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Background and objectives: The high transmissibility of SARS-CoV-2 has

exposed weaknesses in our infection control and detection measures,

particularly in healthcare settings. Aerial sampling has evolved from passive

impact filters to active sampling using negative pressure to expose culture

substrate for virus detection. We evaluated the e�ectiveness of an active

air sampling device as a potential surveillance system in detecting hospital

pathogens, for augmenting containment measures to prevent nosocomial

transmission, using SARS-CoV-2 as a surrogate.

Methods: We conducted air sampling in a hospital environment using the

AerosolSenseTM air sampling device and compared it with surface swabs for

their capacity to detect SARS-CoV-2.

Results: When combined with RT-qPCR detection, we found the device

provided consistent SARS-CoV-2 detection, compared to surface sampling, in

as little as 2 h of sampling time. The device also showed that it can identify

minute quantities of SARS-CoV-2 in designated “clean areas” and through a

N95 mask, indicating good surveillance capacity and sensitivity of the device

in hospital settings.

Conclusion: Active air sampling was shown to be a sensitive surveillance

system in healthcare settings. Findings from this study can also be applied in

an organism agnostic manner for surveillance in the hospital, improving our

ability to contain and prevent nosocomial outbreaks.

KEYWORDS

air-sampling, SARS-CoV-2, Omicron, surveillance, mass screening

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.1067575
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.1067575&domain=pdf&date_stamp=2023-01-10
mailto:kaistan@nus.edu.sg
mailto:mdcdma@nus.edu.sg
https://doi.org/10.3389/fpubh.2022.1067575
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1067575/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tan et al. 10.3389/fpubh.2022.1067575

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), which causes Coronavirus Disease 2019 (COVID-19),

has profoundly disrupted life globally since December 2019

(1). Implementation of public health control measures since

the emergence of SARS-CoV-2, including mass testing, contact

tracing, border controls, quarantine, safe distancing, enhanced

cleaning, and mass vaccination, while important, could not

achieve sustained elimination of SARS-CoV-2 (2–4). In addition,

the potential airborne transmission of SARS-CoV-2 has further

hampered efforts to stem its circulation worldwide (5, 6). In

response, most regions have transitioned away from a zero

COVID-19 strategy toward endemicity by opening borders

and relaxing social distancing measures. However, frequent

testing to identify infected individuals remains a cornerstone

in curbing community transmission and has been modeled to

be an effective intervention for countries transitioning toward

endemicity (7). This is especially important in hospital settings

where nosocomial SARS-CoV-2 and other infectious pathogens

continue to pose a risk to vulnerable populations and healthcare

workers (8–10). Therefore, an effective hospital surveillance

programme, which allows rapid implementation of appropriate

containment measures and re-allocation of healthcare resources

is vital to mitigate preventable loss of life and the burden on the

healthcare sector (7, 10).

SARS-CoV-2 surveillance began with individual-based

testing early in the pandemic, using reverse transcription real-

time polymerase chain reaction (RT-qPCR) to detect viral RNA

from nasopharyngeal swabs samples (11, 12). Other screening

methods have also been employed, such as thermography,

antigen rapid tests (ART), and volatile organic compound

detection (12). Subsequently, mass surveillance efforts, such as

sampling wastewater for the presence of SARS-CoV-2 nucleic

acid, have been used to complement individual testing efforts

(13). Wastewater surveillance has historical precedence and

current relevance in poliomyelitis surveillance and has been

highly effective in identifying infection clusters or emergence

of COVID-19 globally (14–17). However, in endemic settings

where community caseloads are low, individual testing is

resource intensive yet of limited yield. Wastewater surveillance

involves coverage of large areas that may be non-specific to

the target location and cannot inform immediate infection

containment measures due to the retrospective nature of

the surveillance. Hence, neither surveillance methods may be

suitable in monitoring nosocomial airborne pathogens such

as SARS-CoV-2. Therefore, we and others have explored air

sampling as a mass surveillance system that can be conducted

near real-time in communal settings, especially for healthcare

environments (18–20).

