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Understanding the thermal characteristics and contribution ranking of

local climate zones (LCZs) is essential since they can help in maintaining

environmental harmony. However, previous studies only considered

independent e�ects and could not analyze the combined e�ects of LCZ

on land surface temperature (LST). In this study, we propose a new method

to establish an interaction model between LCZs. Five first-level grids with

di�erent scales from 270 to 990 m were established to calculate the area

proportion of LCZ. The area proportion of LCZwas then applied in the stepwise

regression model to quantitatively analyze its magnitude and direction of

impact on the LST. The results suggest that the LCZ types of the study area

with the highest and lowest average LST were LCZ2 (compact middle-rise

building, 39.82◦C) and LCZG (water body, 34.24◦C), respectively. However, on

most scales, the warming e�ect of LCZ2 was lower than that of LCZE (bare

rock or paver), and the cooling e�ect of LCZG was lower than that of LCZD

(low plants). The optimum results were obtained at a scale of 810m. At this

scale, the warming e�ect was in the order: LCZE (0.314) > LCZ2 (0.236) >

LCZ3 (compact low-rise building, 0.135) > LCZ5 (open middle-rise, 0.084)

> LCZ6 (open low-rise, 0.056); the cooling e�ect was in the order: LCZD

(−0.272) > LCZA (dense trees, −0.104) > LCZG (−0.103). These findings can

help to elucidate the unique warming and cooling e�ects of LCZ on the

interaction condition and the construction of an urban human settlement.

KEYWORDS

land surface temperature, local climate zone, stepwise regression model, urban

thermal characteristics, Shenyang

Introduction

With the continued progress of urbanization, artificial structures such as roads

and houses are increasing in number and substantially changing the surface form

(1). Extensive urban growth in the past has created a particular burden on

the environment, thereby affecting the balance of urban climate regulation and

causing numerous problems such as the heat island effect and air pollution (2–4).
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Global heat exposure has risen dramatically in recent years,

thus increasing the risk of extreme heat and the frequency

of deaths; heat-related excess deaths are projected to rise by

2.4% in 2030 and by 5.5% in 2090 (5–9). To protect human

life, the following goals have been adopted by researchers

worldwide, namely: improving production, increasing living

efficiency, reducing energy consumption (10–13), maintaining

an ecological balance, and creating a comfortable and healthy

urban thermal environment (14–16).

Land surface temperature (LST), which refers to the

temperature at the intersection of the land surface and the

atmosphere, affects many natural ecological processes including

atmospheric circulation and energy balance. It is a critical

parameter for monitoring the urban thermal environment.

Remote sensing technology can provide thermal radiation

information, as well as multi-temporal and synchronous LST

data over large areas, for thermal environment research

(17). For example, surface temperature data can be used to

analyze the intensity and distribution characteristics of heat

islands at different temporal and spatial scales to coordinate

ecological protection and urban construction processes (18–

21).

The mechanisms underlying LST change are complex.

Researchers often consider the effects of urban form and

landscape on LST (22–25). Variations in land surface cover often

lead to temperature differences. The LSTs of natural covers such

as grassland and water are usually lower than those of built-

up areas (21). To quantitatively analyze the factors influencing

LST, the normalized vegetation index (NDVI) and normalized

water body index (NDWI) are calculated. A positive correlation

has been found between the percentage of impervious surface

and LST (26). The influence of factors such as building density

(BD), average building height (BH), and floor area ratio (FAR)

on the urban thermal environment has also been widely studied

(14, 27–29). The correlation between BH and LST is weak in the

daytime, but strongly positive at night. The aspect ratio of street

canyons in urban core areas is negatively correlated with LST

in the daytime and positively correlated during nighttime (30).

Socio-economic development and human activities also affect

the urban thermal environment. Based on the perspective of

urban functional areas, Chen et al. (31) noted that the thermal

contributions of residential, industrial, and commercial service

facility lands vary significantly. However, the contribution

of anthropogenic heat to the urban thermal environment is

relatively weak, while solar radiation, surface type, and urban

form play more critical roles (32).

To better describe the impact of urban land cover, surface

morphology, and three-dimensional architectural features on

the thermal environment, Oke and Stewart (33) proposed the

concept of local climate zone (LCZs). This concept has been

widely used (34–36) as a highly versatile urban form zoning

method, which can easily analyze urban characteristics and

compare multiple cities under a unified standard (37, 38).

