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The ongoing COVID-19 pandemic has evolved beyond being a public health

crisis as it has exerted worldwide severe economic impacts, triggering

cascading failures in the global industrial network. Although certain powerful

enterprises can remain its normal operation during this global shock, what’s

more likely to happen for the majority, especially those small- and medium-

sized firms, is that they are experiencing temporary suspension out of epidemic

control requirement, or even permanent closure due to chronic business

losses. For those enterprises that sustain the pandemic and only suspend

for a relatively short period, they could resume work and production when

epidemic control and prevention conditions are satisfied and production and

operation are adjusted correspondingly. In this paper, we develop a novel

quantitative framework which is based on the classic susceptible-infectious-

recovered (SIR) epidemiological model (i.e., the SIR model), containing a set

of di�erential equations to capture such enterprises’ reactions in response

to COVID-19 over time. We fit our model from the resumption of work and

production (RWP) data on industrial enterprises above the designated size

(IEDS). By modeling the dynamics of enterprises’ reactions, it is feasible to

investigate the ratio of enterprises’ state of operation at given time. Since

enterprises aremajor economic entities and take responsibility formost output,

this study could potentially help policymakers better understand the economic

impact caused by the pandemic and could be heuristic for future prevention

and resilience-building strategies against suchlike outbreaks of public health

crises.
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1. Introduction

1.1. Background information

On 30 January 2020, WHO declared the COVID-19

outbreak a Public Health Emergency of International Concern.

Governments worldwide have taken various control and

mitigation measures to limit the spread of the virus, which

comes at a cost of suspension of work and production

nationwide. The COVID-19 pandemic turns out to be not only

a public health crisis but also an economic one (i.e., in 2020, a

recent investigation carried out by TheWorld Bank showed that

the world GDP fell by 3.29% because of COVID-19 impacts).

Thus, exploring the economic impact of COVID-19 and related

mechanism have become an important research subject. One

perspective to study the adverse impact of the pandemic is to

investigate what enterprises of various sizes have experienced

during and after COVID-19.

By March 2020, China has quickly taken the COVID-19

outbreak under control by implementing stringent measures,

such as lockdown, restrictions of human mobility, and public

gathering (1, 2). The number of new daily confirmed cases in

China peaked on 14 February, 2020 (WHO). By the end of

March, most provinces, except Hubei, the epicenter of the first

round outbreak, have already lessened restrictions onmovement

and shifted their focus to reviving the economy. However,

effective virus containment measures were carried out at the

cost of substantial economic losses. In the first quarter of 2020,

China’s GDP contracted by 6.8% from the same quarter a year

ago; the utilization rate of national industrial capacity was 8.6%

lower than the same period of 2019; the total value added of

the industrial enterprises above the designated size (IEDS)1 went

down by 8.4% year on year (3).

There is a high level of interdependency and connectedness

among the closure of enterprises, especially for those within

one supply chain network. How the state of one enterprise

will influence another is, however, not clear. Furthermore,

an enterprise can experience several possible operation

states during an outbreak, from normal operation, operation

suspension to full recovery. To understand how these possible

states evolve over time and how fast the evolution are important

in that supportive intervention strategies (e.g., those preventing

an enterprise from closure) can be designed accordingly.

Nevertheless, existing studies have not yet proposed proper

method to model the evolving state of an enterprise over

time and thus are incapable of providing insights toward the

1 According to National Bureau of Statistics of China, industrial

enterprises consist of enterprises in the following sectors: mining and

quarrying, manufacturing, and production and distribution of electricity,

heat, gas, and water. Industrial enterprises above designated size are

enterprise with annual revenue from principal business over 20 million

yuan.

interdependency of enterprise closures. This paper proposes

a novel analytical framework to simulate the operation states

of enterprises during COVID-19, with the goal to understand

how enterprises respond to public health crisis and supportive

intervention policy making, concerning post-pandemic resilient

recovery of work, and production during COVID-19. Our

framework is based on the classic susceptible-infectious-

recovered (SIR) epidemiological model, which is wildly used

in infectious disease study. The basic logic of SIR model is to

classified the population by their infectious status, and use a

system of ODEs to simulate the spread of the disease. Based on

the SIR model, we classify the business state of each enterprise

into four compartments and develop a compartment-based

framework to quantify the evolving state of an enterprise over

time. Specifically, at each time period, an enterprise will be in

one of the following four states: (1) it may remain in operation

throughout the epidemic without any suspension or even shut

down; (2) it may also be in the state of temporary suspension

due to various reasons, such as financial pressure, epidemic

control, supply chain disruptions, and more; (3) it can be

permanently shut down; and another possible state is that (4) it

is currently operating normally but the difference from the first

state is that it first experience a suspension and then recover

to normal state. For easy exposition, we term these four states

as in normal operation, temporary suspension, permanent

shutdown, and in recovered operation. Four coupled differential

equations, which involve four time-dependent functions, are

used to describe the dynamics of the number of enterprises in

each class.

