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Access to quality health
resources and environmental
toxins a�ect the relationship
between brain structure and BMI
in a sample of pre and early
adolescents
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Elizabeth R. Sowell2*

1Division of Pediatric Research Administration, Department of Pediatrics, Children’s Hospital Los

Angeles, Los Angeles, CA, United States, 2Division of Neurology, Department of Pediatrics,

Children’s Hospital Los Angeles, Los Angeles, CA, United States

Background: Environmental resources are related to childhood obesity risk

and altered brain development, but whether these relationships are stable or if

they have sustained impact is unknown. Here, we utilized a multidimensional

index of childhood neighborhood conditions to compare the influence of

various social and environmental disparities (SED) on body mass index (BMI)-

brain relationships over a 2-year period in early adolescence.

Methods: Data were gathered the Adolescent Brain Cognitive Development

Study® (n= 2,970, 49.8% female, 69.1%White, no siblings). Structure magnetic

resonance imaging (sMRI), anthropometrics, and demographic information

were collected at baseline (9/10-years-old) and the 2-year-follow-up (11/12-

years-old). Region of interest (ROIs; 68 cortical, 18 subcortical) estimates

of cortical thickness and subcortical volume were extracted from sMRI T1w

images using the Desikan atlas. Residential addresses at baseline were used to

obtain geocoded estimates of SEDs from 3 domains of childhood opportunity

index (COI): healthy environment (COIHE), social/economic (COISE), and

education (COIED). Nested, random-e�ects mixed models were conducted

to evaluate relationships of BMI with (1) ROI ∗ COI[domain] and (2) ROI ∗

COI[domain]
∗ Time. Models controlled for sex, race, ethnicity, puberty, and the

other two COI domains of non-interest, allowing us to estimate the unique

variance explained by each domain and its interaction with ROI and time.

Results: Youth living in areas with lower COISE and COIED scores were heavier

at the 2-year follow-up than baseline and exhibited greater thinning in the

bilateral occipital cortex between visits. Lower COISE scores corresponded

with larger volume of the bilateral caudate and greater BMI at the 2-year

follow-up. COIHE scores showed the greatest associations (n = 20 ROIs) with

brain-BMI relationships: youth living in areas with lower COIHE had thinner

cortices in prefrontal regions and larger volumes of the left pallidum and

Ventral DC. Time did not moderate the COIHE x ROI interaction for any brain
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region during the examined 2-year period. Findingswere independent of family

income (i.e., income-to-needs).

Conclusion: Collectively our findings demonstrate that neighborhood

SEDs for health-promoting resources play a particularly important role

in moderating relationships between brain and BMI in early adolescence

regardless of family-level financial resources.

KEYWORDS

structural MRI, neighborhood deprivation, adolescence, built environment, area

deprivation, pediatric obesity, health policy, structural brain development

Introduction

It is becoming increasingly clear that the social and

built environments in which children live, play, and study

is an important predictor of health outcomes and cognitive

functioning. This combination of social and environmental

resources refers to the social determinants of health (SDOH)

(1). SDOH influence health from several levels: (a) macrosocial

(e.g., sociopolitical, sociocultural); (b) neighborhood resources

(e.g., food environment [e.g., distribution, food deserts,

food insecurity, price]); (c) natural and built environment

infrastructure (e.g., urban design, transportation, land use); (d)

social environment (e.g., poverty, living conditions, remoteness,

eating culture); and (e) individual social/economic level (e.g.,

income, education, race/ethnicity). Combined, each of these

components are proposed to drive greater intake of unhealthy

foods and obesity within communities. Studies have shown

that several of these determinants play a role in optimal child

development starting from conception, as the environment

and its resources have been linked to early life outcomes,

such as low birthweight, preterm delivery, and gestational

problems (2, 3). However, SDOH continue to affect health

throughout the lifespan, with studies showing associations

with other health outcomes, such as childhood obesity (4),

cardiovascular disease risk (5), and brain structure and

cognition (6, 7). Childhood obesity rates have continued

to increase (8), despite prevention and intervention efforts,

suggesting that the mechanisms driving this disease are

poorly understood. Because the risk of obesity starts in

utero (9), and the influence of SDOH on health outcomes

starts at conception (2, 3), there is dire need to understand

how social and environmental resources impact risk and

obesity development.

Traditionally, SDOH have been studied by assessing how

one single attribute in the environment relates to obesity

risk. For example, poverty [e.g., low income (10)], parental

education (11), access to grocery stores, and green spaces (12)

have separately been related to childhood obesity. Although

informative, such isolated analyses via single attributes do not

capture how other conditions may mitigate risks associated

with living in disadvantaged neighborhoods. For example, some

social and environmental factors may serve as protective factors

(e.g., access to education, healthy food choices) and mitigate

the risks of detrimental factors (e.g., poverty). As diseases,

like childhood obesity, are multifactorial (13), there is need to

apply a multifactorial environmental approach to understand

how the environment collectively across numerous domains

influences obesity in consideration of SDOH. Additionally,

many of these single attributes are confounded by racial

and ethnic groups experiencing disparities. Racial and ethnic

minorities are more likely to live in neighborhoods with fewer

resources (14), more likely to earn lower incomes (15), less

likely to obtain higher education (16), and have higher rates

of obesity and other health comorbidities (17). Given these

biases, it is unclear if single-attribute data are sufficient markers

for SDOH.

Multiple SDOH attributes can be assessed by

multidimensional composite scores that are designed to

study social and environmental disparities (SED), such as the

Child Opportunity Index (COI; https://www.diversitydatakids.

org/child-opportunity-index) (18). SED are closely related

to the SDOH, but focus on geocoded, multidimensional

composite scores based on neighborhood-level estimates of

environmental resources that are closely linked to optimal

childhood health. Multidimensional composite scores offer

greater explanatory power and are more accurate assessments

of a community than single attribute measures (19). The

COI is a multidimensional population-level surveillance

tool, and the data are publicly available. It incorporates

multiple neighborhood-level factors that are specific to

healthy child development, such as neighborhood poverty, air

pollution, education access, healthy food store access, and the

number of surrounding green spaces. These neighborhood

factors can be summed into an overall index or treated

separately by domain (e.g., education, health/environmental,

social/economic), ultimately permitting understanding as to
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how neighborhood conditions, which have been shown to

affect child development, are associated with other aspects of

healthy development.