There are numerous studies on the thermal environment

using the LCZ concept (39–42). Considering the calculation of

heat island intensity as an example, many limitations exist in

the traditional urban–rural binary division. The introduction

of LCZ improves the fuzzy division of the previous binary

structure, and reduces the difficulty in analyzing heat island

characteristics. The temperature differences between LCZ

classes are used to better describe the spatial differentiation

characteristics of heat islands, which lays a foundation for

further analysis of the driving force of heat island intensity (43).

Several studies have analyzed the temperature differences and

characteristics within and between LCZ classes and found that

the LST of building types was generally higher than that of

natural types (44, 45). From the LCZ perspective, LST exhibits

obvious day–night and seasonal differences (46, 47). Chang

et al. (26) classified LCZ by community units and analyzed the

diurnal variation characteristics of LST on different types of LCZ

in downtown Xi’an by combining ECOSTRESS (ECOsystem

Spaceborne Thermal Radiometer Experiment on Space Station)

data. These results showed that the warming rate of low-

rise compact buildings was higher than that of open high-

rise buildings in the daytime, and the height effect became

insignificant during nighttime (26). The influence of LCZ on

the thermal environment varies in cities of different sizes; the

occurrence probability is higher in large cities (48). For the

impact of specific types, the subjective thermal perception of

“warm” was found to be more likely observed in LCZ types with

close high-rise buildings (39).

These previous studies on the impacts of different types

of LCZs on LST are mostly limited to the thermal differences,

and the combined effect from different LCZ types is generally

ignored (49). Although some studies quantify the relationship

between LCZ and LST from a statistical perspective, the

connection between LCZ and LST is independent (40, 45). All

these studies were based on the hypothesis that when exploring

the relationship between a certain type of LCZ and LST, the

changes in other LCZ types are independent and do not affect

the results. This hypothesis is reasonable because changes in

LCZ do not occur dramatically in a short time and they are in

a relatively static state. However, it may neglect the interaction

of different types of LCZ in space, and it failed to analyze how

different types of LCZs synchronously affect the LST. There have

been many studies using land use for reference. For example, in

addition to calculating the independent impact of each factor on

LST, the land use and vegetation cover types of adjacent plots

have a specific interaction with the ontology, thereby affecting

the changes in LST (50, 51). Given that the competition of

land use types affects the urban LST, which can be calculated

using regression models, this study assumed that the interaction

between different LCZs is also likely to affect the changes in

surface temperature. Other than calculating the effect produced

by a single LCZ type, we quantified the combined effect of all

LCZs on the LST.
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Herein, we have created a new method to analyze the

combined effects of LCZ. Firstly, we classified LCZ and

calculated LST to evaluate urban thermal characteristics from

the traditional perspective. Next, we created a first-level grid as

a platform to analyze the joint impact of the LCZs. As LCZ is

a classification concept, we used the area proportion of each

LCZ to quantify the LCZ. Finally, we used correlation and

regression analyses to measure the effects of different LCZs on

warming and cooling, thereby showing their combined effect.

The ranking of the contribution of different LCZs to LST was

compared by a standardized coefficient. This study aimed to

solve two problems: (1) Creating a new method to measure

the combined impact between LCZs, and (2) revealing the

thermal characteristics of LCZ under combined effects. We

used the area within the fourth ring road of Shenyang as a

case study, but this method can be extended to other areas.

Our results can explain the relationship between LST and LCZ,

identify the combined influence of different types of LCZs on the

urban thermal environment, and provide a reference for urban

renewal, planning, and future construction.

Data and methods

Study area

The study area is located in Shenyang, the capital of Liaoning

Province, in northeastern China (122◦25
′

-123◦48
′

E, 41◦12
′

-

43◦2
′

N). The terrain is relatively flat and mainly consists of

plains. The eastern boundary extends from the hills of eastern

Liaoning, and the western region comprises the alluvial plain

formed by the Liao and Hun rivers. Shenyang has four distinct

seasons and a temperate semi-humid continental climate with an

annual average temperature of 6.2–9.7◦C. Precipitation occurs

mostly in summer, often in the form of torrential rains in July

and August. The study area is within the Fourth Ring Road of

Shenyang (Figure 1), which is the central urban area of socio-

economic development in Shenyang. To balance the processes of

urban development and the construction of human settlements,

it is essential to study the thermal environment.