We collect data on enterprises resuming production from

China’s four provinces (Anhui, Hebei, Heilongjiang, and

Shandong) to fit the model and calibrate the model by the

least square method. Specifically, we collect data about the

province-daily-level ratio of IEDS that have resumed production

from news announcement and government website. In 2020,

Chinese government extended Chinese New Year Holiday,

which was supposed to end on January 30, to February 2

due to the epidemic. Most provinces, including Anhui, Hebei,

Heilongjiang, and Shandong, officially extended the resumption

of work and production (RWP) to February 102. Before official

RWP, the ratio of IEDS that have resumed production is only

21.8% in Shandong, and less than 14% in Anhui and Hebei (As

for Heilongjiang, the RWP ratio we collect starts from February

17). By mid March, that ratio has increased to over 90% in all

four provinces. Although we do not have data on the ratio from

a daily basis, we do manage to collect the data on most of the

observation days. In terms of data, the relation between COVID-

19 and its adverse impact on small andmedium-sized enterprises

(SME) has been amply investigated in the literature [see (4–6)],

while the impact of the epidemic on the IEDS is still an open field

2 According to their government announcements, the resumption of

work and production should start no earlier than 24:00 on February 9.
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of research. This article utilized real data on IEDS to investigate

the rate of resumption of work and production during and after

a wave of COVID-19 in China.

1.2. Literature review

It is widely accepted that there are trade-offs between

economic and health outcomes under COVID-19. Abandoning

the containment policy too early would avoid a sharp drop in

output and employment in the short term, but it would greatly

increase mortality and ultimately lead to a decline in social

welfare (7).

Since the outbreak of COVID-19 pandemic, there has been

a large number of emerging studies devoted to evaluating the

consequent economic loss using real data or by simulation.

Their focuses range from macroeconomic consequences, such

as inflation, unemployment, and exchange rates (8–10), supply

chain disruptions (11–14), to influence on financial market

(15–17), labor market (18–20), and firms (21–25). During the

pandemic, people cut back on consumption and work to reduce

the chances of being infected (26).

Studies on China’s economic loss under COVID-19 paid

special attention to the economic impact of lockdown. Chen

et al. (27) found that a 1-month full-scale lockdown causally

reduces the truck flows connected to the locked down city and

the city’s real income in the month by 54%. Cities in lockdown

experienced a 34% reduction in the year-on-year growth rate

of exports (28). Hubei province, which experienced the most

drastic lockdown in China, lost 37% in GDP compared to the

counterfactual situation without lockdown; the losses in value

added of agriculture, secondary, and service industry are 17%,

46%, and 31%, respectively (29).

The main purpose of our work is to develop a mathematical

model to study the evolution of enterprises’ operation states,

such as suspension and production resumption, under the

pandemic outbreak. It is found that, in China, the manufacture

sector was scheduled to resume work the earliest (5), and

experienced a quick V-shape recovery (30). In February 2020,

China’s manufacturing Purchasing Manager Index (PMI) was

35.7%. In March, the index has increased by 16.3 percentage

points to 52%, 2 percentage points higher than that in January.

Labor shortages and the increased operating costs were the main

obstacles hindering the manufacturing industry from resuming

full production (5). According to Dai et al. (6), 47.6% of

employees were unable to return to work in manufacturing

enterprises, the highest among all sectors in February 2020.

Higher prices of raw material, logistics, and labor were all

adding to increases operation costs (27). Besides, enterprises had

to pour resources and efforts into disinfection and protective

measures, which further led to higher costs and lower efficiency.

Using online surveys on small and medium-sized enterprises

from Sichuan province, China, Lu et al. (5) found that the

manufacturing industry is more likely to face product delivery

and supply chain pressures, and less likely to face financial

pressures. Gu et al. (4) examined the impact of COVID-

19 on firms’ activities using daily electricity usage data for

34,040 micro-enterprises in Suzhou city, China in the period

from December 31, 2019 to March 31, 2020, via difference-in-

differencesmethod. They found that themanufacturing industry

incurred the greatest negative impact at the early stage of

the pandemic.

In general, our work is also widely related to the literature

on the impact of disasters on enterprises. The effects of disasters

differ across types of disasters and economic sectors (31).

An important research question concerns enterprises’ recovery

from natural disasters (32–37). The key point is that more

efficient firms are less likely to go bankrupt after an earthquake

both inside and outside of the affected areas (38), as also

found in Cole et al. (39) which explored the birth, life, and

death of manufacturing plants after the 1995 Kobe earthquake

and shows that the continuing plants experience a temporary

increase in productivity, while those most likely to exit are the

least productive ones. Apart from productivity, how enterprises

perform during disasters will also depend on their position in a

supply chain (40), and how well they are prepared and how they

respond to the risk (41).

To sum up, it is an important research topic to learn the

economic impact of COVID-19. To understand how enterprises

are affected, existing studies have mainly focused on conducting

surveys or providing empirical evidence. Apart from these

methods, mathematical model is a useful but currently rarely

used tool. On this basis, our work propose an SIR-based

modeling framework to analyze the RWP of enterprises during

COVID-19 to enrich our understanding of the impact of the

pandemic on enterprises.

