenated outputs of each

self-attention. The MLP block with the residual unit was used to

transform the output of MSA. Further, to enhance the learning

efficiency, we added two norm layers (23) at the beginning and

end of the transformer layer. In this study, considering the

computing efficiency, the number of transformer layers was set

to 8. After processing multiple transformer layers, we obtained

the hidden features of CT images.

Unet as decoder

In the stage of decoding the feature, as shown in Table 3,

we introduced the Unet (24), which comprised numerous

upsampling steps to decode the hidden feature and output the

final classification results. The Unet network created a path for

information propagation between low- and high-level features.

The Unet could convert the low-level finer details into high-

level semantic features during the training process. In addition,

the expansive part could augment the feature by applying up-

convolution layers to enlarge the feature maps. The convolution

layers were also used in this process to filter the redundant

features and obtain the important features for classifying the

lung nodules. The up-convolution and convolution operations

are utilized alternately, making it possible to create a promising

network for semantic segmentation. Considering the advantages

of the expansive part of Unet, we used it as our decoder in

TransUnet. The output features of the encoder were taken as the

input features of a decoder. The decoder consisted of four units
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FIGURE 2

The architecture of TransUnet.

for further obtaining general features. In this step, the 2× 2 up-

convolution was used in each unit to halve the number of feature

channels and enlarge feature maps. The 3 × 3 convolutions,

followed by a ReLU, were used to capture the image feature in

enlarged feature maps. Moreover, the BatchNorm was used to

normalize the feature distribution for speeding learning. The

Relu layer was also applied to restrict the feature and obtain the

most highlighted feature. In total, the decoder had 28 layers.

In addition, at each upsampling step, the expansive path was

used to fuse the multiple-level CT features of the images. The

concatenated operation was introduced to fuse the feature map

from the contracting path.

Global average pooling for classification

The global average pooling (GAP) (25) in the last network

was used to map the general feature to the desired number of

TABLE 1 Parameter of nonlinear projection.

Layer Number Output

Conv2d 10 256×8×8

BatchNorm2d

ReLU

classes. The fk(x, y) represented the features obtained by unit k

in the last convolutional layer at spatial location (x,y). Afterward,

the GAP was carried out for unit k by exaggerating the feature

at a different position to classify the CT images. The following

formula can describe this step:

Fk =
∑

x,y

fk(x, y),
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TABLE 2 Parameter of the transformer.

Layer Number Output

MultiHeadAttention 8 64×256

Linear

PositionalEncoding-42

PatchEmbedding-43

LayerNorm-44

Linear-45

Dropout-46

Linear-47

Dropout-49

ResidualAdd-50

LayerNorm-51

Linear-52

GELU-53

Dropout-54

Linear-55

MLP-56

Dropout-57

ResidualAdd-58

Where, the Fk denotes the feature obtained by GAP. The

final step is the computation of the category score by the

Softmax layer, which is dependent on the findings of the GAP. In

particular, the score can be obtained by the following equation:

Sk =
exp(Fk)

∑
k exp(F

k)
,

Where, exp denotes the exponential function. In the case of

k=0, the S0 denotes the score of the CT image is considered

benign. In the case of k=1, the S1 denotes the score of the CT

image to be malignant.

Loss function for the deep neural
network

We applied cross-entropy (26, 27) to optimize and learn the

proposed network parameters. When the network misclassified

annotated regions, the cross-entropy tended to give a significant

penalty, which guided the network to learn more useful and

discriminative patterns. In particular, we trained the proposed

TransUnet by attempting to minimize the cross-entropy loss

function presented below:

L =

∑

k=0,1

log(Sk)

TABLE 3 Parameter of the decoder.

Layer Number Output

ConvTranspose2d-61 4 2×128×128

Conv2d-62

BatchNorm2d-63

ReLU-64

Conv2d-65

BatchNorm2d-66

ReLU-67

Results

Experiment setup

We implemented the proposed method on PyTorch (https://

pytorch.org/), a famous open-source platform for deep learning.

This study had a total of 8,474 lung CT images of lung nodules

acquired from the above LIDI-IDRI. We randomly selected

75% of images (6,355) for training and 25% of images (2,119)

for testing. Among the training cases, there were 2,444 benign

pulmonary nodules and 3,911 malignant pulmonary nodules.

The testing images showed 815 benign pulmonary nodules and

1,304 malignant pulmonary nodules.

We trained our model on a Linux server equipped with

Hygon C86 7185 CPUs, 128GB of RAM, and the Sugon

DCU. The proposed method was trained until the stable loss

was achieved.