The COVID-19 pandemic has exposed a gap in hospital

surveillance where there is a lack of a low cost and easily

deployable system for the rapid detection of nosocomial

pathogens (including SARS-CoV-2) in non-pandemic times.

While individual testing surveillance is effective, it is proving

to be unsustainable (21, 22). Additionally, an effective mass

sampling system would allow more rationale PPE usage with

its positive impact on healthcare worker’s experience and the

volume of biohazard waste (23). Studies on SARS-CoV-2 have

shown that traces of the virus shed from infected individuals,

both symptomatic or asymptomatic, can be detected in aerosols

and on surfaces (18, 24, 25). In this regard, air sampling

may be suitable as a mass surveillance tool to detect airborne

pathogens in the environment to indicate the presence of

infected individuals in specific locations. An advantage of air

surveillance is that it bypasses test-seeking behavior and could

detect pathogens from multiple individuals as a pooled source.

In addition, air samplers can be rapidly deployed with short

time-to-results to inform containment measures or as a near

real-time surveillance system.

Therefore, with the high SARS-CoV-2 case load fueled by the

high transmissibility of the Omicron variant of concern (VOC)

and its subvariants (26, 27), we tested a high flowrate aerial

sampler (AerosolSenseTM) as a surveillance tool in a healthcare

facility (National University Hospital) in Singapore housing

patients with and without COVID-19.We aimed to demonstrate

a proof-of-concept, using detection of the highly transmissible

Omicron VOC as a surrogate, to elucidate the feasibility of

aerial sampling for pathogen surveillance in healthcare settings.

Our findings may be applied for mass surveillance of other

airborne pathogens to augment monitoring in the hospital as a

preventative measure for nosocomial infections and outbreaks.

Materials and methods

The study was conducted from January to March 2022 when

Singapore’s first Omicron wave occurred, with Omicron BA.1

and then BA.2 representing almost all isolates by February,

according to the SARS-CoV-2 pathogen tracking in Nextstrain

database (28). We sampled the air and surface environments

of facilities that exclusively housed patients positive for SARS-

CoV-2 by RT-qPCR (C+ facilities) to compare both sampling

methods. We also sampled the air environment of a facility

not known to house COVID-19 patients (C- facilities) for

further comparison of aerial sampling sensitivity. All sampling

was performed in the National University Hospital (NUH), an

academic quaternary medical center in Singapore. As there was

no direct use of patient samples or identifiers involved, the study

was given a waiver of approval by the Domain Specific Review

Board (DSRB) of the National Healthcare Group (NHG).

Description of sampling locations

Air sampling was conducted in three different C+ facilities:

the negative pressure (NP) isolation wards, open-cohort wards,
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and the emergency department annex (EDA). We sampled both

patient areas and staff areas (designated clean areas separated

from the patient areas) in all three C+ facilities. All patients

in C+ facilities were admitted after a positive COVID-19 test

by RT-qPCR (with cycle threshold, Ct of <25). Both adults and

children were admitted to these three facilities. All C+ facilities

within NUH were at capacity with COVID-19 patients at the

time of sampling. Disease severity of the patients occupying the

wards during the study ranged from asymptomatic to moderate

to severe infection requiring oxygen. We did not sample the

intensive care units where severe cases including those on

mechanical ventilation were housed.

The NP isolation ward consists of 21 single occupancy

negative pressure rooms, each with 14 air changes per hour

(ACH) of fresh air with no recirculation. Each room has a

dedicated toilet, and four rooms have anterooms (designated as

clean areas with no PPE requirement). The room temperature

and relative humidity were maintained at 23◦C and 60%,

respectively, while in use. We only sampled rooms housing

RT-qPCR confirmed COVID-19 patients.

The open-cohort ward had been re-purposed to exclusively

care for COVID-19 patients. The entirety of the patient ward is

designated as “contaminated” and is entered via an electronically

activated sealed door. Healthcare staff must don full PPE

consisting of N95 masks, long-sleeved gowns, gloves, and

goggles once they enter the ward. All patients wore regular

surgical masks whenever possible in the open-cohort ward. The

open-cohort ward consists of seven open cubicles, each housing

six patients, with one toilet and shower per cubicle. There

are two single rooms in the ward with their own bathrooms.