1.3. Contribution statement

The contributions of this work can be summarized as

follows. First, this study borrows ideas from the infectious

disease community and novelly applies the SIR model to

characterize the evolving state of enterprises affected by the

COVID-19 pandemic. The compartments of enterprises are

realistically modeled as those remain in operation, temporary

suspension, permanent shutdown, and those finally recover

to normal state. Second, we conduct a case study of four

provinces in China to mimic the actual RWP process during

the first wave of COVID-19 outbreak. We find that the

resumption rate is the largest in Shandong province, and the

smallest in Heilongjiang. Besides, the differences in parameter

value among these provinces are reflected in governments’

policy intensity to support RWP. Third, we conduct numerical

simulations to examine the sensitivity of the model output to

changes in parameter value, and provide policy implications on
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this basis. The simulations results indicate that governments’

supportive policies toward enterprises under an epidemic should

be primarily focused on limiting bankruptcy and accelerating

resumption rate. Policies aimed at depressing suspension

rate would have little impact on reducing economic loss to

an outbreak.

2. The proposed SIR-based
quantitative framework

In this section, we propose an SIR-based modeling

framework to characterize the evolving states of enterprises’

operation under COVID-19. This framework is neat, yet

representative, for modeling the real-world situations without

complex parameter settings.

The SIRmodel, proposed by Kermack andMcKendrick (42),

is widely used to describe the spread of an epidemic virus [e.g.,

(43–47)]. The basic logic is to divide the population into three

compartments: susceptible (individuals who are healthy but can

contract the disease), infected (individuals who have contracted

the disease and are infectious), and recovered (individuals who

have recovered and cannot contract the disease again). An

individual is classed in the susceptible compartment before

contracting the disease. When a susceptible individual enters

into contact with an infectious individual and contracts the

disease, the susceptible individual moves from the susceptible

compartment into the infected compartment and becomes

infectious. Those individuals who recover from the disease gain

immunity and will not contract the disease again. At the same

time, they leave the infected compartment for the recovered

compartment. Two parameters are used to denote the rate at

which individuals move from one compartment to another.

The value of epidemiological parameters reflects characteristics

of the virus studied, such as infectiousness, recovery time,

fatality, and so on. They are also influenced by some aspects

of the affected community, such as demographic characteristics,

measures taken to mitigate local transmission and so on.

In our framework, the study object is enterprise instead of

people. Enterprises are divided into four classes (Figure 1):

enterprises that are in normal operation (denoted by

compartment Q), enterprises that suspend operation (denoted

by compartment A), enterprises that resume operation after

suspension (denoted by compartment B), and enterprises

that are permanently shut down (denoted by compartment

C). Before an outbreak occurs, all enterprises are in normal

operation (Q). Since the onset of the outbreak, they could either

suspend operation (A) out of epidemic prevention requirements

or operation difficulties, or close permanently (C). Enterprises

move from normal operation to suspension at a rate of β , and to

permanent closure at a rate of γ . Then, enterprises in suspension

(A) would gradually resume operation (B) at a rate of α, or move

from temporary closure to a permanent one (C) if they cannot

FIGURE 1

Flowchart of enterprises in a pandemic.

survive. δ is the rate at which enterprises move from suspension

to closure. Specifically, we put all enterprises that have resumed

operation into compartment B, no matter if they operate at full

or partial capacity after work resumption. The transformation

from one compartment to another is indicated by a link arrow

in Figure 1. It is important to note that, we assume during one

wave of an epidemic, enterprises that have resumed operation

will not go into suspension again or bankrupt, that is, no link

arrow exists from compartment B to compartment A or C. And

there is no new enterprises established during the time.

To highlight the time-varying change of these

compartments, we formally represent Q,A,B,C as Q(t),

A(t), B(t), and C(t), which are functions of time t. The total

number of enterprises are denoted by N, which is assumed

constant over the study. The sum of the sizes of these four

compartments at each time period t satisfies:

N = Q(t)+ A(t)+ B(t)+ C(t) (1)

To ease exposition, we normalize the constant N = 1. And

the model is represented by a system of ordinary differential

equations (ODEs) as follows:

dQ(t)

dt
= −βQ− γQ (2)

dA(t)

dt
= βQ− αAB− δA (3)

dB(t)

dt
= αAB (4)

dC(t)

dt
= γQ+ δA (5)

Equations (2), (3), (4), and (5) describe the change of

compartments Q, A, B, and C, respectively. Notice that the

number of enterprises moving from suspension to resumption

per unit of time is non-linear. It is not only positively

correlated to the number of enterprises in compartment A,

but also positively correlated to the number of enterprises in

compartment B. The latter positive correlation is derived based

on the observation that, for enterprises to resume operation,

they need to make sure the epidemic control and prevention

conditions are satisfied and production are correspondingly
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adjusted. Enterprises that have resumed operation could provide

not only knowledge and experience on epidemic control and

prevention, but also confidence in operation resumption. Thus,

we propose that more enterprises in compartment B lead to

faster movement of enterprises from compartmentA to B. At the

onset of an epidemic, all enterprises are in the class of normal

operation, i.e., Q(0) = 1, A(0) = B(0) = C(0) = 0. As time

proceeds, these enterprises could move to different classes and

constitute values of A(t),B(t),C(t) at time t.

We next present two special cases of the abovementioned

model, which can mimic the realistic situation as well.

