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Introduction: Sleep is a fundamental and essential physiological process for

recovering physiological function. Sleep disturbance or deprivation has been

known to be a causative factor of various physiological and psychological

disorders. Therefore, sleep evaluation is vital for diagnosing or monitoring

those disorders. Although PSG (polysomnography) has been the gold standard

for assessing sleep quality and classifying sleep stages, PSG has various

limitations for common uses. In substitution for PSG, there has been vigorous

research using actigraphy.

Methods: For classifying sleep stages automatically, we propose machine

learning models with HRV (heart rate variability)-related features and

acceleration features, whichwere processed from the actigraphy (Maxim band)

data. Those classification results were transformed into a binary classification

for estimating sleep e�ciency. With 30 subjects, we conducted PSG, and they

slept overnight with wrist-type actigraphy. We assessed the performance of

four proposed machine learning models.

Results: With HRV-related and raw features of actigraphy, Cohen’s kappa

was 0.974 (p < 0.001) for classifying sleep stages into five stages: wake (W),

REM (Rapid Eye Movement) (R), Sleep N1 (Non-Rapid Eye Movement Stage 1,

S1), Sleep N2 (Non-Rapid Eye Movement Stage 2, S2), Sleep N3 (Non-Rapid

Eye Movement Stage 3, S3). In addition, our machine learning model for the

estimation of sleep e�ciency showed an accuracy of 0.86.

Discussion: Our model demonstrated that automated sleep classification

results could perfectly match the PSG results. Since models with acceleration

features showed modest performance in di�erentiating some sleep stages,

further research on acceleration features must be done. In addition, the sleep

e�ciency model demonstrated modest results. However, an investigation into

the e�ects of HRV-derived and acceleration features is required.
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1. Introduction

Good sleep habits impact everyday lives, including daytime performance, mood,

confidence, and relationships with others. In hospitals, sleep analysis is essential

for identifying problems related to sleep-wake disorders. It is also interrelated with

physiological analysis, as well as with psychological one. For finding out sleep problems,

sleep stage identification with the help of PSG (polysomnography) is required (1).
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Classification of sleep stages is the process of sorting sleep into

several stages. Since scoring of the sleep stage has been used

for the diagnosis of several sleep disorders (2), it has been

the gold standard for analyzing sleep clinically. There have

been various methods for PSG recording, for instance, EEG

(electroencephalogram), EMG (electromyogram), and EOG

(electrooculogram). Even though PSG provides a wide range of

data about sleep, including sleep stages, it is prone to be regarded

as obtrusive or sometimes invasive. In addition, classifying sleep

stages is an arduous task since persistent observation is required

to collect and analyze clinical data.

For sleep stage classification, the EEG has been frequently

used in both manual scoring and automated classification

(3, 4). Although using multiple EEG channels could increase

the accuracy of sleep scoring, it can be uncomfortable to

wear many electrodes during sleep. Research using devices

with a single EEG channel would solve that problem (4,

5). Many research using EEG has utilized conventional

methods of machine learning. However, recently, deep learning

techniques are applied to perform the classification tasks

(6). For example, convolutional neural networks (CNNs)

or Recurrent Neural Networks (RNNs) were designed and

utilized (7).

Heart rate variability (HRV) is one of the alternatives for

PSG and is a parameter of the autonomic nervous system, which

could be obtained by measuring electrocardiography (ECG)

(8). There have been various studies about the deduction of

sleep stages using machine learning algorithms, which convert

HRV features into sleep stages. Most of them concentrated on

sleep/wake or wake/REM (Rapid eye movement)/NREM (non-

REM) classification (9–11). There are two critical components

for automatic sleep stage classification: feature extraction and

machine learning algorithm. Techniques for feature extraction

could vary by type of recording; for instance, frequency-domain

analysis and time-frequency-domain analysis have been used

in EEG analysis (12). Using EEG, EMG, or EOG signals might

be better in terms of performance, but it is less convenient for

in-home sleep studies. They require more special equipment

settings for data acquisition. In addition, EEG electrodes are

especially difficult to set up by themselves. A viable alternative

for those methods could be the ECG. There has been researching

on an algorithm for detecting QRS and measuring HRV in

ECG (13). ECG-related techniques for sleep scoring called

the progressive detrended fluctuation analysis (PDFA) were

introduced by Tesler et al. (14, 15). The PDFA was based on the

DFA (detrended fluctuation analysis) method and could catch

the transition sensitively, but it needed to propose an accurate

scheme for sleep staging. In one study conducted with single-

lead ECG, windowed detrended fluctuation analysis (WDFA)

was used for sleep scoring and estimating sleep efficiency. They

utilized RR series, which were derived from ECG data, for

feature extraction, and features were selected based on the

SVM (Support vector machine) recursive features elimination

method (16).