A common corridor connects the cubicles and single rooms.

The ward employs natural ventilation with open windows and

ceiling fans. The temperature and relative humidity fluctuate

according to the outdoor air of this tropical climate with a

range of 24–30◦C and 60–90%, respectively. Non-patient care

areas are designated clean staff areas according to hospital

guidelines, which are located immediately adjacent to the wards

but are outside of the patient areas. Staff do not don full PPE

in staff areas but don medical-grade surgical masks as per

hospital guidelines.

The EDA was built toward the end of 2021 to accommodate

the surge in patients during the Omicron wave. Patients in

the EDA were either suspected or proven COVID-19 patients

and remained in the EDA while awaiting SARS-CoV-2 swab

RT-qPCR or ART results to triage for transfer to community

COVID-19 facilities, admission to hospital or discharged home.

The EDA contains 19 cubicles, each with floor to ceiling sliding

doors and a single exhaust vent per room which exhausts HEPA

filtered air to the exterior. The corridors maintain an overall

positive pressure relative to the individual rooms. A healthcare

staff workstation is located between two central corridors in the

middle of the EDA. A staff rest area with dedicated ingress and

egress is separated from the rest of EDA by a door. The staff

rest area has dedicated ceiling exhaust and maintains an overall

positive pressure relative to the rest of the EDA. Portable HEPA

filter air purifiers were also placed in the staff rest area. ACH

in the EDA is 12 ACH (2 fresh, 10 filtered and recycled). Both

the staff workstation and rest area are designated clean areas

where staff do not don full PPE but have N95 mask on as per

hospital guidelines. During the sampling period, the EDA was

confirmed to house RT-qPCR confirmed COVID-19 patients

and only rooms housing these patients were sampled, in addition

to the staff areas.

The C- facility is an open-cohort ward that did not house

known COVID-19 patients. In the C- facilities, all patients wore

surgical masks whenever possible, while staff don N95 masks,

as per prevailing national guidelines in Singapore. Staff do not

don full PPE. To ensure that the C- facilities have no overt

transmission, all patients were tested on admission, while staff

who were symptomatic or identified as a close contact were

tested to ensure that they are negative for SARS-CoV-2 via RT-

qPCR or ART. Visitors were not allowed during the period

of sampling. This remained the standard practice in hospitals

in Singapore throughout the sampling period. The negative

controls were obtained from 2 rooms located within an adjacent

office building for staff that are separate from the hospital, as

non-hospital location negative controls.

All sampling areas, including the C- facilities, were

under restricted access limited to patients and healthcare

workers caring for these patients. All staff were required to

perform twice-weekly self-testing ART. No untested patients

or healthcare workers entered these restricted areas during

sampling periods, as part of Singapore’s COVID-19 restriction

guidelines for safeguarding healthcare personnel. Due to the

restricted access of only necessary healthcare workers that are

present in all wards, traffic through the sampling locations was

hence comparable.

The sampling locations were categorized based on C+

patient traffic for analysis of detection sensitivity. Hot areas were

designated “dirty” areas based on active C+ patient movements,

where staff entering the areas don full PPE. Warm areas were

designated “clean” areas with no C+ patient movements, where

there are no full PPE requirements for staff other than N95

mask, but are areas directly adjacent to Hot areas. Warm areas

include the anterooms, staff workstations and rest areas under

positive pressure. Cold areas were designated “clean” areas not

housing C+ patients, have no full PPE requirements, and are

located apart from the Hot areas. Negative controls were taken

from an adjacent building as a non-hospital location control.

The schematics of the C+ and C- facilities are shown in Figure 1.