The COI has been used across varying domains to

establish links between SED and child health outcomes like

cardiovascular disease risk (5), hospitalizations for acute

ambulatory care (20), and pediatric acute care (21). Other

broader indices, like the area deprivation index (ADI), have

been used to assess how neighborhood deprivation relates

to childhood obesity (6, 22, 23). However, broad indices

like ADI do not provide insight into how necessary health

resources relate to childhood obesity; for example, the

ADI does not assess other neighborhood factors, such as

grocery store access, air pollution, or educational resources

available to children. Moreover, the ADI was not created

based on neighborhood data that were specific to child

development (e.g., school poverty, early childhood education).

Thus, the goal of this study was to examine how different

aspects of social and environmental resources that are

specifically related to childhood development (e.g., COI;

domains: education, health/environmental, social/economic

resources) are associated with childhood obesity.

Using the COI, we aimed to determine the variance

explained by one domain (e.g., health/environmental) and

its interaction with other factors while accounting for the

variance explained by the other two domains (e.g., education,

social/economic). In doing so, the goal of this study was to

understand the importance of each domain, independently

from the other domains for childhood obesity. For several

reasons, the analyses focused on how SED moderate the

relationship between body mass index (BMI) and structural

brain development during adolescence. First, altered brain

structure has been observed in youth with obesity (24),

suggesting that one reason for overeating is impaired neural

signaling around food choice. Because the brain plays a

key role in food-intake regulation (25), it is imperative to

understand more about the brain-environment relationships

that may continue to escalate obesity risks. Second, SED also

impact brain development, and inadequate resources have

been correlated with altered brain structure as well (7, 26,

27). However, it is not known how each of these domains

may further interact with the brain to influence obesity risk.

Moreover, to our knowledge, no studies have looked at how

multiple environmental factors relate to obesity risk and

brain structure development over time. Therefore, it is not

known whether these associations are stable (e.g., social and

environmental aspects have a general effect that does not worsen

over time) or if they have a sustained impact throughout

development. To address these questions, we utilized data

from the baseline and 2-year follow-up from the Adolescent

Brain Cognitive Development study (ABCD Study R©), a 10-

year longitudinal neuroimaging study in 11,878 American

youth (28).

Methods

Study design

The ABCD Study R© is 10-year, multiple site longitudinal

cohort study being conducted in 11,878 American youth; several

publications have described the goals, design, and assessments

(29–35). The overall goal of this observational cohort study

was to assess development across a range of metrics (e.g.,

brain development, cognition, substance abuse, mental health).

A list of assessments and their collection year can be viewed

at (www.ABCDStudy.org). Recruitment for the study aimed

to reflect the demographic estimates of the United States;

participants were recruited through schools. Recruitment and

design considerations to maximize data collection across various

populations are detailed elsewhere (29). At the start of the ABCD

Study R©, youth were 9–10-years-old, and assessments were

conducted yearly thereafter. The current manuscript presents

data from the 4.0 release and includes anthropometric and

neuroimaging assessments at baseline (ages 9–10-years-old) and

the 2-year follow-up (ages 11–12-years-old). The COI index was

generated using residential history provided by the caregiver

at the baseline assessment. Caregivers and youth provided

written consent and assent. A centralized institutional review

was approved by the University of San Diego.

Exclusion criteria

The larger ABCD Study R© eligibility was generally

inclusive, but some exclusions were applied such as: MRI

contraindications (e.g., non-removable metal implants, dental

appliances), not fluent in English (child only), a history

of major neurological disorders (e.g., current diagnosis of

schizophrenia, mental retardations, autism spectrum disorder

(moderate/severe), pre-maturity at birth <28 weeks and/or

hospitalization at birth >30 days, uncorrected vision, known

alcohol or substance abuse problems. Additional exclusions were

applied to obtain an optimal sample for the present analyses

and hypotheses. Specifically, across any time point (baseline,

two-year follow-up), the exclusion criteria consisted of: (a)

Underweight (according to the Center for Disease Control’s

(CDC’s) age-sex-height-weight-specific growth curves) (36) as

youth who are in this category were removed to avoid inclusion

of those with potential restrictive eating or medical issues to

make them underweight; (b) medications known to alter food

intake (e.g., antipsychotics, insulin); (c) caregiver report of

neurological, psychiatric, or learning disabilities; (d) they met

diagnostic criteria for eating disorders (e.g., anorexia, binge

eating disorder) as assessed by the caregiver-reported Kiddie

Schedule for Affective Disorders and Schizophrenia (37); (e)

mislabeled sex-assigned at birth and/or mismatched sex-specific

pubertal questionnaires or transgender youth so that there

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1061049
http://www.ABCDStudy.org
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Adise et al. 10.3389/fpubh.2022.1061049

were no inconsistencies in any sex-specific effects on brain

structure; (f) height measurement error (e.g., height at year 2

less than height at baseline); (g) missing income data; (h) invalid

residential address (necessary for geocoded metrics); (i) failed

FreeSurfer segmentation; (j) failed T1-weighted image quality

control; and/or (k) missing ROI or covariate tabulated data

from the National Institutes of Mental Health Data Archives.

Siblings were excluded to avoid issues with independence. The

final sample consisted of 2,749 youth (Table 1).

Anthropometrics

A trained researcher measured the youth’s height (nearest

0.1 in/0.25 cm) and weight (nearest 0.1 lb/0.045 kg) twice, but

a third measurement was collected in cases of discrepancy. The

closest two measurements were averaged and converted into

BMI (kg/m2) and BMI percentiles according to the CDC’s sex-

age-height-weight specific growth charts (36). Given the biases

surrounding z-score and percentiles (38, 39), these are provided

only for clinical interpretations while BMI was used in the

statistical analyses.

Pubertal assessment

Both the youth and caregiver completed sex-specific puberty

questionnaires. Responses were converted into Tanner stages (1

= Pre-pubertal, 2 = Early puberty; 3 = Mid puberty; 4 = Late

puberty; 5 = Post-pubertal), and caregiver and youth reports

were averaged.

Demographic assessments

Race, ethnicity, date of birth, education, household income

and sex at birth were reported by the attending caregiver.

Caregiver reported race had 22 options, which were collapsed

into six groups: White; Black; Asian; American Indian, Alaskan

Native/Native Hawaiian, Pacific Islander; Other; multi-race.

Caregiver reported ethnicity was assessed with two options:

Hispanic or Non-Hispanic. Age at each visit was recorded in

months. There were 29 responses for household education levels,

which were collapsed into five groups: <High school (HS; <13

years), HS/Generalized Education Diploma (∼13 years), Some

college (<2 years post HS), 4 year degree (Bachelor’s degree post

HS), Postgraduate education (>4 years post HS). There were

10 responses for household income: (a) <$5,000; (b) $5,000 –

$11,999; (c) $12,000-$15,999; (d) $16,000-$24,999; (e) $25,00-

$34,999; (f) $35,000-$49,999; (g) $50,000-$74,999; (h) $75,000-

$99,999; (i) $100,000–$199,999; (j) >$20,000. There were also

options for (a) don’t know or (b) refuse to answer. However,

data with responses that included “I don’t know” or “Refuse to

answer” were omitted.