Data source

The data includes land use, Landsat-8 images, MODIS

images, building vectors, and other auxiliary data. The detailed

attributes and sources are listed in Table 1. A land use and cover

change data including secondary classification is used. The land

use data in this study have been recorded every 5 years. We used

one of its pictures in 2015. To ascertain the actual land use in

the study area, the land use data of 2015 were partially updated

using the multi-spectral image data of Landsat-8 in 2018. Using

manual visual interpretation, the green space contour of some

large parks in Shenyang was extracted. Finally, potential features

classified by LCZ are reclassified into seven types in the figure.

The updated land use data are shown in Figure 1.

Method

We used remote sensing data, land use data and building

vector data to calculate LST and divide LCZs. The concept of

first-level grid was introduced to calculate the area proportion of

LCZ. The correlation was calculated for area proportion of LCZ

and LST. The stepwise regression model was used to analyze

the warming and cooling effects of LCZ under the combined

influence. The frame figure is shown in Figure 2.

LCZ classification

We combined land use and building data to classify LCZs.

A 30m grid was established for the study area, and the BD

and average BH of each grid were calculated. The classification

criteria are shown in Table 2 (33, 35, 38, 52). The LCZ was

classified into six building coverage types comprising LCZ1–

LCZ6, and seven non-building coverage types (i.e., natural

surface type) comprising LCZA–LCZG.

LST calculation

In this study, the LSTs were obtained from Landsat-8

and MODIS data. We used the single-window algorithm for

retrieving LST from Landsat-8 TIRS10 images (53, 54). Using

Planck’s formula, the LST calculated using Landsat-8 T_S is as

per formula (1):

Ts =
K2

ln
(

1+ K1
B(TS)

) (1)

B (TS) represents black body radiance, K1 = 774.89, and K2

= 1,321.08.

Further, to eliminate the influence of outliers that may

exist in single-day data, the average was calculated using

synthetic MOD11A2 (acquired on 28 July and 13 August, 2018).

MOD11A2 is an 8-day composite LST product of MODIS,

including daytime and nighttime data. We select daytime data

whose collection time is consistent with Landsat-8. MOD11A2

was selected and all data were resampled to 30m resolution.

Finally, the average value of Landsat LST and MODIS LST was

calculated as the ultimate LST of the study area in August, with

a resolution of 30 m.

Thermal contribution calculation

Based on the method of calculating the area proportion of

land use types, this study established a numerical relationship
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FIGURE 1

Location of the study area.

TABLE 1 Research data and sources.

Data Description Source

Raster Land use and cover change data,

(30m, 2015)

www.resdc.cn

Remote sensing data MOD11A2 Ts production, 1,000m,

(28 July, 2018, 13 August, 2018)

USGS

Landsat-8, (30m, 12 August, 2018) gscloud.cn

Building data Building profile data, (2018) map.baidu.com

Auxiliary data Study area vector data webmap.cn

between the area proportion of LCZ and LST (51). To

quantitatively represent the LCZ and study the relationship

between different LCZs, five levels of first-level grids were

created as statistical units (50). The first-level grid refers to the

basic unit used to calculate the area proportion of LCZ. Within

the scope of each first-level grid, the total area proportion of

various LCZs is 1, and can be regarded as the impact of the

competition between LCZs on the LST of the first-level grid. The

combined effect is shown as the warming and cooling effect of

LCZ. Therefore, the concept of first-level grid can be used to

assess the combined effect of LCZ on LST. It remains uncertain

which scale the combined effect of LCZ is more significant,

hence this study used a variety of scales of the first-level grid. The

cell sizes of the grids were 270, 450, 630, 810, and 990m. Figure 3

shows the case of a 990m grid covering the study area. When

a first-level grid was located covering the entire study area as

shown in Figure 3A, the sample was adopted. The total qualified

grids were: 16,624, 5,904, 2,977, 1,776, and 1,177. Figure 3B

shows the LCZ range covered by the five first-level grids. We

then calculated the proportions of various LCZs and average

LSTs under the first-level grid cells using ArcGIS 10.8 tools, such

as intersection and summarization.

Next, Pearson correlation analysis was conducted to

investigate the presence of significant correlations between LCZ

variables and LST. A stepwise regression model was established

to analyze the combined impact of different LCZ and LST types

and the contribution of each type of LCZ to LST. The stepwise

regression model can select the most important variables and

analyze the specific dependence between independent variables

(the area proportion of LCZ) and dependent variables (LST).