The main difference of these two special models from

the general one is that analytical solutions can be directly

derived and thus commercial solver is not required to solve

these two models. In the first case, we assume that all

enterprises suspend operation at the onset of an epidemic.

This could happen if lockdown is imposed immediately. In

this case, the model can be reduced to having only three

compartments, A, B, and C. It can be simply represented

as follows:

dA(t)

dt
= −αAB− δA (6)

dB(t)

dt
= αAB (7)

dC(t)

dt
= δA (8)

By making assumptions that A(Tend) = 0,B(Tend) +

C(Tend) = 1, dividing Equation (7) by Equation (8) we get
dB
dC

=
α
δ
B, and thus compartment B can be approximately

written as an exponential function B = e
α
δ
C
− 1. Moreover,

since A(t) + B(t) + C(t) = 1, we have A = 1 −

B − C = 2 − e
α
δ
C

− C. We can also have the function

expression of B(t) and C(t) by making some assumptions

on the function expression of C(t). In the second case, we

assume that there are no enterprises going into permanent

closure. That is, the model consists of only two compartments,

A and B. This could happen if the community recover

quickly from the epidemic, or enterprises in the study are

equipped with abundant supportive policies and well prepared

to weather the negative shock. In this case, the model takes

the form:

A′(t) = −αAB (9)

B′(t) = αAB (10)

We could derive the analytical representation of

compartment A as A =
A(Tk)e

α(Tk−t)

A(Tk)e
α(Tk−t)

+1−A(Tk)
, where

A(Tk) is the value of A at time Tk. By letting B(t) = 1−A(t), we

end up with the analytical expression of B(t).

3. Data description

The data we use is the province-daily-level ratio of IEDS that

have resumed production from four provinces in China, which

are Anhui, Hebei, Heilongjiang, and Shandong. In 2020, Chinese

New Year Holiday and post-holiday work resumption were both

officially extended due to COVID-19. February 10 marked the

start of formal RWP in most provinces where the epidemic had

been under control. Since then, the RWP ratio among IEDS was

often released tomake public the progress in RWP.Wemanually

collect the raw data from local governments’ press conference

and official website3 and use it for model calibration purpose.

The population of enterprises here is all IEDS in each

province. According to National Bureau of Statistics of China,

Anhui had 17,616 units of enterprises above the designated

size at the end of February, 2020. Those numbers in Hebei,

Heilongjiang and Shandong are 13,020, 3,501, and 26,174,

respectively. Table 1 lists all available RWP ratio and the

corresponding date of each province.We focus on Anhui, Hebei,

Heilongjiang, and Shandong provinces because we can collect

data on at least 10 dates in these provinces. The RWP ratios

of Anhui, Hebei, and Shandong provinces at the beginning

of formal RWP are available. For Heilongjiang province, the

data starts from one week later, which is February 17. Notice

that the numerator used to calculate the RWP ratio actually

refers to all enterprises that were in operation at the time,

regardless whether they had experienced suspension or not. That

is, the RWP ratio represents the sum of compartment Q and B

corresponding to our model. Before official RWP, the ratio is less

than 14% in Anhui and Hebei, and 21.8% in Shandong. On one

hand, livelihood-enterprises keep their operation throughout

the epidemic to provide essential supplies of electricity, gas,

and water for residents. On the other hand, a large part of

enterprises making medical material and daily necessities had

already resumed work during the holiday to support epidemic

control supplies and services. By mid March, the RWP ratio are

nearly 100% in all provinces except for Heilongjiang, where the

ratio is 92.4%.

As mentioned above, the RWP ratio in our data is an

aggregated count of compartment Q and B. To facilitate

modeling, we assume that the size of Q stays constant (i.e.,

after formal RWP, no enterprises in normal operation at the

time would go to suspension or permanent closure during

our data period). To approximate the size of Q, we use the

ratio of livelihood-enterprises among IEDS in each province in

20204, which is 2.81%, 4.83%, 13.39%, and 4.83%, respectively,

in Anhui, Hebei, Heilongjiang, and Shandong province. The

assumption is reasonable since daily reported new cases

3 The main sources of data include o�cial website of provincial

government, Economic and Information Department, and Development

and Reform Commission, and so on.
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TABLE 1 Data on resumption of work and production (RWP) of IEDS.

Anhui Hebei Heilongjiang Shandong

Date RWP ratio Date RWP ratio Date RWP ratio Date RWP ratio

10/2/2020 0.138 10/2/2020 0.131 17/2/2020 0.369 9/2/2020 0.218

13/2/2020 0.277 16/2/2020 0.375 18/2/2020 0.39 10/2/2020 0.41

14/2/2020 0.319 19/2/2020 0.616 21/2/2020 43.1 11/2/2020 0.486

15/2/2020 0.367 20/2/2020 0.667 28/2/2020 0.64 12/2/2020 0.551

16/2/2020 0.404 21/2/2020 0.719 4/3/2020 0.73 14/2/2020 0.677

17/2/2020 0.461 24/2/2020 0.841 7/3/2020 0.808 15/2/2020 0.715

18/2/2020 0.515 25/2/2020 0.86 10/3/2020 0.868 17/2/2020 0.774

23/2/2020 0.827 26/2/2020 0.874 11/3/2020 0.885 18/2/2020 0.794

25/2/2020 0.92 29/2/2020 0.917 12/3/2020 0.91 19/2/2020 0.82

26/2/2020 0.948 1/3/2020 0.925 13/3/2020 0.917 20/2/2020 0.841

28/2/2020 0.974 3/3/2020 0.961 14/3/2020 0.924 21/2/2020 0.86

29/2/2020 0.981 8/3/2020 0.961 27/2/2020 0.98

9/3/2020 0.979 1/3/2020 0.995

10/3/2020 0.997

TABLE 2 Ratio of IEDS that closed in 2020.