Income-to-needs

Income-to-needs was calculated as the ratio between

the total household income and the poverty rate per

household size. Poverty rates were calculated according to

the 2017 Department of Health and Human Services’ report

of poverty level (40). The 2017 report was used because

baseline assessments for the ABCD Study R© were conducted

between 2016 and 2018.

Child opportunity index

The COI is an index of neighborhood resource availability

that is beneficial for healthy child development (18). An

overall composite score is computed based on 29 neighborhood

indicators that have clinical relevance. Each indicator had an

individual weight that was based on how strongly the indicator

predict health and economic outcomes. Domain scores were

combined using individually weighted indicators where the

weights reflected the strength of the association between each

indicator and its health and socioeconomic outcome. COI

composite scores were calculated by the data analytics and

informatics resource core (DAIRC) of the ABCD Study R© in

R (https://github.com/ABCD-STUDY/geocoding/blob/master/

Gen_data_proc.R) (41).

The geocoded data used to create the COI provides

information for almost all United States neighborhoods

(∼72,000 census tracts from 2010 and 2015). For each census

track neighborhood, a composite score is computed separately

for three domains: education (COIED), health/environmental

(COIHE), and social/economic (COISE). The COIED domain

reflects the quality and access to early childhood education,

quality of schools, and resources related to academic

achievement. The COIHE domain reflect the number of

features of the healthy environment, such as access to

green spaces and healthy foods, as well as environmental

toxicant exposure. The COISE domain comprises metrics

geared at assessing access to employment as well as

neighborhood social/economic resources. Scores on each

of these domains range from 1 (lowest) to 100 (highest);

lower composite scores indicate fewer available resources.

Domain composite scores were transformed to a z-score

to compare neighborhoods and features over time. In

addition, these z-scores were adjusted to reflect national

norms (18). The nationally normed, raw score across all

domains [range 1–100 units (U)] was transformed into 5

categories to contextualize the relative level of opportunities

in the neighborhood: very low (<20U), low (≥20–<40U),

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1061049
https://github.com/ABCD-STUDY/geocoding/blob/master/Gen_data_proc.R
https://github.com/ABCD-STUDY/geocoding/blob/master/Gen_data_proc.R
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Adise et al. 10.3389/fpubh.2022.1061049

TABLE 1 Participant characteristics.

Subsample Entire ABCD study R© cohort

Variable Mean SD Mean SD p

Age

Baseline 118.9 7.4 119 7.5 0.699

Y2 142.9 7.6 143.8 7.9 <0.001

Puberty

Baseline 2 0.8 2 0.8 0.372

Y2 2.7 1.0 2.7 1 0.067

BMI

Baseline 19 3.7 19.4 41.7 0.421

Y2 21 4.6 21.5 50.3 0.533

Income to needs ratio 3.9 2.4 3.6 2.4 <0.001

n % n %

Sex

Male 1,381 50.2 4,812 52.7 0.047

Female 1,368 49.8 4,316 47.3

Race

White 1,944 70.7 5,581 62.3 <0.001

Black 298 10.8 1,572 17.5

Asian 64 2.3 211 2.4

AIAN/NHPI 25 0.9 53 0.6

Other 116 4.2 409 4.6

Multi-race 302 11 1,132 12.6

Ethnicity

Hispanic 525 19.1 1,886 21 0.032

Non-Hispanic 2,224 80.9 7,090 79

Caregiver report of education

<HS 74 2.7 295 3.2 <0.001

HS/GED 177 6.4 494 5.4

Some college 644 23.4 903 9.9

BA degree 749 27.2 2,334 25.6

Postgraduate degree 1,105 40.2 2,220 24.3

Baseline weight class

Healthy weight 1,849 67.3 5,753 63 <0.001

Overweight 462 16.8 1,340 14.7

Obese 438 15.9 1,554 17

Y2 weight class

Healthy weight 1,716 64.1 3,058 39.9 <0.001

Overweight 482 17.5 735 9.6

Obese 506 18.4 875 11.4

Baseline was assessed when the youth were 9–10-years-old. Y2, two-year follow up; BMI, Body mass index; AIAN/NHPI, American Indian, Alaskan Native/Native Hawaiian, and Pacific

Islanders; HS, high school; GED, Generalized education diploma; BA, Bachelor’s degree; SD, standard deviation. P-values were generated from t-tests and chi-square analyses were

appropriate. Education data were gathered from the baseline assessment.

moderate (≥40–<60U), high (≥60–<80U), and very high

(≥80U) opportunities (14). In this instance, national norms

are constructed by raking all neighborhoods nationwide and

diving them into five groups, each containing 20% of the

child population.

Neuroimaging acquisition and processing

The ABCD Study R© collected T1- and T2-weighted MRI,

diffusion tensor imaging, resting state MRI, and three functional

MRI scans at baseline and the 2-year follow-up. The current
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manuscript only includes the T1-weighted structural, imaging

acquisition. The ABCD Study R© DAIRC was responsible for

MRI data preprocessing and analyses. These methods are

published elsewhere (35, 42) but described in brief here: After

preprocessing, cortical data were surface projected and then

parcellated with Freesurfer using the Desikan Atlas (42), which

consists of 68 regions of interest (ROIs). Subcortical data were

parcellated from the volumetric data. ROI estimates (e.g., mean

cortical thinning, total graymatter volumes) weremade available

through the tabulated data release. ROI estimates were averaged

across hemispheres (e.g., left, right), for a total of 34 cortical

and 8 subcortical ROI estimates. Across the 21-sites, data were

collected using 29 scanners, as some sites had multiple MRI

acquisition centers. The ABCD Study R© Release Notes provide

recommended inclusion criteria calculated by the DAIRC for

the user to apply (e.g., T1-weighted image passed quality control

assessment: 0= no, 1= yes).

Linear mixed-e�ects modeling

Data were preprocessed in Python and mixed effects were

conduted using the pymer4 package (43). Prior to analyses, data

went through minimal preprocessing: (a) the top and bottom

5% of data were winsorized to restrict outliers in the ROI-

level data; (b) continuous data were standardized to compare

variables with different scales and for interaction interpretation.