Photoplethysmography (PPG)-based methods were used in

several studies for distinguishing wake, sleep, or REM sleep

(17, 18). The HRV could be derived from PPG sensors.

Actigraphy, which comprises a storage unit and an

accelerometer, was proposed as one of the surrogate modalities

for PSG (19). Actigraphy has become an effective tool for

assessment in sleep research for decades, owing to its usefulness.

Its application includes the diagnosis and treatment of specific

physiological and neurological disorders. Actigraphy can also

be applied to assess the efficacy of pharmacologic and non-

pharmacologic therapies (20). Human sleep consists of distinct

stages like REM sleep or NREM sleep stages. It has been known

that people feel less fatigue when they wake up during the

REM period. Continuous sleep monitoring, therefore, would

be possible if sleep patterns are analyzed based on body state

and environmental information with an artificial intelligence

system and if an optimized pattern model is developed by

applying extrinsic environmental factors and sleep stages. When

the ECG signals were used to support sleep stage classification,

the accuracies varied from 56 to 89%. Studies with EEG signals

generally showed higher accuracies, which varied from 81 to

98%. However, the studies with the highest accuracies selected

two or three-class problems (21). In one study conducted with

patients with suspected sleep apnea, the classificationmodel with

PPG signals showed 64.1% accuracy (kappa = 0.51) (22).

There has been vibrant research about systems for

monitoring or quantifying sleep quality. One automatic

monitoring system proposed by Zhu et al. (23) utilized a

piezoelectric transducer for sensing the user’s cardiac impulse,

respiration, and physical movements. The sensor was placed

under a mattress, and data collected from sensors was sent

to database servers and processed. The noninvasive model

for quantifying sleep quality utilized an accelerometer and a

sensor for pressure. They selected several parameters, including

heart rate, body movement, and respiration, for assessing sleep

quality (24). Previous research with actigraphy devices (Fitbit)

has shown controversial sleep efficiency estimation results (25).

Several studies argued that the estimated sleep efficiency was

overestimated compared to the PSG or EEG-based method (26,

27). However, there were contrary arguments (28, 29). Although

few studies have quantified the accuracies, actigraphy devices

can estimate sleep efficiency with an accuracy of 86% (30).

This research aims to prevent early awakening and estimate

optimal wake-up time by improving the precision of sleep

pattern analysis. Estimating sleep stages would be faster and

more economical than PSG as long as the process is automatized

with artificial intelligence learned from extensive data, for

instance, Photoplethysmography (PPG) data. This research aims

at developing a multinomial classification machine learning

algorithm that can predict sleep stages with PPG and actigraphy.

In this study, classifications with PSG data were hypothesized

to be true. Through this study, not only do we propose novel

models with good performance, but we could investigate the

effect of HRV or acceleration-derived features on performances.

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1092222
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al. 10.3389/fpubh.2022.1092222

2. Materials and methods

2.1. Sleep stage classification model

Generally, a sleep study is conducted under the

Rechtschaffen and Kales (R&K) or a new standard developed by

The American academy of sleepmedicine (AASM).We followed

the AASM standard, which divides sleep into five stages: wake

(W), rapid eye movement (REM), and three sleep stages (S1,

S2, and S3). The Maxim band is a wrist-worn actigraphic

device that utilizes optical components and accelerometers

to measure users’ health metrics. Since it contains the PPG

sensor and related features, it could measure vital signs (e.g.,

heart rate, respiration rate) more accurately than those without

PPG sensors. In addition, it is unobtrusive to wear while

sleeping compared to other devices using EEG recordings. The

analysis process flow for sleep stage classification is described

in Figure 1. Tree-based ensemble model (random forest)

(31–33) was utilized for processes that are described below. The

measuring or transforming velocity of the Maxim PPG data (24

frequency/s) was unsuitable for the conventional algorithm (30

frequency/s) (34) used in actigraphy research. So, the PPG and

actigraphy datasets were created separately.