Air sampling

All air sampling was conducted with a cartridge-based

AerosolSenseTM air sampler (Thermo Fisher Scientific) at a
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FIGURE 1

Sampling plans (air and surface) and location in Hot, Warm, and Cold areas of the emergency department annex, negative pressure isolation

ward, and open-cohort wards (C+ and C-).
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FIGURE 2

Comparison of SARS-CoV-2 detection by sampling duration. (A) Comparison of RNA copy number in air samples collected from the same

location following 2 or 14h of sampling. Statistical significance was calculated using a two-sample t-test, n = 6. (B) Paired samples from

individual locations with di�erent sampling time. n = 1 for each paired location.

FIGURE 3

Positive detection of SARS-CoV-2 RNA copies from air and surface swab samples in C+ facilities. (A) Detection of SARS-CoV-2 RNA copies were

found in 27 out of 28 (96.4%) air samples compared to 18 out of 32 (56.3%) surface swab samples. Positive detection was defined as being above

the detection limit of the RT-qPCR performed on the collected samples, factoring in the dilution factor of the sample collection fluid. Detection

limits: 40 RNA copies (air); 90 RNA copies (surface swab). (B) SARS-CoV-2 RNA copies in positive samples from C+ facilities (Hot and Warm

areas) were comparable between air and surface swab samples. Statistical significance was calculated using a two-sample t-test.

rate of 200 L/min through a vertical collection pipe and

impacted onto the collection cartridge. The AerosolSenseTM

is designed to collect aerosolized particles with a diameter

between 0.1 and 15µm. The air sampler has been used in a

variety of environmental settings to detect and quantify SARS-

CoV-2 RNA. A single-use sampling cartridge containing 2.5 cm

collection substrates in a sponge was installed into the sampler.

Air samples were collected from all C+, C- and negative control

areas during an overnight 14-h period (6 pm−8 am the next

day), or during a 2-h period (7 am−9 am). The exception would

be air samples from EDA, which were collected over 24 h (8

am−8 am the next day). Sampling times and device placements

were selected to minimize disruption to clinical service and

ensure minimal accidental contamination or movement of the

samplers. In the NP isolation ward, air samplers were placed

in the patient’s room, <2.5m away from the patient (Hot

samples), and in the anteroom (Warm samples). In the EDA,

air samplers were placed inside patient rooms, <2.5m away

from the patient (Hot samples) and two staff areas (Warm

samples). In the C+ open-cohort ward, air samplers were

placed within patient cubicles <2m away from the nearest

patient (Hot samples), common areas <10m away from the
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FIGURE 4

Comparison of SARS-CoV-2 detection by sampling location and

distance. (A) SARS-CoV-2 copy number grouped by location of

exposure to SARS-CoV-2. Hot: areas with C+ patient tra�c;

Warm: areas in COVID-19 wards with no C+ patient tra�c;

Cold: areas not expected to have C+ patients. n = 32 (excludes

masked samples). Groups were compared using non-parametric

Kruskal-Wallis test. (B) Comparison of RNA copy number by

distance from closest C+ patient for air samples. n = 30

(excludes masked samples and negative controls). Correlation

analysis was conducted using Pearson’s correlation.

FIGURE 5

Comparison of SARS-CoV-2 detection by the AerosolSenseTM

sampler with or without mask. SARS-CoV-2 RNA was detected

in both Hot and Warm locations with or without mask. n = 2 per

group.

nearest patient (Hot samples), and staff areas separated by one

or more doors from patient areas, located <14m away from

the nearest patient (Warm samples). Two air samplers were

placed in the C- open-cohort ward for 2 and 14 h each (Cold

samples). Two air samplers were placed in office rooms not

connected to the hospital (negative control samples). A total of

36 air samples were collected: 23 in C+ open-cohort ward, 5

in NP isolation rooms, 4 in EDA, 2 in C- open-cohort ward,

and 2 negative controls. In addition, separate testing was done

using N95 respirators (n = 1 Hot; n = 1 Warm) and surgical

masks (n = 1 Hot; n = 1 Warm) covering the inlet of the

sampler to simulate mask wearing on the effect of detection

(Supplementary Figure 1).