Next, multicollinearity was assessed using a variance inflation

factor. After these preprocessing steps, linear mixed effects

analyses were conducted. The dependent variable was BMI. The

independent variable consisted of the COI domain of interest:

(a) COIED, (b) COIHE, or (c) COISE. Three-way (e.g., Brain ∗

COI ∗ Time) and two-way (e.g., Brain ∗ COI) interactions were

included for each of the three domains in separate models. The

models were covaried for Youth sex, Youth’s caregiver reported

race, Youth’s caregiver reported ethnicity, puberty, time (e.g.,

baseline, two-year follow-up visit), income-to-needs ratio, and

the two other COI domains of no interest. For example, if

the primary independent variable was the COIED, main effects

were also modeled for COIHE and COISE (i.e., COI domains

of no interest) to account for variance explained by these other

domains. Covarying for the other COI domains allowed us to

examine the unique variance of each domain while accounting

for the others, but the aforementioned interactions in each

model were included for that model’s COI domain of interest.

Additionally, the model included a random intercept for

MRI scanner serial number (n = 29, to account for the number

of scanners across the 21 sites), and a random slope for subject.

Factors were specified using effects coding. Of importance, our

analyses controlled for family-specific income-to-needs ratio,

which allowed for us to examine the relationship between

neighborhood economics (COI) statistically independent from

family economics (income-to-needs). The Benjamini-Hochberg

approach (44) was used to correct for multiple comparisons

for each brain measure separately (e.g., cortical thickness,

subcortical volume). Correction was applied to only interaction

terms of interest: (a) Brain ∗ COI and (b) Brain ∗ COI ∗ Time.

Thus, the correction for cortical data resulted in 136 corrections,

while the subcortical data had 28 corrections.

MODEL :BMI ∼ Brain ∗ COI1 + Brain ∗ COI1 ∗ Time

+ sex + puberty + race + ethnicity

+ COI2 + COI3 + (1| scanner/subject).

Further, our models included factor terms for youth’s

caregiver reported race and ethnicity because youth from

these families have been shown to be more likely to live in

deprived neighborhoods (14), in that COI, as a geocoded metric,

may be skewed by historical marginalization and inequalities

across neighborhoods; thus, inclusion of self-reported race and

ethnicity is often included as factors in health disparity and

geocoded analyses [see Acevedo-Garcia et al. (14), Noelke et al.

(45), and Slopen et al. (46)]. Thus, we also chose to control for

youth’s caregiver-reported race and ethnicity in the models to

accounts for historical issues surrounding race and ethnicity and

resource deprivation as well as differences in disparities across

race and ethnicity that exist in body composition (whether due

to environmental, societal, and/or cultural factors differences)

(47). However, because this paper was not specifically focused

on evaluating potential differences across different races and

ethnicities, we did not (and encourage readers to not) interpret

such results. Further, in line with best practices (48), our model

also included other measures that touch on SDOH and SED,

such as income-to-needs and caregiver education. Accordingly,

by including all these metrics in the model, we aimed to remove

within-family variance that may influence our primary outcome

(e.g., BMI). A larger and continued discussion of this is included

in the limitations section at the end of the manuscript.

Results

Demographics

The sample included in the analyses consisted of 2,749 youth

(Table 1). The mean age at baseline was 118.9 months± 7.4 and

142.9 months± 7.6 at the 2-year follow-up. The sample was 50%

male (n=1,381), 70% caregiver reported White, 19.1% caregiver

reported Hispanic, and 67.4% of youth had caregivers with an

education of at least a Bachelor’s Degree or higher. The parent-

reported demographics of the youth included in the sample

was similar to the larger dataset. Estimates of healthy weight,

overweight and obesity were similar to national estimates in the

USA (49).
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Distribution of the COI across
participants

The distribution of each COI domain and income-to-

needs are presented in Figure 1. Across all COI domains

and with respect to national norms, 10.8% of youth lived

in very low opportunity neighborhoods (<20U), 12.1% lived

in low opportunity neighborhoods (≥20–<40U), 14.8% lived

in moderate opportunity neighborhoods (≥40–<60U), 25.0%

lived in high opportunity neighborhoods (≥60–<80), and 37.3%

lived in very high opportunity neighborhoods (≥80U). Youth

included in the analyzes had slightly higher opportunities across

all domains than the larger ABCD Study R© sample (Table 2).

Although we chose not to focus on self-reported racial and

ethnic disparities and resource access, we have provided a visual

representation of how these metrics relate to resources within

the neighborhood by race (Supplementary Figure 1), which

shows the distribution of resources across each domain by self-

reported race and ethnicity; although youth from self-reported

racial minorities were more likely to live in neighborhoods with

fewer resources, resource disparity is observed across all self-

reported races and ethnicities. Moreover, the ABCD Study R©

sample was large enough to be able to adequately account for

these differences. Thus, Figure 1 is purely displayed for the

reader to understand how disparities affect communities rather

than for interpretation that can lead to racist misinformation

and misinterpretation.

Brain ∗ COI∗ Time e�ects

COIED
There were three-way interactions on BMI between the

brain, COIED, and time in the bilateral lateral occipital cortices

[Left: F(1,1,039.1) = 15.1, p < 0.001; Right: (F(1,1,063.4) =

14.9, p < 0.001), Figure 2A, Table 3]. Although the overall

pattern suggests that youth with access to fewer quality

educational resources have greater BMI’s and thinner cortices,

this relationship was stronger at the 2-year follow-up. That

is, at the 2-year follow-up, youth with access to fewer quality

educational resources showed even greater negative associations

between increased BMI and decreased cortical thickness in

the bilateral occipital cortex. Visual representations for the

interactions for the two largest effects are presented in Figure 3A.

These interaction effects were independent of Youth sex, Youth

ethnicity, Youth race, puberty, income-to-needs, time (e.g.,

baseline, 2-year follow-up), COIHE and COISE resources of

the neighborhood.

COIHE
There were no three-way interactions observed (Brain ∗

COIHE
∗ Time on BMI) (Figure 2B).

COISE
There were three-way interactions (i.e., Brain ∗ COISE

∗

Time) on BMI for cortical thinning of the bilateral lateral

occipital cortex [Left: F(1,964.6) = 17.2, p < 0.001; Right:

(F(1,1,048.8) = 15.5, p < 0.001)] and subcortical volume of

the bilateral caudate [Left: F(1,900.7) = 10.5, p = 0.001;

Right: (F(1,895.6) = 9.2, p = 0.002), Figure 2C, Table 3].