This stepwise regression tested the significance and contribution

by introducing independent variables individually and removing

independent variables that did not meet the standard. We
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FIGURE 2

Research framework.

used the F-value to express the conditions for entering the

independent variable model. When F < 0.05, the independent

variable can enter the model, while F > 0.1 indicates that the

independent variable is removed. The stepwise regression model

was constructed using IBM SPSS statistics 26. The process was

repeated until no independent variables remained to enter or be

removed from the model (55). The best linear regression model

was established by considering LST as the dependent variable

and LCZ area proportion as the independent variable. In this

case, all variables in the regression model were significant. The

final regression model was as follows:

LST = β1 × LCZX1 + β2 × LCZX2 + +βn × LCZXn + b ·(2)

where LCZXn represents the proportion of LCZ1–G; βn is

the regression coefficient of LCZXn; b is a constant term.

We normalized β1 − βn to compare the contribution of

different types of LCZ to the LST. The standardized coefficients

were used to measure the direction and relative size of the

contribution of different LCZs to the LST at different scales.

A positive standardized coefficient indicates that the LCZ type

has a warming effect on the LST, and a negative standardized

coefficient indicates a cooling effect. The higher the value, the

TABLE 2 Classification criteria of LCZs.

LCZ Description LCZ Description

LCZ1 Compact high-rise LCZA Dense trees

LCZ2 Compact middle-rise LCZB Scattered trees

LCZ3 Compact low-rise LCZC Bush, scrub

LCZ4 Open high-rise LCZD Low plants

LCZ5 Open middle-rise LCZE Bare rock or paver

LCZ6 Open low-rise LCZF Bare soil or sand

LCZG Water

higher the actual contribution rate of the LCZ type to the LST

under the same area proportion.

Results

Thermal environment characteristics
from the LCZ perspective

LCZ classification results of the study area are shown in

Figure 4A. The study area contained 12 of the total 13 LCZ types,
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FIGURE 3

Division of the first-level grid; (A) 990m grid covering the study area. (B) Number of LCZ covered by grids of di�erent scales.

FIGURE 4

Thermal characteristics of the LCZ; (A) LCZ classification results; (B) Inversion results of land surface temperature in the study area; (C) Boxplot

of LST distribution under LCZ.
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excluding the category of LCZF (bare soil or sand). Overall, for

the construction area: the overall proportion of LCZ1–LCZ6 was

19.3%, and the overall proportion of LCZA–LCZG was 80.7%.

The proportion of all LCZs, from high to low, was as follows:

low plants LCZD (44.4%) > bare rock or paver LCZE (30.0%)

> open middle-rise building LCZ5 (5.8%) > open low-rise

building LCZ6 (5.0%)> compact low-rise building LCZ3 (3.5%)

> compact middle-rise building LCZ2 (3.2%) > water LCZG

(2.5%) > dense trees LCZA (2.4%) > open high-rise building

LCZ4 (1.2%)> scattered trees LCZB (1.0%)> compact high-rise

building LCZ1 (0.6%) > bush and scrub LCZC (0.4%).

The calculated LSTs of the study area are shown in Figure 4B.

In the summer of 2018, the LST in the urban area within the

Fourth Ring Road of Shenyang was between 29.08 and 45.65◦C,

and the average LST was 36.88◦C. Approximately 95% of the

pixels were at temperatures within the range of 31.54–41.2◦C,

with few extreme temperature pixels.

Figure 4C shows the temperature characteristics of various

LCZs. In the LCZ category of the built-up area, the average

surface temperature (TsMean) was higher than 38◦C. The LCZ

type with the highest TsMean was LCZ2 compact middle-rise

building (39.82◦C) and that with the lowest TsMean was LCZ4

open high-rise building (38.51◦C). The highest statistical range

of the inter-class mean surface temperature in the LCZ of the

built-up zone was 13.5◦C, corresponding to LCZ6. In the natural

area LCZs, the highest TsMean type was LCZE (38.51◦C) and

the lowest was LCZG water body (34.21◦C), which also had the

lowest average surface temperature among all LCZ types.

In the case of building class LCZ, the low- and middle-rise

building classes (LCZ2, LCZ3, LCZ5, and LCZ6) had maximum

and average temperatures higher than that of the high-rise

buildings (LCZ1 and LCZ4) because tall buildings tend to

cast shadows, which reduces the surface temperature; this is

consistent with the findings of other studies (56). However, the

minimum temperature of the high-rise buildings was higher

than that of the middle- and low-rise buildings, under the

corresponding BD, which may be due to the relatively high

warming effect of LCZ types with high average BHs. The LCZ

type with a high BD contributes more to the LST, and the

warming effect is more pronounced.