Surface sampling

Surface samples were obtained using sterile swabs

moistened with viral Universal Transport Media (UTM; Noble

Biosciences). Each surface sample was collected by swabbing a

10 × 10 cm site. Swab samples were collected at the completion

of the air sampling cycle in each of the three C+ facilities (Hot

and Warm samples only) and collected at similar locations

to where air sampling was conducted, for comparison. The

chosen swab sites had not been cleaned for at least 8 h prior to

swabbing. Surfaces of both patient care areas, including toilets

(Hot samples), and staff areas (Warm samples) were swabbed.

Surface sampling were not conducted in C- facilities for Cold

samples collection based on previous data where there was

absence of detection in C- areas (18). In addition, the Cold

sample collection was conducted mainly to assess the detection

sensitivity of air sampling. All surface swab samples were stored

in 1.8ml of viral UTM. A total of 32 surface samples were

collected: 12 in NP isolation rooms, 16 in C+ open-cohort

ward, and 4 in EDA. All sampling processes and workflow are

summarized in Supplementary Figure 2.

Sample processing

All samples were processed on the same day of collection in

the National University of Singapore biosafety level 3 laboratory.

For air samples, the collection sponge was removed from

the cartridge and placed in 800 µl of Dulbecco’s Modified

Eagle Medium (Gibco), vortexed, and aliquoted into screw-

cap tubes. For surface swabs, the UTM tubes were vortexed

and aliquoted into screw-cap tubes. All samples were stored at

−80◦C until analysis.

Quantification of viral RNA

RNA was extracted using the QIAamp MinElute Virus

Spin Kit (Qiagen) according to manufacturer’s instructions,

eluted in 50 µl of nuclease-free water, and stored at −80◦C

prior to RT-qPCR. RT-qPCR for SARS-CoV-2 was performed
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using the TaqPathTM 1-Step RT-qPCR Master Mix, CG

(Applied Biosystems) and the Centers for Disease Control and

Prevention (CDC) N1 assay (Integrated DNA Technologies).

Thermal cycling was performed with the QuantStudioTM 6

Pro (Thermo Fisher Scientific). All samples were analyzed

in duplicate. Viral RNA copies were calculated from a

standard curve constructed with the N gene positive control

plasmid (Integrated DNA Technologies) and multiplied by

the dilution factors to obtain copies in original samples.

The detection cut-off was calculated from the limit of

detection multiplied by the dilution factor of the samples,

i.e., 40 RNA copies for air, and 90 RNA copies for

surface samples.

Viral cultures

Selected samples with low threshold cycle (Ct) values

(top 3 air, top 3 surface swab, and 1 RT-qPCR negative

from each sample type) were cultured in a 12-well

plate of confluent A549-ACE2 cells using 25% of the

original sample volume. Cultures were passaged onto

a new plate at 3 days post infection. Both plates were

observed daily for cytopathic effect and harvested at 6 days

post infection.

Statistical analysis

Each datapoint of our analyses represent an individual

collection performed in separate locations, or on

different days. Four datapoints from sampling with mask

(surgical/N95) were not included in the analyses except for

the mask comparison collection. Analyses and graphs were

performed with GraphPad Prism version 9.0. Individual

statistical analyses are denoted in the figure legends.

Statistical significance was defined as having a p-value of

p < 0.05.

Results

We aimed to evaluate air sampling for mass surveillance

in hospital settings that can aid detection of nosocomial

pathogens as well as inform containment design for

future outbreaks with potential aerosol transmission.

Therefore, our study focuses on assessing the duration,

consistency and distance of aerial surveillance using

an active air sampling device (AerosolSenseTM). The

raw detection values of the sampling results are

listed in Supplementary Table 1 (air sampling) and

Supplementary Table 2 (surface sampling).

SARS-CoV-2 RNA can be detected with
short air sampling times

We first assessed the duration of air sampling that can

enable the detection of SARS-CoV-2 RNA by comparing

sampling times of 2- and 14-h in Hot, Warm, and Cold

areas. We found sufficient RNA above the detection cut-

off to be considered positive for both sampling times

in all locations, and the differences were not statistically

significant (Figure 2A). Interestingly, we observed positive

detection in Warm and Cold areas for both sampling times,

which are designated “clean” areas according to hospital

guidelines, albeit at lower levels compared to Hot areas.