2.2. Sleep e�ciency predicting model

The analysis process flow for predicting sleep efficiency is

depicted in Figure 2. Like the sleep stages predicting model,

the raw data of PSG was merged with the Maxim raw data

based on time, and the same feature extraction process was

utilized. In addition, the random forest model targeted for

binary classification of wake/sleep was applied for predicting the

wake and sleep state. The overall analysis pipeline utilizes this

result for obtaining sleep efficiency.

2.3. Data collection and dataset creation

All study procedures were approved by the SamsungMedical

Center Institutional Review Board (Seoul, Republic of Korea)

in respect of ethics and science. The eligibility criteria for

inclusion were 20–65 years old adults who have trouble with

sleep onset, fully understand the objective of this research, and

Android users or iPhone users who could use Wi-Fi in their

bedrooms. Those who had current psychiatric or neurologic

disorders, cognitive impairment, pulmonary diseases including

obstructive lung disease, severe medical illnesses that could not

be clinically controlled (heart, kidney, nerve, gastrointestinal

tract, diabetes, hypertension, thyroid, immunodeficiency, and

cancer), severe snoring, narcolepsy, and REM sleep disorder

were excluded. Pregnant or lactating women, shift workers, and

those already diagnosed with insomnia were also excluded from

this study. The clinical trial was conducted with 30 people.

Since the Maxim band measures 24 times per second, and the

average measurement duration was 8 h, 20,736,000 recordings

were generated from 30 subjects. Hence, it was enough for

the artificial intelligence model to learn. All subjects wore

Maxim bands for collecting PPG data, and simultaneously,

PSG was conducted in the Sleep Center in Samsung Medical

Center (Figure 3). During their PSG evaluation, electrodes were

attached to subjects. PPG and PSG data were automatically

saved and processed through software for sleep pattern and

efficiency prediction.

A merge (integration of data based on the column) was

conducted in creating datasets. In interpreting PSG data, each

epoch of 30 s is classified into several sleep stages. Because the

Maxim band measures 24 times per second, two sets of data had

to be merged based on the PSG data for synchronization. First,

these 30-s dataset units based on time columns were tested for

estimating the value of PSG sleep stages as “true.” Second, real-

time PSG data of 30 subjects were processed into a single dataset

based on each row.

FIGURE 1

This is a process flow diagram of sleep stage classification model.
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FIGURE 2

This is a process flow diagram of sleep e�ciency predicting model.

FIGURE 3

This is a picture of the environment for the test. One subject is

wearing actigraphy devices and electrodes for PSG.

2.4. Pre-processing of accelerometry and
ECG data

2.4.1. Acceleration features

The x-, y-, and z-axis data among whole Maxim data were

utilized for extracting activity count. Compared with the Maxim

band, which measures 24 times per second, the traditional Jan

Brønd algorithm (35) measures 30 times per second. Therefore,

the raw data was resampled and processed according to the Jan

Brønd algorithm.

2.4.2. HRV-related features (ECG features)

RR columns (RR peak intervals in the QRS wave of ECG)

of the Maxim raw data were utilized for extracting HRV-related

features. RR peak values excluding zero were extracted for use in

HRV feature extraction.

RR peak values ≤ 700

were considered outliers and excluded, and after the data was

interpolated using the linear method, ectopic beats were deleted

with Malik’s method (36). In RR peak data, if the window

size was set up as 10, the moving average trend was in an

acceptable range. As a result, we concluded that the trend of

the data was reflected in that window size, continuing the HRV

feature extraction.

2.5. Feature extraction

From raw data characteristic variables, derived variables

were created for the recognition from various angles of the

machine learning model. In this process, HRV-related and

actigraphy-related derived variables were formed.

2.5.1. Acceleration features

The function was designed for extracting activity counts

based on the x-, y-, and z-axis data. In the process, signals were

filtered using a predefined filter coefficient, which Jan Brønd

used (34, 35).

2.5.2. HRV-related features (ECG features)

About 29 HRV-derived variables were created in several

domains: time domain, frequency domain, geometrical domain,

and non-linear domain. Among those variables, those with

high importance were listed in Table 1. FFT Spectrum (Welch’s

periodogram) based on these derived variables and Lorentz Plot

were obtained.