Province Number of new
establishment

Number of
change

Number of
closure

Ratio of closure

Anhui 2,174 987 1,187 1,187
17,616

= 6.74%

Hebei 2,531 1,123 1,408 1,408
13,020

= 10.81%

Heilongjiang 591 307 284 284
3,501

= 8.11%

Shandong 6,679 4,086 2,593 2,593
26,174

= 9.91%

have peaked in all four provinces before formal RWP, and

government has pledged to spare no efforts to help companies

resume production after Chinese New Year Holiday. Then, we

subtract the ratio of livelihood-enterprises from RWP ratio to

derive data on compartment B.

Due to data availability constraints, we do not possess data

on the size of compartment C, which is the ratio of IEDS

that close permanently during data period. To address this, we

firstly collect record on newly established IEDS in 2020 for each

province. Then, we calculate changes in the number of IEDS

in 2020 using data of enterprise numbers at the end of 2019

and 2020. Changes in enterprise number also equal the result of

using newly established enterprises number minus the number

of enterprises that went down, which is the target information

we need. Finally, we calculate the ratio of IEDS that closed in

2020 (Table 2). Since the data observation period is about 1

4 As for Hebei, we do not get the ratio of livelihood-enterprises among

industrial enterprises above designated size in 2020, and use the data in

2019 instead.

TABLE 3 Initial inputs ofQ, A, B, and C.

Province Q(T0) A(T0) B(T0) C(T0)

Anhui 0.028 0.862 0.110 0

Hebei 0.048 0.869 0.083 0

Heilongjiang 0.134 0.631 0.235 0

Shandong 0.048 0.782 0.170 0

month, we divide the ratio of closure in a whole year by 12 as

the approximate ratio of closure in 1 month.

4. Results

In this section, we firstly use data from the aforementioned

four provinces (recall Anhui, Hebei, Heilongjiang, and

Shandong) to calibrate the model’s parameters. Then, we

show several numerical simulations of “what-if ” scenarios by

varying the key parameters of the model and demonstrate the
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TABLE 4 Optimized parameter values and growth rate of industrial value-added.

Province β γ α δ
Growth rate of industrial value-added year on year

January and February 2020 March 2020

Anhui 0.001 0 0.328 0.002 −12.1% 6.2%

Hebei 0 0 0.341 0.002 −9.4% 3%

Heilongjiang 0 0 0.151 0.001 −10.9% −5.5%

Shandong 0 0 0.467 0.004 −10.6% 1.7%

strength of this analytical framework by discussing several

policy implications based on the tests.

4.1. Calibration of the model

We solve the ODE model in Python and calibrate the

parameters β , γ ,α, δ using the least square method. Matching

the first day of data, February 9 is set as T0 for Shandong

province. T0 of Anhui and Hebei is set to be February 10,

and that of Heilongjiang is February 17. As mentioned earlier,

Q(T0) is 2.81%, 4.83%, 13.39%, and 4.83% for Anhui, Hebei,

Heilongjiang, and Shandong province, respectively. B(T0) equals

RWP ratio on T0 minus Q(T0). We assume there was no

permanent closure before formal RWP. That is, C(T0) is set to

be zero. The assumption is reasonable since larger enterprises

are better prepared to weather the negative shock from COVID-

19. And we know from data that the number of IEDS that closed

in 2020 is rather small. We also input the value of C at the end

of our data period, which is the approximate ratio of closure in

1 month. Finally, A(T0) is 1 − Q(T0) − B(T0) − C(T0). Table 3

shows the initial inputs of Q, A, B, and C.

Table 4 presents the optimized parameters β , γ ,α, δ for each

province. These parameters are derived from minimizing the

least square loss function which consists of three parts: the

squared sum ofQ+Bminus the RWP data value, the last-period

value of C minus the approximated monthly closure ratio, and

the last-period value ofQminus the livelihood-enterprises’ ratio.

The latter two parts of the loss function are further weighed by

hyperparameters setting as 10.

The optimized value of parameters β (suspension rate) and

γ (operation-to-closure rate) are zero in all four provinces,

except that β = 0.001 in Anhui. Although the optimized

suspension rate of Anhui is not zero, it is very small. These are

in line with our assumption that no enterprises moved from

normal operation to suspension or closure after formal RWP.