When further categorized based on C+ patient traffic,

SARS-CoV-2 detection levels were mostly comparable across

the sampled sites (Figure 2B). Therefore, for subsequent

analyses, all data points across different sampling durations

were included.

Air sampling is a more consistent method
of detection compared to surface swab
in C+ facilities

Twenty-eight air samples (excluding masked samples)

were collected and processed for SARS-CoV-2 RNA by RT-

qPCR. Of the 28 samples (19 from Hot and 9 from Warm),

27 returned positive (96.4%), while 1 was negative. All 19

of the Hot samples were positive (100%), while 8/9 of

the Warm samples were positive (88.9%). Concurrently, 32

surface swab samples (29 from Hot and 3 from Warm)

were obtained from C+ facilities during the same collection

window, and only 18 samples returned positive (56.3%).

Among them, 17/29 of the Hot samples returned positive

(58.6%) while 1/3 of the Warm samples returned positive

(33.3%; Figure 3A, Supplementary Figures 3, 4). While the

detection cut-off for surface sampling was higher than that

of air sampling (90 vs. 40 RNA copies), almost all the

negative surface detection (13/14) were a result of non-

detection of SARS-CoV-2 RNA (N.D, no Ct value), as

opposed to none from the air sampling in C+ facilities

(Supplementary Tables 1, 2). Among the positive detections,

the levels of detection between air and surface sampling

were shown to be comparable with no significant differences

(Figure 3B). This suggests that while both sampling methods

can retrieve similar levels of SARS-CoV-2 RNA, air sampling

can provide more consistent detection results compared to

surface sampling, where detection is dependent on the area

swabbed. In addition, it is interesting that we found positive

detection in Warm areas which are designated “clean” areas.

This highlights the need for a sensitive surveillance system

for consistent detection of possible contamination to inform
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further adjustments in containment measures, or to identify pre-

symptomatic individuals who were falsely negative by hospital

admission ART.

SARS-CoV-2 RNA can be detected across
long distances via air sampling

We observed consistent detection of SARS-CoV-2 RNA in

Warm and Cold areas (“clean” areas). Despite being designated

as a “clean” area with no COVID-19 patients, both of the air

samples collected in Cold areas returned positive for SARS-

CoV-2 detection. As negative controls, we collected air samples

from an adjacent office building, which returned negative for

SARS-CoV-2 detection. This suggests that the positive detection

from the Cold area was not a false positive result. When we

further analyzed the SARS-CoV-2 copy number detected in

each area (Figure 4A), we found that there was a significant

difference between the Hot and Warm areas, attributed to the

presence of C+ patients in Hot areas. The level of detection was

similar in Warm and Cold areas, which are both “clean” areas.

We also compared the levels of SARS-CoV-2 RNA detected

based on proximity to the closest bed assigned to a COVID-

19 patient and whether there was physical separation from

COVID-19 patients. SARS-CoV-2 RNA was found in generally

lower quantities in locations further away from COVID-

19 patients (r = −0.4154; Figure 4B). However, SARS-CoV-

2 RNA could still be detected more than 30m away from

the closest COVID-19 patient. Our data suggests that despite

physical designation of “contaminated” and “clean” areas by

hospitals, SARS-CoV-2 can still be detected in proximate areas

within the same building, during times when large numbers of

infected patients are present. This suggests that the air sampling

device can potentially be used to detect aerial contamination

in a building to inform decisions regarding more effective

containment measures.

SARS-CoV-2 RNA can be detected by the
air sampler when “masked”

We also performed a limited test of air sampling where

the sampler inlet was covered by either a surgical or N95

mask, compared to a sampler without mask cover in Hot and

Warm areas to simulate both “clean” and “dirty” environments

(Supplementary Table 3). The air sampler was able to detect

SARS-CoV-2 through masks when sampled for 14-h, albeit at

a potentially lower level for a N95 mask, but not for surgical

mask (Figure 5). This suggests that the strength of the sampler

is sufficient to negate the mask effect when sampled for longer

durations and suitable for hospital surveillance where mask

usage is common.