When compared to baseline, youth with access to fewer

COISE resources showed steeper negative relationships between

greater BMI and cortical thinning by the 2-year follow-

up. Visualizations for the two most statistically significant

three-way interactions are displayed in Figure 3B. These

interaction effects were independent of Youth sex, Youth

race, Youth ethnicity, puberty, income-to-needs, time (e.g.,

baseline, 2-year follow-up), and COIHE and COIED resources of

the neighborhood.

Brain ∗ COI e�ects

COIED
Regardless of time, a child’s access to quality education

in the neighborhood (e.g., COIED, access to early childhood

education, quality of schools, resources allotted to academic

achievement) moderated the strength of the relationship

between BMI and cortical thickness in five regions (Figure 4A,

Table 4). Specifically, children with access to fewer quality

education resources in their neighborhood (lower COIED) and

who had greater BMI also had thinner cortices of the right

medial orbitofrontal cortex [F(1,2,538.1) = 15.6, p < 0.001],

middle frontal gyrus [F(1,2,766.5) = 14.5, p < 0.001], superior

frontal gyrus [F(1,3,406.2) = 12.6, p < 0.001], and the bilateral

temporal pole [Left: F(1,2,370.2) = 11.4, p < 0.001; Right:

(F(1,2,084.6) = 11.4, p < 0.001)]. Visual representations for the

interactions for the two largest moderation effects are presented

in Figure 5A. These moderation effects (e.g., COI∗EDBrain on

BMI) were independent of Youth sex, Youth race, Youth

ethnicity, puberty, income-to-needs, time (e.g., baseline, 2-year

follow-up), and the child’s access to COIHE and COISE resources

of the neighborhood.

COIHE
Independent of time, BMI was significantly moderated by

COIHE (e.g., access to resources such as healthy food stores,

green spaces, walkability; Figure 4B) in 18 cortical and 2

subcortical brain regions. COIHE showed the largest moderating

effects on BMI with cortical thickness in the right rostral

middle frontal [F(1,2,513.4) = 28.2, p < 0.001], superior frontal

[F(1,2,749.7) = 25.6, p < 0.001], medial orbitofrontal [F(1,1,892.3)
= 19.8, p < 0.001], and posterior cingulate [F(1,2,460.1) = 17.9,

p < 0.001], and the left superior frontal gyrus [F(1,2,789.5) =

17.0, p < 0.001]. A list of all brain regions (and the betas
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FIGURE 1

Distributions for each COI domain (nationally normed and z-score transformed) and income-to-needs ratio (INR). For (A–D) density (i.e.,

probability generated from the Kernel Density Estimation) is plotted on the y-axis. The red line represents a smoothed distribution. (E) The

overall COI score binned by income-to-needs ratio to represent how many youth were below or above the poverty line. ED, education domain;

HE, health/environmental domain; SE, social/economics domain.

TABLE 2 Child opportunity index (COI) scores.

Sample included in the analyses Entire ABCD Study R© cohort

COI Mean SD Mean SD p

COIED 63.1 28.3 59.3 30.2 <0.001

COIHE 60.9 29.2 57.6 30.4 <0.001

COISE 62.5 28.9 58.1 31.3 <0.001

Overall COI opportunity 63.4 28.8 58.9 31.3 <0.001

n % n %

Overall COI opportunity

level

Very low 352 12.8 1,466 18.2 <0.001

Low 294 10.7 998 12.4

Moderate 417 15.2 1,109 13.8

High 797 25.7 1,827 22.7

Very high 979 35.6 2,636 32.8

Mean and standard deviation (SD) are reported for each Child Opportunity Index (COI) domain. Overall opportunity by level is provided for a contextual reference and interpretation.

P-values correspond to t-tests and chi-square analyses where appropriate. ED, education domain; HE, health/environmental domain; SE, social/economics domain.
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FIGURE 2

(A–C) Visualization of the brain regions that showed significant three-way interactions with each Child Opportunity Index (COI) domain of

interest by time (e.g., baseline, 2-year follow-up), controlling for the other two COI domains of no interest, income-to-needs, sex, puberty, race,

and ethnicity. The color bar corresponds to the regression coe�cients from the mixed models. There are no e�ects in (B) but the brain template

is reported for ease of comparison. ED, education domain; HE, health/environmental domain; SE, social/economics domain.

FIGURE 3

(A,B) Visualization of the three-way interactions between the brain, each Child Opportunity Index (COI) domain of interest, and time (e.g., visit

number [baseline, year-two follow-up]), controlling for the other two COI domains of no interest, income-to-needs, sex, puberty, race, and

ethnicity. The top two Brain * COI * Time interactions are plotted for each domain. The y-axis presents the body mass index (BMI) predicted fits

from the regression. (A) COIED; (B) COISE. Low (blue), medium (orange), and high (green) correspond to the values of each COI at −1 standard

deviation (SD) below the mean, at the mean, and 1 SD above the mean. Fit lines indicate the regression fit with a 95% confidence interval.

Individual points (i.e., subjects) are represented by the dots for each color. Lower values of each COI indicate that there were fewer resources in

the area. RH, right hemisphere; LH, left hemisphere.

from the interaction term) that were moderated by COIHE are

presented in Table 4. The overall pattern suggested that youth

with access to fewer health/environmental (i.e., lower COIHE)

opportunities had greater BMIs, thinner cortices across time

points, and larger subcortical volumes. Visual representations

for the interactions for the two largest moderation effects

(e.g., rostral middle frontal, superior frontal) are presented in

Figure 3B. These moderation effects (e.g., COI∗HEBrain on BMI)

were independent of Youth sex, Youth race, Youth ethnicity,

puberty, income-to-needs, time (e.g., baseline, 2-year follow-

up), and the child’s access to COIED and COISE resources in

the neighborhood.

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1061049
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Adise et al. 10.3389/fpubh.2022.1061049

TABLE 3 Brain regions that showed three-way interactions with each domain of the child opportunity index (COI).

ROI F p Beta 95% CI

COIED

Cortical thickness

Lateral occipital LH 14.87 0.0***a −0.261 [−0.394,−0.128]

Lateral occipital RH 15.11 0.0***a −0.263 [−0.396,−0.131]

COISE

Cortical thickness

Lateral occipital LH 15.48 0.0***a −0.266 [−0.399,−0.134]

Lateral occipital RH 17.21 0.0***a −0.275 [−0.405,−0.145]

Subcortical volume

Caudate LH 9.27 0.002**a −0.188 [−0.309,−0.067]

Caudate RH 10.84 0.001***a −0.202 [−0.323,−0.082]

Regions of interest (ROIs) were corrected separately for each modality (e.g., cortical thickness, subcortical volume) and accounted for the number of tests conducted (e.g., two-way and

three-way interactions). Total corrections for cortical ROIs = 136 Total corrections for subcortical ROIs = 32. LH, left hemisphere; RH, right hemisphere. ***p < 0.001; **p < 0.01;
aBenjamini-Hochberg FDR corrected. ED, education domain; HE, health/environmental domain; SE, social/economics domain.