Correlation between LCZ proportion and
LST

Calculation of LCZ proportion at di�erent grid
scales

We calculated the proportion of different LCZ types in each

grid. Table 3 lists the quantitative characteristics of the LCZ

area proportion calculated under the first-level grids of different

scales. As the area and spatial distribution patterns of different

LCZ types were different, the area proportion calculated for

some first-level grids might be zero. In Table 3, the first line

represents the actual number of grids where the calculated area

proportion was greater than zero. The second line represents the

average area proportion after removing the zero terms.

For example, the area proportion of LCZ1–3 at scales of 450

and 990m are shown in Figure 5. With the increase in grid scale,

themaximum ratio of LCZ1–3 gradually decreased. At the 450m

scale, the maximum ratio of LCZ1 was 0.347; at the 990m scale,

it decreased to 0.156.

Correlation analysis

The correlation between the LCZ area proportion and the

corresponding mean LST at each scale is shown in Figure 6.

For built-up zones, the area proportions of LCZ1–6 showed a

significant positive relationship with LST at all scales. Among

them, LCZ2 showed the highest correlation, followed by LCZ5;

LCZ4 showed the lowest correlation. This is consistent with

the average temperature characteristics described in section 3.1.

For natural areas, LCZA, LCZD, and LCZG showed significant

negative correlations with LST, with LCZD having the strongest

negative correlation. Among the natural area LCZs, LCZE was

the only variable that showed a significant positive correlation

with LST. The correlations of LCZB and LCZC with LST were

weak with low significance. Therefore, in further discussions, the

contributions of LCZB and LCZC to the LST and their combined

effect will not be considered. The correlations of other variables

were significant at 0.01 level.

With the increase in first-level grid scales, although the

maximum proportion of built-up area gradually decreased, the

correlation between the maximum area proportions of LCZ1–6,

and LST showed an increasing trend. For natural area LCZA–

G, the correlation increased with increasing grid scale. However,

at 450m, the correlation of LCZA, LCZE, and LCZG showed a

decreasing trend. In built-up area LCZs, the correlation between

LCZ and LST was more affected by grid scale.

LCZ thermal contribution ranking analysis

Parameters and adjusted R
2 values of optimal

stepwise regression model

According to the results of the correlation analysis, 10

variables were selected for a stepwise regression analysis, which

included LCZ1, LCZ2, LCZ3, LCZ4, LCZ5, LCZ6, LCZA, LCZD,

LCZE, and LCZG. At each scale, the final independent variables

and their adjusted R2 values used in the model are shown in

Table 4.

The first-level grids of different scales are used to measure

the sensitivity of the combined effects of different types of

LCZs to changes in distance. This limits the influence range

of each LCZ grid from the geographical distance. When the

primary grid scale is small, most LCZs can significantly affect
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TABLE 3 The quantitative characteristics of the LCZ area proportion.