Samples with positive SARS-CoV-2 RNA
detection were not viable when cultured

Lastly, we selected three samples each from air and surface

sampling with the highest copy number (lowest Ct values) and

performed viral culture of these samples. We were unable to

retrieve viable virus from two passages based on the lack of

cytopathic effect in all cultures. RT-qPCR was also performed

on the viral culture supernatants which confirmed the lack of

viral replication.

Discussion

Over the past 2 years, different infection control measures

have been implemented to contain the SARS-CoV-2 virus, with

varying degrees of success (3, 29, 30). As regions shift toward

endemicity, SARS-CoV-2 surveillance will be a key component

of public health measures to pre-empt surges and manage

healthcare resources accordingly. This is in particular due to

the potential airborne transmission of SARS-CoV-2 (31–33), the

emergence of the relatively more transmissible but less virulent

Omicron VOC (27), a large number of asymptomatic infections

(34), and pre-symptomatic transmissions (35) that have been

reported since the beginning of the pandemic. Hospitals remain

a high-risk location for nosocomial outbreaks (36), regardless

of high or low community caseloads. While many mitigation

measures worked during the pandemic (7, 21, 22), the resource

intensiveness of these measures warrants further updates on

handling nosocomial outbreaks and hospital transmission. In

our study, we performed air sampling with the AerosolSenseTM

to demonstrate, as a preliminary proof-of-concept, that the

method was sensitive and applicable for mass surveillance of

SARS-CoV-2 in the hospital setting (18, 37).

Air sampling surveillance has been developed and

conducted during both the current COVID-19 pandemic and

past outbreaks (19, 38, 39). Early studies have shown that

SARS-CoV-2 can be found in the environment, especially in

areas close to the infectious sources, carried by droplets and

possibly aerosols generated by infected individuals (5, 40, 41).

Expanding on previous controlled testing of the device (37),

our results provided additional evidence in a healthcare setting

that demonstrated a sensitive, consistent and high rate of

detection of viral RNA found in almost all locations sampled,

even in designated “clean” areas, and with great distances (up

to 30m) away from infected patients. Our data indicates that

the AerosolSenseTM device had consistent detection across

long distances in well-ventilated spaces. Additionally, the high

flow rate of 200 L/min allows detection in short time frames.

These features are a combination of the individual strengths

of different sampling methods reported in previous studies

and highlights the utility of the device we tested (18, 42, 43).

In addition, findings of long-distance aerial dispersal have
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been reported (43, 44), which further affirms the utility of this

device for long-range detection. Furthermore, the device we

employed utilized liquid-coated collection substrates, which

can improve the retrieval rate of airborne pathogens such as

SARS-CoV-2 (45). Notably, we were able to detect viral RNA

through N95 respirators and surgical masks in the C+ facility

(Hot and Warm areas). This suggests that air sampling is

suitable as a surveillance method in areas with mask usage,

such as in healthcare settings which require staff to don PPE. At

the same time, this also emphasizes the potential limitations of

non-pharmaceutical interventions in preventing transmission

and highlights the effectiveness of a surveillance system to

complement public health measures (46, 47).

Air surveillance sampling offers several advantages, as

shown by our results, such as localized coverage of entire

rooms or floors in the built environment, near real-time results

(in as little as 2 h of sampling), and sensitive detection from

a pooled source. The device is portable with no installation

requirements, allowing rapid deployment in hospital wards

and other healthcare facilities (e.g., quarantine and community

isolation centers). Employing this additional layer of aerial

surveillance can help to further subvert risk of transmission

and nosocomial outbreaks in hospital and healthcare settings,

providing added protection to healthcare workers and high-risk

patients (48–50). Furthermore, the air sampling device can be

used to test new prevention and containment measures in future

hospital or clinic building designs.