2.6. Classification of sleep stages

2.6.1. Algorithm selection

The model selection was implemented based on derived

variables acquired after pre-processing for selecting an

optimized machine learning algorithm. After carrying out

an analysis and comparison among 13 machine learning
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TABLE 1 Important variables among HRV variables.

Domain Feature name Expression

Time Mean/Std/Max HR Average of heart rate/standard

deviation/maximum

SDNN Standard deviation of the

normal-to normal interval

NN50 Number of NNi differences 50 ms

Range NNi Gap between maximum and

minimum RR

CVSD Dispersion coefficient of successive

difference

Geometric Triangular index Integral value of the density

distribution

Frequency Low/high frequency Variance in HRV in the low/high

frequency

Mean NNi Mean of RR intervals

VLF Variance in low frequency

LF/HF Low/high frequency ratio

Non-linear SD1, SD2 Standard deviation of the Poincare

plot

Cardiac vagal IndeNx Cardiac vagal IndeNx

algorithms, including simple linear algorithms (Linear

Discriminant Analysis, Logistic Regression) and tree-based

models (Decision tree, LightGBM, and random forest), the

algorithm with the best performance was determined as

AutoML, which is based on reinforcement learning.

2.6.2. Modeling

There are discrepancies in measurement units between the

HRV dataset and actigraphy data because of the resampling

process. Thus, each dataset went through additional modeling,

divided into two cases for assessing the influence of the

generated derived variables: Including both the derived variables

and the Maxim raw data feature and including only derived

variables. After several experiments and the process of AutoML

model selection, the machine learning model was decided as

a random forest, a tree-based ensemble model. The result of

the model evaluation was diagnosed with a confusion matrix,

and verification of feature effectiveness was conducted with the

feature importance following random forest entropy.

2.7. Sleep e�ciency prediction model

2.7.1. Dataset creation

Since the objective of this analysis is the binary classification

of each sleep stage, among five sleep stages from PSG data, all

four stages except “wake” were relabeled as “sleep.” Thus, the

dataset relabeling wake/sleep as 0/1 was conducted, reflecting

the target of the machine learning model. Furthermore, each

dataset for every subject was created after this relabeling,

and the prediction accuracy was estimated individually.

Feature extraction was conducted similarly to the sleep stages

predicting analysis. HRV-derived variables and actigraphy-

derived variables were produced separately. Among these,

significant variables based on the feature importance were

selected and applied for the modeling.

2.7.2. Machine learning modeling

The machine learning modeling was implemented based

on the pre-processed dataset and derived variables. The

same random forest model was also used in this research

because it showed an optimal performance by AutoML in

predicting sleep stages.Whereas the sleep stage predictingmodel

adopted the multiclass classification, this model focused on

the binary classification of sleep stages into wake and sleep.

Each data of 30 subjects went through binary classification,

and the subsequential accuracy of the classification was

estimated individually.

2.7.3. Calculation for sleep e�ciency

PSG data (PSG was conducted in a hospital setting, and

the PSG data is split into 30-s epochs) of subjects were

considered the standard sleep efficiency (standard SE). Our

sleep efficiency prediction software was implemented with

subjects’ data: subjects’ sleep data were input, each section was

checked, and predictions for sleep efficiency proceeded. Sleep

efficiency (SE) and the accuracy in predicting sleep efficiency

were calculated by the equation as follows.

Sleep efficiency (%) =
Total sleep time (s)

total minutes in bed (s)
(1)

Accuracy in predicting sleep efficiency (%)

=

(

1−
Standard SE (%)− Estimated SE (%)

Standard SE (%)

)

× 100

(2)

2.8. Statistical analysis

Statistical analyses were performed with SPSS version 26.0

(SPSS, Inc., Chicago, IL, USA). Cohen’s Kappa coefficient

was used for the sleep stage classification model to assess

classification accuracy. Furthermore, the average and SD

(standard deviation) of standard and estimated sleep efficiency

were analyzed. In addition, paired t-test was conducted to assess

the performance of our model. The results were statistically

significant for p <0.05.
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TABLE 2 Demographic information of 30 subjects.