The optimized value of parameter α, which represents the

rate at which enterprises move from suspension (A) to operation

resumption (B), is 0.467 in Shandong, the largest among four

provinces. It implies that IEDS resume operation faster in

Shandong than the other three provinces. On February 4, 2020,

Shandong was one of the first provinces in China to release

a plan of resuming full production by the end of the month

TABLE 5 Number of government policy documents to support

resumption of work and production by mid March, 2020.

Province Anhui Hebei Heilongjiang Shandong

Number of

policy

documents

61 40 23 67

Provincial

level

17 32 21 26

Municipal

level

44 8 2 41

Operation

support

34 19 12 22

Tax 12 15 7 19

Finance 35 15 6 30

Social

security

27 8 3 17

Rent

reduction

13 8 2 13

Others 9 5 5 11

(48). According to data from the Department of Industry and

Information Technology of Shandong province, as of February

6, 2020, 32 mask makers in the province have been running at

full capacity. As a reference, the optimized value of parameter

α is 0.341 in Hebei, 0.328 in Anhui, and 0.151 in Heilongjiang,

the smallest among four provinces. Differences in resumption

rates could also be partially explained by the differences in

governments’ policy responses to support the resumption of

work and production. To connect with policies, we collect

government policy documents in support of resumption of work

and production from AMiner website. For each province, we

calculate the number of policy documents issued by mid March,

2020 (see Table 5), and classified them into provincial and

municipal levels. The government supportive policies mainly

consist of operation support, tax relief, and deferral, liquidity

measures, social security support, rent reduction, and so on. The

Shandong government has issued 67 policy documents during

February 1 and March 15, 2020, to support enterprises (see

Table 5). By comparison, there were only 23 policies introduced

during the same period in Heilongjiang, nearly one-third of

the number of Shandong. The policies can be divided into

provincial policies and municipal policies, which are launched
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FIGURE 2

Dynamics of Q(t), A(t), B(t), C(t) over time.

by municipal governments and implemented only within a

city. In Anhui, although the number of municipal policies is

comparable with that of Shandong, there were deficiencies in

provincial ones. Hebei has introduced 32 provincial policies,

six more than the number in Shandong. However, municipal

policies were scarce in Hebei during that time. We note that

the estimated value of α is close between Anhui and Hebei.

Anhui has launched more policy documents than Hebei, but

the number of provincial policies in Hebei is almost twice that

of Anhui.

Finally, the optimized value of parameter δ is 0.02 in Anhui

and Hebei, 0.01 in Heilongjiang, and 0.04 in Shandong. The

optimized suspension-to-closure rates are small in all four

provinces, which is in line with the fact that IEDS that closed

during the outbreak accounted for only a small proportion.

To better understand the economic implications of the

model parameters, we further look into industrial output data.

Table 4 presents the growth rate of industrial value-added in the

first three months of 2020. Put it together with the optimized

parameter values, we can find that a larger suspension-to-closure

rate is associated with a significant negative impact on industrial

output. Intuitively, we would suppose that a larger resumption

rate means enterprises experience a shorter disruption before

quick recovery, which leads to a smaller economic loss. However,

the cumulative added value of industries above designated size

of January and February, 2020, decreased by about 11% year

on year both in Shandong and Heilongjiang, although the

optimized resumption rate of the former province is nearly three

times faster than the latter. Another difference between these

two provinces is that, the optimized suspension-to-closure rate

of Heilongjiang is four times that of Shandong. In other words,

the losses from a larger suspension-to-closure rate in Shandong

is big enough to offset the benefits from a quicker resumption.

Besides, while a large suspension-to-closure rate means an

instant significant shock to industrial output, the negative effect

of a slow resumption rate tends to persist longer. In March,
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the added value of industries above designated size increased

by 1.7% on a year-on-year basis in Shandong. However, it

continued to decrease in Heilongjiang.

Given Q(T0),A(T0),B(T0),C(T0), and the optimized value

of parameters β , γ ,α, δ, we graphically show the dynamics of

Q(t),A(t),B(t),C(t) in Figure 2. At T0, the size of compartment

A has passed its peak and is already in decline in all four

provinces. It decreased fastest in Shandong, and slowest in

Heilongjiang. The ratio of IEDS in suspension declined to below

1% at t = 14 in Shandong, and t = 22 in Anhui and Hebei.

However, even at t = 29, there were 4.9% IEDS suspending

operation in Heilongjiang. Then, we focus on changes in the size

of compartment B, which monotonically increases with time.

From the abovementioned, the size of B increased fastest in

Shandong, and slowest in Heilongjiang. The ratio of IEDS that

have resumed operation after suspension has risen to above 90%

at t = 11 in Shandong, t = 15 in Anhui, and t = 18 in

Hebei. However, there were only 80.6% IEDS that had resumed

operation from suspension at t = 29 in Heilongjiang. The size

of compartment C experiences a small increase in all provinces.

These are enterprises that go down after a period of suspension.

Although we use China’s RWP data to fit the model,

two caveats should be well-noted here: Firstly, the COVID-19

outbreak in China overlapped with Chinese New Year, China’s

most popular nationwide holiday. On one hand, a great number

of industrial enterprises would have suspended production

during the holiday nomatter of the epidemic. On the other hand,

operation resumption were mostly arranged to start after the

holiday, which was extended in 2020 due to COVID-19. Thus,

in China, suspending production and resuming production did

not happen simultaneously as our model suggested. Since we

only have data on RWP, the process of enterprises moving

from normal operation to suspension or closure can not be

observed. Secondly, we do not have sufficient data to implement

a precise fitting given the inclusion of four compartments in

our model. To this end, we further conduct several numerical

simulations to demonstrate the strength of the analytical models

after the calibration.