FIGURE 4

(A–C) Visualization of the brain regions that showed significant two-way interactions with each Child Opportunity Index (COI) domain of

interest, controlling for the other two COI domains of no interest, income-to-needs, sex, puberty, race, ethnicity, and time (e.g., visit number

[baseline, year-two follow-up]). The color bar corresponds to the beta weight from the mixed models. (D) Highlights the brain regions that

showed unique associations per COI model that were not associated with another COI domain. SE, social/economic; HE, health/environmental;

ED, education. The blue box highlights the region that was unique to the education domain. The color bar for (A–C), corresponds to the

regression coe�cients.

COISE
Regardless of time, a child’s access to social/economic

(COISE) resources in the neighborhood moderated the strength

of the relationship between BMI and cortical thickness in the

right rostral middle frontal gyrus [F(1,3,079.3) = 14.6, p < 0.001]

and subcortical volume of the left caudate [F(1,4,705.2) = 8.1, p=

0.004], pallidum [F(1,3,353.7) = 15.7, p < 0.001], and ventral DC

[F(1,3,700.9) = 12.2, p < 0.001, Figure 4C]. Cortically, youth with

lower COISE resources showed a steeper negative relationship

between greater BMI and thinner cortices, when compared to

youth with medium and higher levels of COISE. Subcortically,

youth with access to fewer COISE resources had larger left

hemisphere subcortical volumes of the caudate, pallidum, and

ventral DC. Figure 5C shows visual representations of these

interactions for the two largest effects of which were 1 cortical

(e.g., right rostral middle frontal) and 1 subcortical region

(right pallidum). These effects were independent of Youth sex,

Youth race, Youth ethnicity, puberty, income-to-needs, time

(e.g., baseline, 2-year follow-up), and the child’s access to COIHE

and COIED resources in the neighborhood.
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FIGURE 5

(A–C) Visualization of the two-way interactions between the brain and each Child Opportunity Index (COI) domain of interest, while controlling

for the other two COI domains of no interest, as well as income-to-needs, sex, puberty, race, ethnicity, and time (e.g., visit number [baseline,

year-two follow-up]). The top two Brain * COI interactions are plotted for each domain. The y-axis presents the body mass index (BMI)

predicted fits from the regression. (A) education [ED]; (B) health/environmental [HE]; (C) social/economics [SE]. Low (blue), medium (orange),

and high (green) correspond to the values of each COI at −1 standard deviation (SD) below the mean, at the mean, and 1 SD above the mean. Fit

lines indicate the regression fit with a 95% confidence interval. Individual dots represent individual subjects collapsed over time. Lower values of

each COI indicate that there were fewer resources in the area. RH, right.

Brain regions with non-overlapping
interactions

There were some brain regions that showed non-

overlapping two-way interactions with each of the COI

domains (Figure 4D). In other words, these brain regions only

showed significant associations with one specific COI domain

and not the other two. The association between BMI and right

temporal pole cortical thickness was significantly moderated

by COIED but not COIHE nor COISE. Brain regions with

significant two-way interactions unique to COIHE consisted of

the right superior frontal, fusiform, pars triangularis, rostral

anterior cingulate and middle frontal, paracentral, lingual,

inferior temporal gyri, and left precuneus, rostral middle

frontal, isthmus cingulate, and frontal pole gyri. The subcortical

volume of the left caudate was the only region that was

significantly moderated by COISE but not COIHE nor COIED.

Discussion

Although single attributes of SEDs are related to obesity risk

and brain development (4, 6, 7, 10, 11, 27, 50), no studies have
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TABLE 4 Brain regions that showed two-way interactions with each domain of the child opportunity index (COI).

ROI F p Beta 95% CI

COIED

Cortical thickness

Medial orbitofrontal RH 15.63 0.000***a 0.262 [0.168, 0.356]

Rostral middle frontal RH 14.46 0.000***a 0.284 [0.192, 0.375]

Superior frontal RH 12.65 0.000***a 0.24 [0.145, 0.335]

Temporal pole LH 11.33 0.001***a 0.239 [0.146, 0.332]

Temporal pole RH 11.41 0.001***a 0.24 [0.148, 0.331]

COIHE

Cortical thickness

Frontal pole LH 7.67 0.006**a 0.122 [0.032, 0.212]

Fusiform RH 15.43 0.000***a 0.195 [0.098, 0.292]

Inferior temporal RH 8.29 0.004**a 0.187 [0.084, 0.289]

Isthmus cingulate LH 10.39 0.001***a 0.214 [0.115, 0.313]

Isthmus cingulate RH 8.52 0.004**a 0.184 [0.087, 0.281]

Lingual RH 9.74 0.002**a 0.213 [0.115, 0.311]

Medial orbitofrontal RH 19.82 0.000***a 0.236 [0.146, 0.327]

Paracentral RH 10.9 0.001***a 0.195 [0.104, 0.285]

Pars triangularis RH 13.73 0.000***a 0.223 [0.126, 0.321]

Posterior cingulate RH 17.93 0.000***a 0.268 [0.172, 0.364]

Precuneus LH 11.9 0.001***a 0.224 [0.13, 0.318]

Precuneus RH 11.04 0.001***a 0.199 [0.105, 0.293]

Rostral anterior cingulate RH 11.71 0.001***a 0.232 [0.14, 0.324]

Rostral middle frontal LH 10.96 0.001***a 0.164 [0.066, 0.263]

Rostral middle frontal RH 28.14 0.000***a 0.307 [0.213, 0.4]

Superior frontal LH 16.99 0.000***a 0.176 [0.079, 0.274]

Superior frontal RH 25.64 0.000***a 0.258 [0.164, 0.352]

Temporal pole LH 11.73 0.001***a 0.192 [0.103, 0.28]

Subcortical volume

Pallidum LH 13.09 0.000***a −0.188 [−0.281,−0.094]

Ventral DC LH 9.76 0.002**a −0.15 [−0.252,−0.049]

COISE

Cortical thickness

Medial orbitofrontal RH 8.18 0.004** 0.199 [0.103, 0.294]

Rostral middle frontal RH 14.56 0.000***a 0.282 [0.187, 0.378]