Type 270 m 450 m 630 m 810 m 990 m Implication

LCZ1 2,086 1,234 824 595 454 Valid item count

0.050 0.030 0.023 0.019 0.017 Average area proportion

LCZ2 4,803 2,270 1,372 938 694

0.113 0.086 0.072 0.064 0.058

LCZ3 5,635 2,693 1,550 1,023 735

0.105 0.079 0.070 0.064 0.060

LCZ4 2,462 1,375 905 633 483

0.079 0.051 0.039 0.034 0.029

LCZ5 5,296 2,459 1,452 993 722

0.185 0.143 0.123 0.109 0.100

LCZ6 6,656 2,958 1,679 1,086 771

0.128 0.104 0.093 0.087 0.082

LCZA 833 411 257 198 142

0.482 0.349 0.279 0.219 0.203

LCZB 623 352 254 187 157

0.279 0.177 0.126 0.102 0.082

LCZC 204 121 79 56 46

0.356 0.216 0.164 0.141 0.111

LCZD 10,368 4,127 2,225 1,381 957

0.701 0.619 0.574 0.546 0.521

LCZE 10,499 4,283 2,357 1,539 1,061

0.479 0.419 0.386 0.354 0.341

LCZG 982 521 357 264 213

0.424 0.284 0.210 0.169 0.139

the LST, which shows that there are more variables entering the

model. With the increased first-level grid scale, the influence

scope of some LCZs becomes smaller, which means that they

cannot enter the stepwise regression model. As the grid scale

increases, the number of independent variables entering the

model decreases. At 270 and 450m scales, 9 LCZs were included

in the optimal model. At 630 and 810m scales, there were 8 LCZ

types included in the model. However, there were only 6 types at

990m. Although LCZ4 showed a significant positive correlation

with LST, it failed to enter the model at all scales, indicating that

the current LCZ4 distribution in Shenyang cannot significantly

increase or decrease the LST. Similarly, with the increase in

grid scale, the number of LCZ types that can affect the LST

in Shenyang gradually decreases. The adjusted R2 value of the

regression model was >0.5 at all scales after considering the

combined effects of the LCZs, and the interaction between

them. Using the proportion of LCZ within a fixed range as

an independent variable can explain more than 50% of the

variation in LST of the dependent variable. The adjusted R2 of

the regression models at different scales listed in Table 4 shows

that overall, the larger the first-level grid, the greater the model

significance, and the higher the explanatory power of the LCZ

for surface temperature changes. At the 270m scale, the adjusted

R2 of the model was 0.608; it increased to 0.724 at the 990m

scale, increasing the explanatory power by 19.1%. At the 450m

scale, the adjusted R2 was less than all other scales.

E�ect of LCZ warming and cooling

The contribution of various LCZs to LST can be

quantitatively compared by comparing the magnitude of

the standardized coefficients. Thus, we can easily analyse which

LCZs have significant impacts on the LST changes, and the

direction of their impact at different grid scales, as shown in

Figure 7. Overall, the LCZ types that played a positive role in

warming were LCZE, LCZ2, and LCZ3. The LCZs that played

a negative cooling role were LCZD, LCZA, and LCZG. LCZ1,

LCZ5, and LCZ6 increased the temperature by small scales,

such as 270m. However, with the increase in grid scale, their

warming effect was not significant in the model, therefore they

were excluded.

At different grid sizes, the heating and cooling effects of LCZ

were different. For example, at the 270m scale, the warming

effect from high to low was LCZE (0.298) > LCZ2 (0.200) >

LCZ3 (0.137) > LCZ5 (0.135) > LCZ6 (0.100) > LCZ1 (0.015).

At the 990m scale, the warming effect of LCZ2 exceeded that of
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FIGURE 5

Proportion of LCZs in di�erent scales; (A–C) distribution of LCZ1–3 at a scale of 450m; (D–F) distribution of LCZ1–3 at a scale of 990m.

FIGURE 6

Correlation coe�cients between LCZ and LST at di�erent first-level grid scales.

LCZE. Only three LCZs significantly affected the increase of LST:

LCZ2 (0.261) > LCZE (0.242) > LCZ3 (0.143). At the 270m

scale, the cooling effect was in the order of: LCZD (−0.254) >

LCZG (−0.123)> LCZA (−0.101). However, at other scales, the

order of cooling effect was LCZD > LCZA > LCZG.

In our study, 810m was the most suitable scale for the

calculation of LCZ contribution in Shenyang. When R2 was

>0.7, we considered that the model was reliable. The calculation

of contribution requires that the simultaneous action of as

many LCZ types as possible is considered, as the number of

effective independent variables entering the model is important.

An increase in scale leads to a decrease in the number of

independent variables entering the model. When the model

scale increased from 810 to 990m, only 6 LCZ types could

be considered. This means that 10.8% of the LCZ area was

ignored but R2 was only improved by 3.5%. Therefore, the 810m

scale, at which the model showed a high adjusted R2 value with

more independent variables entering the model, was considered
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TABLE 4 Adjusted R
2 of stepwise regression model.

Scales Input variables (listed in

order of entry)

Adjusted R
2

270m LCZD, LCZG, LCZA, LCZ2, LCZ3,

LCZE, LCZ5, LCZ6, and LCZ1

0.608

450m LCZD, LCZA, LCZG, LCZ2, LCZ3,

LCZE, LCZ5, LCZ6, and LCZ1

0.576

630m LCZD, LCZA, LCZG, LCZ2, LCZ3,

LCZE, LCZ5, and LCZ6

0.680

810m LCZD, LCZA, LCZG, LCZ2, LCZ3,

LCZE, LCZ5, and LCZ6

0.704

990m LCZD, LCZA, LCZG, LCZ2, LCZ3,

and LCZE

0.724

the best scale. At 810m, the warming effect was in the order

of: LCZE (0.314) > LCZ2 (0.236) > LCZ3 (0.135) > LCZ5

(0.084) > LCZ6 (0.056). The cooling effect was in the order

of: LCZD (−0.272) > LCZA (−0.104) > LCZG (−0.103). The

results show that the method of calculating the area ratio of LCZ

and incorporating it into the stepwise regression equation can

measure the combined influence of LCZ and explain about 70%

of LST changes. At the same time, compared with the traditional

perspective, the contribution of LCZ considering the combined

impact to the surface temperature is different. This shows that it

is necessary to consider the actual contribution of the LCZ under

the combined influence.