Parameter optimization

The learning rate is one of the important parameters for

optimizing deep neural networks. Therefore, we evaluated the

performance of the proposed method with different learning

rates. The initial learning rate was 0.0001, 0.00001, 0.000001, and

was divided by 10 after five epochs decreased using polynomial

decay with a power of 0.9. We can see from Table 4 that our

proposal achieved the highest accuracy when the learning rate

was 0.00001.

The batch size value was also important to the proposed

method’s performance. To analyze the effect of batch size, we

explored the experiment’s various training batch sizes. As shown

in Table 4, our method with 16 batch sizes achieved the best

performance, which significantly outperformed the other batch

size value.

The learning efficiency of the proposed method for great

performance also depends on the optimizer. In the case of

the same other parameters, the optimizer decides the learning

efficiency of the proposed method. As indicated in Table 4, the

accuracy of the proposedmethod was highest when the SGDwas

used to optimize it.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1060798
https://pytorch.org/
https://pytorch.org/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1060798

E�ect evaluation

We employed sensitivity, specificity, accuracy, and AUC

(95% CI) to evaluate the proposed method’s performance

in classifying pulmonary nodules. As shown in Table 5 and

Figure 3, the proposed method achieves 70.92, 93.17, 84.62,

and 0.862% (0.844–0.879) in sensitivity, specificity, accuracy,

and AUC on the testing set, respectively. In addition, the

performance of the proposed method was also evaluated on a

training set based on sensitivity, specificity, accuracy, and AUC,

and the results obtained were 75.05, 95.93, 87.90, and 0.890%

(0.881–0.900), respectively.

Comparison with existing diagnosis
methods

We compared the proposed method with the existing

advanced methods. The experimental results were reported in

the same data set to ensure fairness. The comparison results are

shown in Table 6. Song and his colleagues designed a stacked

TABLE 4 Accuracy and loss value of the proposed method with

di�erent optimized parameters.

Parameter Variation Accuracy

Learning rate 0.001 0.7220

0.0001 0.8202

0.00001 0.7546

Batch size 8 0.7305

16 0.7546

32 0.7697

64 0.7409

Optimizer Adam 0.7773

Adadelta 0.7919

Adagrad 0.8126

SGD 0.8202

autoencoder (SAE), which is a multilayer sparse autoencoder of

a neural network, for the benign and malignant lung nodules

(28). Da Silva et al. (29) proposed a network that consists of three

convolutional layers and three fully connected layers (29). At the

end of each convolutional layer, the ReLu activation was used,

and the dropout layer was introduced before the fully connected

layer to alleviate the overfitting. Finally, a softmax function was

used to classify lung nodules based on the features obtained

by the feature extractor. Besides, Kumar et al. (30) proposed a

CAD system in which the autoencoder with four layers obtained

the feature of images (30). The autoencoder uses a linear or

nonlinear transformation to encode the input data into a latent

space. Then, the proposed method reconstruct the feature by

decoding feature obtained by the decoder.

The proposed method has achieved the best performance

with an accuracy of 84.62%, a sensitivity of 70.92%, and

a specificity of 93.17%. The best performance was obtained

because the proposed method used the transformer unit to mine

potential semantic patterns from multiple image patches. The

performance of the proposed method over the other method

FIGURE 3

The ROC curve of the training set and the testing set.

TABLE 5 Results of the proposed model to distinguish between benign and malignant lung nodules.

Training set Testing set

Benign lung nodules Malignant lung nodules Benign lung nodules Malignant lung nodules

Positive 1834 159 578 89

Negative 610 3752 237 1215

Total 2444 3911 815 1304

Sensitivity (%) 75.04 70.92

Specificity(%) 95.93 93.17

Accuracy(%) 87.90 84.62

AUC (95% CI) 0.890 (0.881–0.900) 0.862 (0.844–0.879)

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1060798
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1060798

TABLE 6 Comparison with existing methods.

Accuracy (%) Sensitivity (%) Specificity (%) References

QingZeng Song 82.59 83.96 81.35 (28)

Da Silva 82.3 79.4 83.8 (29)

Kumar 75.01 83.35 N/A (30)

This work 84.62 70.92 93.17

was significant, with an accuracy and a specificity of at least

2.03% and 9.37%, respectively. For example, compared with the

method proposed by Da Silva et al. (29) the proposed method

increased by ∼2.32 and 9.37% in accuracy and specificity.

Good specificity indicates that malignant lung nodules can be

diagnosed accurately, which may facilitate the early detection of

pulmonary nodules. Finally, based on the comparison results in

Table 6, our model was proven to achieve a state-of-the-art level

and made some progress in pulmonary nodule diagnosis.