Subcortical volume

Caudate LH 8.08 0.004**a −0.079 [−0.181, 0.024]

Pallidum LH 15.73 0.000***a −0.198 [−0.295,−0.1]

Ventral DC LH 12.15 0.000***a −0.134 [−0.238,−0.031]

Regions of interest (ROIs) were corrected separately for each modality (e.g., cortical thickness, subcortical volume) and accounted for the number of tests conducted (e.g., two-way and

three-way interactions). Total corrections for cortical ROIs = 136 Total corrections for subcortical ROIs = 32. LH, left hemisphere; RH, right hemisphere; COI, child opportunity index;

HE, health/environmental, ED, education; SE, social/economics. ***p < 0.001; **p < 0.01, aBenjamini-Hochberg FDR corrected.

considered howmultidimensional attributes of the environment

may explain these relationships, especially within a longitudinal

framework. The current study highlights the influence of

3 child-specific environmental resources (e.g., education,

healthy/environmental, economics) (18) on the relationship

between BMI and brain development during a 2-year period

in adolescence. Our results demonstrate that social/economic

and educational resources in the community may contribute to

unhealthy weight gain trajectories independently from financial

resources within the family (e.g., income-to-needs), and that

these weight changes may, in turn, marginally affect brain

structure over a 2-year period in adolescence. COIHE largely

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1061049
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Adise et al. 10.3389/fpubh.2022.1061049

moderated the associations between the brain and BMI, but

these relationships were relatively stable, meaning that there

were no changes over time. This suggests that access to

health/environmental resources in the community play a large

role in explaining the relationship between the brain and BMI,

but, in the age range of youth studied here, they do not continue

to contribute to unhealthy weight gain trajectories and greater

brain alterations during pre/early adolescence. Importantly,

given the number of brain regions associated with COIHE

relative to the other two, these specific environmental resources

may have a larger influence on BMI and brain relationships

than access to quality COISE and COIED resources. This finding

is important from a public policy standpoint because this

suggests that access to health promoting resources and less

environmental toxicity (components measured by COIHE) may

be important areas to target to decrease obesity rates in deprived

neighborhoods. All findings were independent of the amount of

money available to the family (e.g., income-to-needs, Figure 1E),

which further highlights the importance of the opportunities

available in the neighborhood environment for child health

outcomes, like obesity.

For several reasons, the analyses focused on how SED

moderate the relationship between body mass index (BMI)

and structural brain development during adolescence. First,

altered brain structure has been observed in youth with obesity

(24), suggesting that one reason for overeating is impaired

neural signaling around food choice. Because the brain plays

a key role in food-intake regulation (25), it is imperative to

understand more about the brain-environment relationships

that may continue to escalate obesity risks. Second, SED also

impact brain development, and inadequate resources have been

correlated with altered brain structure as well (7, 26, 27).

However, it is not known how each of these domainsmay further

interact with the brain to influence obesity risk. Moreover,

to our knowledge, no studies have looked at how multiple

environmental factors relate to obesity risk and brain structure

development over time. Therefore, it is not knownwhether these

associations are stable (e.g., social and environmental aspects

have a general effect that does not worsen over time) or if they

have a sustained impact throughout development. To address

these questions, we utilized data from the baseline and 2-year

follow-up from the Adolescent Brain Cognitive Development

study (ABCD Study R©), a 10-year longitudinal neuroimaging

study in 11,878 American youth (28).

Independent of income within the family, youth with lower

COISE (lower socioeconomic resources) were even heavier at the

2-year follow-up then they were at baseline, and this increase

in BMI corresponded to greater subcortical volume of the

caudate nucleus bilaterally. The COISE focuses on assessing

amenities in the neighborhood, like access to parks, after school

recreational activities and more medical and community service

providers (18), which may have protective affects against obesity

maintenance and acceleration. Thus, a lack of access to these

resources could have implications for weight gain, which could

be one reason to explain the longitudinal associations between

unhealthy weight gain trajectories and altered caudate structure.

The caudate has been implicated in how the brain responds

to food rewards, obesity, and weight gain in youth and adults

(51–53), suggesting that heightened reward responses may cause

individuals with obesity to overeat. In our study, it may be that a

lack of social/economic resources in the environment facilitate

continued weight gain, and that weight gain itself caused

structural changes in the brain in the caudate (a reward region)

that facilitate overeating. This is in line with other studies using

the ABCD Study R© data showing that neighborhood resources

are related to weight gain (23) and, that weight gain is associated

with changes in brain structure (54, 55). Others postulate

that social/economic resource advocacy may play a role in

determining how much funding is available for neighborhoods

(56), while other studies suggests that decreased social/economic

neighborhood resources are detrimental to healthy development

of children and adolescents (57), that have long-lasting

(and even lifetime) effects (58). Thus, providing additional

social/economic resources to disadvantaged communities may

help to negate continuous weight gain during adolescence.

However, future studies are needed to examine how these

resources may lessen the impacts of weight gain over time.

Importantly, our finding that the higher BMI corresponded

with increased caudate volume is in contrast to studies showing

that caudate volume decreases with pubertal acceleration (59)

and aging (60–62). Caudate volume increases during childhood

(62), but then declines during the later stages of puberty (e.g.,

Tanner staging 4–5) (63), which occurs later for males (62,

63). Thus, in our study, increases in volume of the caudate

could be due to acceleration of pubertal development as youth

with obesity who undergo pubertal changes at an earlier age

than those of a healthy weight (64), but the directionality of

these effects remain controversial (e.g., does obesity cause early

puberty, or does early puberty increase obesity). However, it

could be that obesity disrupts normal developmental trajectories

as studies have shown that youth and adults with obesity have

larger subcortical volumes (24, 65) and greater impulsivity

(66) which may drive greater food intake. Other studies have

noticed increases in caudate volume following electroconvulsive

treatment of depression of adults with normal weight and

obesity (67) and in treatment studies with anorexia (68). Yet,

the mechanisms driving increased caudate volume are not clear,

as not all studies show an association with obesity and increased

caudate volume. To our knowledge, besides our study, no studies

have examined how unhealthy weight gain trajectories alter

brain structure.

Lower (greater deprivation, fewer resources) COISE and

COISE were also related to greater BMs at the 2-year follow-

up. Youth with lower COISE and COISE had accelerated

decreases in cortical thinning of the bilateral occipital cortex

when compared to baseline and to those youth who had greater
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COISE and COISE. Altered structural and functional responses

in the lateral occipital cortex have been observed in youth

with obesity (69–71), suggesting that obesity corresponds with

altered visual attentional bias to food. The occipital cortex is

not commonly associated with socioeconomic status or other

measures of resource deprivation, like the area deprivation index

[i.e., a multidimensional assessment of poverty (4)], so what this

means of functioning over time warrants further investigation.