In comparison, environmental surface sampling (51), was

found to vary more and may be dependent on the location

swabbed, traffic, and cleaning frequency. This is especially

apparent when surface samples tend to return higher detection

levels at high touch surfaces, while low touch areas may result

in false negatives. Therefore, a high number of surface samples

would be required to adequately assess an area, which may not

be a sustainable practice. This is circumvented by air sampling

which can cover a wider area and over time, with a manageable

number of units and samples. We did not perform surface

sampling in the Cold areas as our previous study showed

no detection in C- facilities (18). Indeed, this was further

observed in the current study where surface sampling more

frequently returned non-detection, even in Hot areas. Thus,

the comparison between air and surface sampling in our study

highlighted the higher coverage and sensitivity of air sampling

for the detection of nosocomial pathogens in hospitals.

The AerosolSenseTM air sampling device may also be

potentially employed in a pathogen agnostic manner for

detecting nosocomial infections, due to its ability to detect

different pathogens when coupled with molecular techniques

like RT-qPCR (20). Such routine surveillance of the “air

microbiome” has been proposed and can be applied to

healthcare settings in nosocomial infection surveillance,

although the current focus has been on fungal and bacterial

organisms rather than viruses (52). With the air sampling

techniques developed during the pandemic, it is now possible

that routine surveillance of the “air microbiome” might allow

for better design of healthcare buildings and surveillance system

in preventing nosocomial infections and protecting healthcare

staff. This is also congruent with the socio-behavioral changes

in the population post COVID-19 pandemic, which emphasizes

aerosol/airborne transmission control and healthcare worker

protection to mitigate infection risks. The deployment of aerial

surveillance devices could create a safe hospital environment

and improve public confidence in the continual usage of

healthcare facilities (53). In addition, the emergence of Omicron

and its subvariants with improved transmission also indicates

the need for more effective surveillance on potentially airborne

pathogens as added measures to inform infection control

(6, 54–56).

Our study, however, is not without its limitations. Firstly,

we did not map airflow vectors in the environments sampled,

which could have resulted in false negative surveillance of the air.

We rectified this limitation by placing samplers within patient

respiratory exhalation dispersion areas, sampled for longer

periods of time, and found that we were able to detect SARS-

CoV-2 in almost every area sampled. Secondly, our sample

size and sampling areas were small, which may not reflect

the same layouts as other healthcare facilities. Although we

did try to cover both NP isolation wards and cohort wards,

we could not cover all the different clinical settings. We also

had small sample sizes for the C- Cold areas and mask study.

Hence, the findings on sampling distance and mask usage

are preliminary and warrant further studies. Thirdly, while

we detected SARS-CoV-2 RNA, viable virus was not retrieved

from cultures. This may be due to several reasons, such as

shedding of non-viable virus, levels of viable virus below what

can be detected, or collection technique impacting viral viability.

Sampling techniques from the environment often entails harsh

mechanical collection that may impact even direct collections

from infected patients (5). Therefore, high flow rate sampling

devices, such as the AerosolSenseTM used in this study, may not

be suitable for transmission studies that require detection of live

viruses. Nevertheless, it remains a powerful qualitative tool for

surveilling environmental pathogens in hospitals to detect the

potential for nosocomial outbreaks before they occur, protecting

healthcare workers and vulnerable, high-risk patients. Lastly,

due to the limited scope of the study, we did not have sufficient

data to evaluate the airborne transmission risks. However, we

reported standardized quantified viral loads, allowing future

studies to utilize our results for transmission modeling.

In conclusion, for viruses and pathogens with airborne

transmission potential, a sensitive air sampling method will

allow mass surveillance and monitoring of viral presence

in healthcare settings with increased transmission risk. Our

study provided proof-of-concept for future studies to optimize

protocols for such surveillance that can detect and prevent

nosocomial outbreaks early. The surveillance strategy employed

in this study can be rapidly adapted due to its pathogen

agnostic nature. In addition, the same sampling equipment
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can be used for the detection of novel pathogens when paired

with molecular technologies (multiplex qPCR or unbiased next

generation sequencing), improving our capabilities in screening

for the likely disease X candidates during their early emergence

when patients present themselves. The utility of such a device

and sampling method may be vital for future infection control,

especially with globalization encouraging the transmission of

respiratory infectious diseases.
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