Discussion

According to the latest GLOBOCAN 2020 statistics, the

number of new lung cancer cases worldwide in 2020 was

2,206,771, accounting for 11.4% of all malignant tumor

incidences (second only to breast cancer) (2). The number of

lung cancer deaths was 1,796,144, accounting for 18.0% of all

malignant tumor deaths (the top of all cancers) (2). A new report

on the prevalence of malignant tumors in China in 2022 showed

that lung cancer ranked first among cancers in terms of both

incidence and deaths, with approximately 828,000 and 657,000,

respectively (31). Lung cancer is not only a serious threat to the

population’s health but also an urgent public health problem that

increases the burden of the disease (1). Currently, most patients

with lung cancer are diagnosed at an advanced stage, and the 5-

year survival rate is lower than 20%. Promoting early detection

and diagnosis of lung cancer proved to be an effective way to

extend the 5-year survival rate and improve the quality of life of

patients with lung cancer (7, 32–34).

Nowadays, the “gold standard” for lung cancer diagnosis

is a puncture biopsy; however, this is an invasive test and is

not widely available in clinical settings (3). Previous studies

showed that CT effectively increases lung cancer detection rate

and reduces lung cancer mortality (3, 35, 36). For example,

in the early twentifirst century, the National Cancer Institute

initiated the National Lung Screening Trial, a large randomized

controlled study of lung cancer screening that showed that

LDCT screening reduced lung cancer mortality by 20.0% (P =

0.004) and all-cause mortality by 6.7% (P = 0.02) compared

with conventional chest x-ray screening (P = 0.02) (36–38).

However, the classification of lung nodules in CT screening

is entirely doctor dependent, which suffers from demerits,

including time consumption, difficulty accurately classifying

small nodules, being highly subjective, and having high false-

positive rates.

To solve these problems, we proposed a novel TransUnet,

which combines the transformer and the Unet network to

perform the prediction of lung cancer. In a section on parameter

optimization, we reported the experimental results with different

optimization methods, including learning rate, batch size, and

optimizer. The learning rate determines the step for each

optimization. When the learning rate is high, the optimization

process may cause fluctuations, making it difficult to achieve

convergence. However, the small learning rate may lead to

poor results because the models learn data distribution slowly.

As shown in Table 4, our approach, TransUnet, achieved the

best classification results for lung cancer when the learning

rate was set to 0.0001. Besides the learning rate, the batch size

was also an important factor that impacted the classification

performance of TransUnet. An appropriate batch size would

accelerate the convergence speed and improve the classification.

Therefore, we conducted four experiments with different batch

sizes (8, 16, 32, and 64), which aimed to find the right

batch size value. From Table 4, our method had the best

accuracy of 0.7697 when the batch size was set to 32. Finally,

we also analyzed the effect of optimizers and present the

experimental results in Table 4. Usually, we select four popular

optimizers, including Adam, Adadelta, Adagrad, and SGD, to

learn TransUnet on the LIDI-IDRI. These optimizers have

achieved great performance in natural image classification.

Clearly, the SGD leads to a performance boost of 0.76–4.29%

compared to other optimizers.

In addition to studying condition optimization, we also

conducted an experiment to analyze the sensitivity, specificity,

and accuracy. As shown in Table 5, TransUnet can produce

great classification results, achieving 75.04, 95.93, 87.90,

and 0.890% in sensitivity, specificity accuracy, and AUC,

respectively. These experiments demonstrated the effectiveness

of TransUnet. Meanwhile, we compared TransUnet with the

other three classification methods. From Table 6, we can

see that the proposed TransUnet had the highest sensitivity

and accuracy. Although the specificity was not satisfied, the

overall performance of TrasnUnet was better than other
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methods, because the transformer unit used in TransUnet

can extract the general and global features of CT images.

In particular, the transformer treats the CT image as a

sequence of image patches and extracts the discriminative

feature with global self-attention modeling. The global benefit is

to classify the lung nodules as malignant or benign. In addition,

the Unet was used to decode the feature for classification.

The Unet consists of a contracting path to capture context,

which enables precise localization for lung nodules. Finally,

to implement the classification of CT images, we added

the GAP layer to the network to allow each sample to

be associated with a classification score. Benefiting from an

excellent network structure, TransUnet achieved competitive or

superior performance on the testing dataset.

Conclusion

In this study, we developed a novel TransUnet for

differentiating malignant and benign lung nodules. TransUnet

used the transformer to extract nodule features and the Unet

to decode these features. Finally, the global average pooling was

used to differentiate between benign andmalignant lung nodules

with the deep features of CT images. Based on LIDI-IDRI

results, our technique has excellent sensitivity and specificity for

classifying lung nodules, which helps assess lung cancer risk in

the general population.
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