4.2. “What-if” scenario simulation and
policy implications

Table 6 presents our baseline setting. We use Q(T0) = 0.98,

A(T0) = B(T0) = 0.01, and C(T0) = 0 as initial value

of compartment Q, A, B, and C. That is, most enterprises are

in normal operation at T0. Parameters β , γ , α, and δ are set

to be 0.5, 0.01, 0.5, and 0.01, respectively. Figure 3 graphically

shows the dynamics of the size of four compartments within

43 days in baseline setting. The size of compartment A peaks

at about Day 6, which means that the number of enterprises

suspending operation starts to decline after that. In the end, 11%

TABLE 6 Baseline setting for simulation.

Q(T0) A(T0) B(T0) C(T0) β γ α δ

0.98 0.01 0.01 0 0.5 0.01 0.5 0.01

FIGURE 3

Baseline simulation.

of enterprises close permanently and 89% resume operation after

a period of suspension. We point out that the area size under

curve A, which is the integral of the function of the curve, could

be used to compare the loss from operation suspension under

different scenarios. Similarly, the area size under curve C can be

employed to analyze the differences in the loss from enterprise

closure of each scenario.

We are interested in the evolution of the model when

the value of parameters varies. Figure 4 presents two scenarios

where β is set to be 1 and 0.25, respectively, while the rest of

inputs are the same as our baseline setting. β is the rate at which

enterprises move from normal operation to suspension. Large

value of parameter β means operation suspension proceeds fast.

The number of enterprises suspending operation peaks at about

Day 5 if β = 1, while the peak arrives at about Day 9 if β = 0.25.

Besides, the size of compartment A differs at the peak. The ratio

of enterprises suspending operation at the peak is 90.2% in the

former scenario, and 72.2% in the latter. This particular finding

indicates that, changing the suspension rate from 1 to 0.25 could

lead to fewer enterprises on average suffering from suspension.

However, the enterprises that suspend operation would have

to live with longer suspension. In the end, 10% of enterprises

close permanently and 89% resume operation after a period

of suspension if β = 1. The ratio of permanent closure and

operation resumption in the end is 0.13 and 0.87, respectively,

if β = 0.25, not much different from the scenario of β = 1. That

is, policies aimed at depressing the suspension rate would barely

reduce the negative effect of an outbreak.
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FIGURE 4

Simulation using di�erent values of β.

Figure 5 presents two scenarios where γ is set to be 0.1

and 0.001, respectively, while the rest of inputs are the same

as our baseline setting. γ is the rate at which enterprises move

from normal operation to permanent closure. Larger value of

parameter γ means enterprises close at a faster rate. In the end,

25% of enterprises close permanently if γ = 0.1, while the

ratio is 9% if γ = 0.001, nearly one-third of the former ratio.

Enterprises experiencing suspension will recover and resume

production, while enterprise closure leads to permanent loss

of output. Changing the operation-to-closure rate from 0.1 to

0.001 reduces bankruptcy by nearly two-thirds, which could

make a significant difference. Correspondingly, the ratio of

enterprises resuming operation after a period of suspension is

75% in the former scenario, and 91% in the latter. The number

of enterprises suspending operation peaks at about Day 6 in

both scenarios. However, the number of suspended enterprises

differs at the peak since more enterprises in closure means less in

suspension. The ratio of enterprises suspending operation at the

peak is 72.9% if γ = 0.1, and 84.2% if γ = 0.001. To conclude,

the effect of a smaller γ is that more enterprises on average

will experience suspension and fewer ones will end up with

bankruptcy. Since the output loss to enterprise closure is larger

than that to operation suspension, policies aimed at depressing

the operation-to-closure rate could narrow the negative effect of

an outbreak.

Figure 6 presents two scenarios where α is set to be 1 and

0.25, respectively, while the rest of inputs are the same as our

baseline setting. α is the rate at which enterprises move from

suspension to operation resumption. Large value of α means

enterprises experience a short suspension and resume operation

quickly, while a small α means enterprises on average go through

a long period of suspension. The size of compartment A declines

slowly after it peaks at the value of 0.87 at about Day 8 if

α = 0.25. If α = 1, it peaks at the value of 0.75 at about

Day 5. This finding demonstrates that, changing the resumption

rate from 0.25 to 1 would result in not only shorter suspension

duration, but also fewer enterprises experiencing suspension

on average. Besides, longer suspension leads to more closure.

In this scenario, 19% of enterprises close permanently, 80%

resume operation, and about 1% is still in suspension at Day

43, the end of our simulation period. However, the ratio of

enterprises close permanently and resume operation in the end

is 6% and 94%, respectively, if α = 1. Therefore, policies

aimed at accelerating the resumption rate bring about significant

benefits. Those policies could decrease the average number of

enterprises experiencing suspension and shorten the suspension

duration for those that do, as well as reducing the ultimate

number of bankruptcies.