Discussion

Interaction between LCZs

To establish the relationship between LCZ and the thermal

environment, the average temperatures within LCZs are usually

used to estimate the thermal characteristics (32).We also applied

this method to analyze the thermal environment characteristics

of Shenyang in summer, as described in section 3.1. Previous

studies show that many factors within the LCZ can be quantified,

such as NDVI, BH, the proportion of impervious water surface,

and the average tree height using this method (26, 41). These

studies elucidated the influence of internal characteristics of

LCZ on LST. However, they estimated the impact of each type

of LCZ on LST in an independent state. Therefore, when the

correlation between LCZ1 and LST is analyzed, the area and

location of other LCZs, such as LCZ2 and LCZB, do not have any

impact on the correlation results. But in fact, LCZs do not exist

independently in the city; they are adjacent to, or intersect with,

other LCZs. Therefore, an important but unanswered question

was whether LCZs had combined or competitive influence on

LST. To answer this question, we proposed to use the area

proportion to describe LCZs. In this method, we demarcated

a series of first-level grids and calculated the area proportion

of LCZs.

As the area proportion is competitive, all LCZs are no longer

independent LST-related variables, but their changes are closely

related to other LCZs. They are placed in an environment with

a total of “1,” competing for influence on the LST. The results

of the calculated area proportion are described in section 3.2.

However, the relevant analysis method is independent and does

not reflect the competition and combined influence of LCZs.

Therefore, the ranking of thermal characteristics measured by

average temperature is consistent with the correlation. As all

LCZs were included in the regression model, they required

a simultaneous impact on LST, and the results changed. We

found that the warming effect of LCZE and the cooling effect

of LCZG might have been underestimated due to the neglect

of the combined and competitive effects of LCZs in the past. It

should be noted that these results apply only to the current LCZ

configuration in Shenyang. However, the method of using area

proportions to analyze the combined effect of LCZs on LST can

be applied to other regions to explore the factors that have been

neglected in the independent analysis.

A new perspective on understanding
urban thermal environment

We can find that the influence of different LCZ categories on

the LST, calculated by a stepwise regression (section 3.3), is not

completely consistent with their thermal characteristics (i.e., the

corresponding average LST of each LCZ category; section 3.1), or

the degree of correlation (section 3.2). The average temperature

ranking of LCZ was a description from a regional perspective

not involving the interaction between LCZ categories. The

combined effect emphasized that LCZ impacts LST at the same

time, considering the interaction between different categories.

The differences reflected from the two perspectives suggest the

presence of combined effect. This may be associated with the

change in heat storage capacity caused by the arrangement of

LCZ. Although LCZ2 has the highest mean surface temperature,

the regression results show that LCZE has a higher warming

effect on LST than LCZ2 across the four scales from 270

to 810m. Previous studies focused on the heat generated by

building coverage LCZs to the urban thermal environment.

The strong warming effect produced by LCZE has not been

discussed. Meanwhile, despite the low surface temperature

of LCZG, it failed to produce a sufficient cooling effect in

the stepwise regression model. A different perspective on the

LST contribution can explain this contradiction. The average

temperature of an LCZ shows its thermal state, which cannot

be used to estimate the actual contribution to urban surface

temperature because its area and distribution are not considered.

The standardized coefficient obtained by stepwise regression
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FIGURE 7

Normalized coe�cients of various LCZ and LST regression models under the combined influence.

modeling represents a relative state and is used to calculate the

degree of LST change caused by LCZ. Combining the two factors

can better analyze the urban thermal environment. The cooling

of the city alone cannot explain the local minimization; instead,

it is essential to consider the combined influence of various

factors to achieve the optimal effect.

Strategies for cooling cities

To achieve the goal of urban cooling, many studies have been

conducted on land use adjustment, planning, and construction

(15, 57). For example, in China’s Beijing-Tianjin-Hebei, Pearl

River Delta, and Yangtze River Delta urban agglomerations, the

LST of the compact medium- and high-rise buildings is high,

which is not conducive to urban cooling (40). However, green

spaces and water bodies can be added to compact high-rise

buildings to meet the cooling requirements (58). Optimizing

ventilation corridors and increasing the area of green space and

water bodies can cool the city (59–61).