However, it is hard for us to compare our results with cross-

sectional studies that used other types of resource assessment

(4, 22). Thus, our findings highlight the importance of the

community’s social/economic and access to quality education

resources to prevent obesity rates from increasing over time.

Overall, the moderating effects of COIED and COISE
on the longitudinal association between brain structure and

BMI were minimal. This was surprising as the literature

highlights how important within-family income and education

and neighborhood poverty and resources (e.g., poverty rates)

(4, 10), are for predicting childhood obesity. While we were

expecting to see larger associations of these educational and

economic resources on longitudinal associations between the

brain and BMI, there could be at least two explanations for

this. First, the COI assesses neighborhood economic resources

that are specifically pertinent to the child (such as money

devoted to parks, extracurricular activities) (18), whereas

other studies have examined just the impacts of community

poverty, within-family economic resources, or parent education

(4, 10, 11, 22, 72). Second, when assessing the moderating

effects of social/economic resources, we controlled for other

environmental resources (e.g., COIHE, COIED) and income

factors (e.g., income-to-needs), so that we could isolate the

unique variance associated with socioeconomic factors while

also accounting for any other resources that may counteract

any potential detrimental effects of socioeconomics resources

on BMI. Therefore, our findings suggest that when compared

amongst these other factors, neighborhood economic and social

resources may carry little weight, especially when understanding

how the neighborhood impacts childhood obesity development

over time. From a public policy perspective, this is an

encouraging finding because it allows policy to focus on

supporting resource efforts for other domains that may have a

greater impact, like increasing support for health/environmental

resources. Additionally, this finding can help to assuage the

stigma associated with socioeconomics and childhood obesity;

as in our study, socioeconomics (neighborhood or family-

level) was not the largest factor driving the BMI and brain

relationships over time.

Given that we did not observe any changes between the

COIHE and cortical thickness or subcortical volume over time,

it is not likely that access to health/environmental resources

(or lack thereof) exacerbate brain/BMI relationships. However,

there were widespread effects of this domain on the relationship

between the brain and BMI at both time points suggesting some

relative stability of these relationships, at least at this point

in development. Youth with greater COIHE deprivation were

heavier, and this corresponded to thinner cortices in several

frontal regions (e.g., bilateral rostral middle frontal, superior

frontal, cingulate) as well as larger subcortical volumes (e.g., left

pallidum and ventral DC). This finding is in line with the general

body of literature showing a relationship between the physical

environment and child obesity development (73, 74). From this

perspective, studies have evaluated the effects of traffic noise, air

pollution, walkability, and accessibility and availability of parks

and playgrounds, but, again, all these studies have largely treated

each of these factors in isolation. It is important to note that

the health/environmental domain also included assessments of

the natural environment, which includes measurements of air

pollution and other toxicants. Environmental toxicants have

been linked to decreases in cognitive functioning (75) and

brain structure alteration (76), so understanding how it relates

to obesity and brain structure are equally important. At this

point, we cannot confer whether access to grocery stores vs.

air pollution had a bigger impact on the relationship between

the brain and BMI, so future studies are needed to disentangle

these factors. However, what our results do suggest is that

neighborhood infrastructure for health promoting development,

which encompasses environmental toxicants, has a robust effect

on the relationship between the brain and BMI from ages 9–

12 years.

There were also regions that showed unique associations

with each domain. For example, a positive association between

the left caudate volume and BMI was only moderated by COISE,

whereas only COIED moderated the relationship between

cortical thinning in the right temporal pole and increased BMI.

Naturally, due to the extent of our findings with COIHE, there

were several regions that were uniquely moderated by this

domain. Notably, many of these regions have been implicated

in food intake reward processing and cognitive control (e.g., pars

triangularis, prefrontal cortex, cingulate) (77). Future studies are

needed to understand the implications of these findings.

Strengths and limitations

There were several strengths of this study. This was the first

study to evaluate the longitudinal associations between several

facets of environmental resources on the relationships between

the brain and BMI. This study also established the unique effects

of the environmental resources on brain and BMI relationships

independent of other potential beneficial environmental factors.

However, there were also several limitations that serve as future

directions. First, the ABCD Study R© did not collect assessments

of actual food intake, so it is hard to infer what our results

mean regarding actual overeating mechanisms. Second, COIHE

encompassed physical structure and natural environmental

attributes, so we are limited in the conclusions that we can
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make when interpreting the magnitude of effects that each of

these sub-attributes have on the brain and BMI relationships.

Lastly, this paper included caregiver reported race and ethnicity

as covariates in the model, which may be removing some

variance explained by the COI, due to environmental injustices

and systemic racism that has caused minoritized populations

to live in more disadvantaged neighborhoods (14). Here, we

chose to include caregiver reported race and ethnicity to adjust

for social inequalities that may have disproportionately affected

some populations, as this marginalization has been associated

with both greater resource deprivation and increased BMI.

Given research suggesting that there are differences in body

composition by various caregiver reported racial and ethnic

groups (47), past research has included race (or ethnicity) as

a confounding variable in analysis (48). However, race and

ethnicity are social constructs (78) that cannot provide insight

into historical racism, culture nor body fat composition in an

accurate fashion. Because the ABCD Study R© did not collect

more objective measures, we were limited in our ability to

capture the variance associated with these metrics (e.g., racism,

culture, body fat) without including the socially constructed

variable of race and ethnicity. We note the limitations of

inclusion of these variables and advocate for future studies to

collect more accurate and objectivemeasurements to account for

the variability of experience and body composition (e.g., DEXA,

bioelectrical impedance) across different groups of people to

provide a better picture of metabolic risk that is not defined by

social constructs.

Conclusion

Our results especially highlight the importance of the

child’s access to health/environmental resources within

their communities, perhaps more so than education and

social/economic resources, independent of any of the financial

resources that are directly available to the family (i.e., income-

to-needs). This is important because previous research has

suggested that family income is an important determinant

of obesity during childhood. Although family income may

be important, here we showcase the substantial effects of

neighborhood resource access on brain development and

increasing weight gain trajectories. Collectively our findings

demonstrate that neighborhood SEDs for health-promoting

resources play a particularly important role in moderating

relationships between brain and BMI in early adolescence

regardless of family-level financial resources. These findings

have implications for public policy makers who may wish

to tailor their efforts to increasing health/environmental

resources as a potential prevention for obesity development

during childhood.
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