Figure 7 presents two scenarios where δ is set to be 0.1 and

0.001, respectively, while the rest of inputs are the same as our

baseline setting. δ is the rate at which enterprises move from

suspension to permanent closure. Larger value of parameter

δ means enterprises close at a faster rate after a period of

suspension, which also leads to a larger ratio of enterprises end

up in permanent closure. If δ = 0.1, 70% of enterprises close

permanently in the end, while only 30% survive the suspension.

The ultimate ratio of permanent closure in this scenario is

even much bigger than the one in the scenario of γ = 0.1

(Figure 5, left). If δ = 0.001, 3% of enterprises end up in

permanent closure and 97% resume operation after a period of

suspension, showing that, changing γ from 0.001 to 0.1 would

result in almost 23 times more bankruptcies. It is important to

for the government to depress the suspension-to-closure rate,

and prevent enterprises in suspension from quick bankruptcy.
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FIGURE 5

Simulation using di�erent values of γ .

FIGURE 6

Simulation using di�erent values of α.

5. Conclusion

The COVID-19 pandemic has evolved beyond a public

health crisis and caused severe economic consequences globally.

During COVID-19, an enterprise may remain its normal

operation throughout, though at a low chance. What’s more

likely is that it will experience temporary suspension out of

epidemic control requirement, or even permanent closure for

failure to tolerate chronic business loss. For those enterprises

that sustain the pandemic and only suspend for a certain

period, they will resume work and production when epidemic

control and prevention conditions are satisfied and production

and operation are adjusted correspondingly. In this paper,

we develop a neat, yet representative, quantitative framework

which contains a set of differential equations to capture

such enterprises reactions against external pandemic shock

over time, inspired by the susceptible-infectious-recovered

(SIR) model. We collect data on IEDS resuming production

from China’s four provinces (Anhui, Hebei, Heilongjiang, and

Shandong) spanning from February 9 2020 to mid-March

2020 to fit the model and calibrate the model by the least

square method.

We found that the estimated value of parameter α, which

represents the rate at which enterprises move from suspension

to operation resumption, indicates that IEDS resume operation

fastest in Shandong province, and slowest in Heilongjiang.
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FIGURE 7

Simulation using di�erent values of δ.

This is consistent with the supportive policy intensity in four

provinces. Shandong had issued 67 government documents

introducing policies to support RWP by mid March, 2020. The

number is the highest among four provinces, and nearly three

times that of Heilongjiang. The estimated value of δ, which

denotes the rate at which enterprises move from suspension to

permanent closure is 0.004 in Shandong, 0.01 in Heilongjiang,

and 0.02 in the rest two provinces. This reflects the fact that

only a small proportion of IEDS close permanently under

COVID-19, and a small increase in suspension-to-closure

rate is associated with significant loss to industrial output,

as in Shandong. We further perform theoretical simulations

to verify the strength of the model. The results indicate

that policies aimed at depressing the operation-to-closure rate

narrow the negative effect of an outbreak. In contrast, policies

aimed at accelerating the resumption rate bring significant

benefits, whereas policies aimed at depressing the suspension

rate would have little impact on the amount of economic

loss to an outbreak. In addition, it is paramount for the

government to depress the suspension-to-closure rate, and

prevent enterprises in suspension from fast bankruptcy to save

the economic meltdown.

Based on these findings, we suggest that governments’

supportive policies toward enterprises under an epidemic

should be primarily aimed at limiting bankruptcy. One

important policy package to achieve the goal is providing

access to finance, including measures such as credit payment

deferral, interest payment suspension, debt rollover, access

to new credit, and so on (49). Governments could also

reduce taxes, defer tax payment or provide wage subsidies to

ease the cost pressure of enterprises. Secondly, to accelerate

production resumption, it is important for governments to

assist enterprises to meet epidemic control and prevention

requirements. Specifically, they could supply anti-epidemic

materials, provide epidemic prevention instructions

and support, ensure online government services, and

so on.

The main contributions of this work are as follows.

First, this study borrows ideas from the infectious disease

community and novelly applies the SIR model to characterize

the evolving state of enterprises affected by the COVID-19

pandemic. Second, we conduct a case study of four provinces

in China to mimic the actual RWP process during the first

wave of COVID-19 outbreak. Third, we conduct numerical

simulations to examine the sensitivity of the model output to

changes in parameter value, and provide policy implications on

this basis.

Finally, we also acknowledge two limitations of this

study. First, due to data availability issue, we cannot collect

more detailed data to refine the simulation scenarios, which

might have potential missing cases from our investigation

and discussion. Second, the scope of this study was

designed at a macroscopic scale in which four provinces

in China were targeted. The idea of applying the proposed

SIR-based analytical framework to enterprises’ reaction

toward COVID-19 can be plausibly extended to model

individual agent’s reaction to ubiquitous adverse events

involving similar status at different phases (for instance,

a detailed modeling of infrastructure components in

response to natural disasters such as urban floods with

incremental phases). Thus, to further test the applicability

of the proposed framework the future work could focus on

engaging more case studies and further develop extensions for

the framework.
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