This study provides some new cooling ideas based on the

contribution of LCZ to LST. The thermal characteristics (i.e.,

average LST) and their ranking based on temperature-increasing

ability (i.e., standardized coefficient) of different LCZs were

determined. For LCZ types with high average temperatures, such

as building-type LCZs and LCZE, measures should be taken to

reduce their LST. Increasing the greening between buildings and

optimizing roof materials or ground paving materials may play

a cooling role. To alleviate the influence of high-temperature,

reduce the LST, and achieve the purpose of cooling the city,

we should explore the cooling potential of trees in the city

(62, 63). For LCZs with a strong warming effect, such as LCZ2,

LCZ3, and LCZE, the excessive increase should be avoided in

the process of urban planning. Simultaneously, a database on the

variation of the warming effect of different LCZs in cities should

be established. The thermal characteristics and warming effect

of LCZs should be recorded and analyzed regularly to provide

a reference for the thermal environment background of future

urban construction.

For the study area, the main central high temperature

area is continuous. This is similar to the distribution trend of

LCZE. Therefore, in the future urban planning of Shenyang, we

proposed building greenways, increasing LCZD and reducing

the combined warming effect caused by impervious surface. On

a smaller scale, especially in the built-up areas of the city center,

including Shenhe, Heping, and Huanggu Districts, we propose

the construction of pocket parks to improve the cooling capacity.

Limiting factors

To facilitate the calculation of LCZ area proportion, we

preferentially choose the 30m LCZ division, which may

cause the spatial discontinuity of LCZs. With respect to
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the classification of LCZs in this study, there is still room

for the improvement in classification accuracy owing to the

timeliness and availability of data (64). Results can be improved

by optimizing the LCZ classification and area proportion

calculation methods.

Using only the area proportion as a measure of LCZ cannot

reflect the spatial location attributes of LCZ and the intra-

type differences of LCZ. Our study could not reveal whether

the spatial distribution of LCZs affects LST, which requires

some new models or perspectives to be considered, such as the

geographic weighted regression model and landscape pattern

index (65, 66).

Finally, althoughwe could quantify the relative contribution,

the causes have not been identified. It may still be necessary

to consider the mutual relationship and competitive impact

between LCZs, which will be addressed in future research.

Conclusion

This study analyzed the spatial distribution characteristics

of LST based on different types of LCZs in Shenyang City. The

proposed method used stepwise regression analysis to quantify

the contribution of LCZ area proportion to LST. The main

conclusions are as follows:

The study area was classified into 30m LCZs. The LCZs of

the building and natural areas accounted for 19.33 and 80.67%

of the units, respectively. The proportion of natural species was

the highest in LCZD (44.34%) and lowest in LCZC (0.4%).

Construction accounted for the largest proportion of units in

LCZ5 (5.8%) and the least in LCZ6 (0.6%). In terms of spatial

distribution, construction LCZ presented a spatial pattern of

staggered intermixed distribution, whereas natural LCZ was

more concentrated and independent. There was a significant

heat island effect in the study area. The high-temperature area

was concentrated in the urban built-up area, and the average LST

was 36.88◦C. The highest average LST of 39.82◦C was observed

in a LCZ2 middle-level compact building and the lowest average

LST of 34.24◦C was observed in the LCZG water body.

Five first-level grids with different scales were established to

calculate the area proportion of LCZ. The LCZ1–6 and LCZE

showed a significant positive correlation with LST, while LCZA,

LCZD and LCZG showed significant negative correlations with

LST. LCZB and LCZC showed weak correlations with LST.With

the increase in the first-level grid scale, the correlation between

LCZ and LST generally exhibited an upward trend. In the case of

building areas, the correlation between LCZ and LST was more

affected by grid scale.

From 270 to 990m, the LCZs entering the stepwise

regression model were different. As the grid scale increased,

the independent variables entering the model decreased. The

adjusted R2 values of stepwise regression models at different

grid scales were 0.608 (270m), 0.576 (450m), 0.680 (630m),

0.704 (810m), and 0.724 (990m). The influence of LCZ on LST

was determined by calculating the standardized coefficients. The

most suitable scale for the calculation of LCZ contribution in

Shenyang was 810m. The warming effect was in the following

order: LCZE (0.314) > LCZ2 (0.236) > LCZ3 (0.135) > LCZ5

(0.084) > LCZ6 (0.056); the cooling effect showed the following

order: LCZD (−0.272) > LCZA (−0.104) > LCZG (−0.103).

Unlike the average LST, this method determined the effect on

the LST change considering the interaction between LCZs.
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