Sex Subjects Age Subjects Median (IQR)

Male 17 (57%) 21–30 2 Age (years) 26 (18.75)

31–40 13 Sex (M/F) 17/13 (57% M)

41–50 5 Diagnosis of sleep

disorders

8/12 (40%)

Female 13 (43%) 51–60 8

61–70 2

Total 30

TABLE 3 The performance of machine learning algorithmmodels.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

et Extra Trees Classifier 0.9939 0.9999 0.9849 0.9939 0.9938 0.9911 0.9911 1.146

rf Random Forest Classifier 0.9890 0.9998 0.9739 0.9891 0.9889 0.9839 0.9840 1.868

lightgbm Light Gradient Boosting Machine 0.9932 0.9998 0.9843 0.9933 0.9932 0.9901 0.9902 1.258

gbc Gradient Boosting Classifier 0.9100 0.9833 0.8410 0.9119 0.9082 0.8666 0.8681 14.457

knn K Neighbors Classifier 0.9049 0.9788 0.8605 0.9049 0.9045 0.8611 0.8613 0.187

dt Decision Tree Classifier 0.9688 0.9773 0.9513 0.9691 0.9688 0.9546 0.9547 0.120

lda Linear Discriminant Analysis 0.6225 0.7614 0.4109 0.6289 0.5886 0.4015 0.4177 0.086

nb Naïve Bayes 0.4597 0.7056 0.3780 0.5173 0.4302 0.2609 0.2901 0.041

ada Ada Boost Classifier 0.5325 0.6531 0.3914 0.5395 0.5286 0.3144 0.3180 0.808

lr Logistic Regression 0.4729 0.6490 0.2560 0.3235 0.3676 0.1063 0.1347 5.781

ridge Ridge Classifier 0.6198 0.0000 0.3810 0.6357 0.5714 0.3860 0.4087 0.038

3. Results

3.1. Participants

The demographic information of 30 subjects is shown in

Table 2. The mean age of participants was 44.1 (26–62 years old).

After being recruited, clinicians diagnosed whether or not they

had sleep disorders based on the PSG results.

3.2. Sleep stage classification

3.2.1. Algorithm selection

The performance of machine learning algorithm models

measured based on accuracy, recall, and F1 score is depicted

in Table 3. After model selection with AutoML, all tree-based

models (DT, RF, and LightGBM) were superior to simple

linear algorithms (SVM and LDA), resulting in an accuracy of

about 0.90. Therefore, this analysis selected the random forest

ensemble machine learning, which was remarkable in terms of

AUC, Recall, and F1 scores among various models.

3.2.2. Machine learning modeling

The overall performance of four kinds of modeling is

summarized in Figure 4.

3.2.2.1. Acceleration features

First, the activity count-derived variables and theMaxim raw

data features were included for modeling. The confusion matrix

of this model is given in Table 4. The kappa coefficient was 0.682

(p <0.001), meaning there was substantial agreement between

predicted and true labels. A valid accuracy of 0.79 was acquired

by modeling with an activity count-included dataset based on

the x-, y-, and z-axis. Other indices related to performance were

0.70 (Recall), 0.72 (Precision), and 0.71 (F1-score). However, the

result of the confusion matrix showed that sleep stage N1 (S1)

and sleep stage N2 (S2) were not sorted clearly. Second, only the

activity count-derived variables were included. The modeling

with a dataset consisting of only the actigraphy-related variables

was implemented to assess the influence of those variables. The

confusion matrix of this modeling is depicted in Table 5. As a

result, the kappa coefficient was 0.568 (p<0.001), meaning there

was moderate agreement. The valid accuracy was also decreased

to 0.71; Other performance factors were 0.62 (Recall) and 0.63

(Precision and F1-score).
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FIGURE 4

Performance of four machine learning modelings were depicted as a line graph.

TABLE 4 Confusion matrix of the model that includes the Maxim raw

features and the activity count-derived variables.

REM 109 0 1 8 0

Wake 1 34 8 9 0

True label S1 2 13 16 32 1

S2 9 6 7 251 13

S3 1 0 2 10 46

REM wake S1 S2 S3

Predicted label

3.2.2.2. HRV-related features (ECG features)

When both the Maxim raw data features and the HRV-

derived variables were included, the model showed good

performance with a kappa coefficient of 0.974 (p <0.001),

showing almost perfect agreement. The confusion matrix of

this model is shown in Table 6. In addition, the valid accuracy

was 0.98, and the recall, precision, and F1-score were all 0.97.

Especially raw features, including Green count and IR count,

showed outstanding performances, and among the derived

variables, the performance of median_nni and min_hr was

outstanding. Green count, which had the most significant

importance, showed significantly different values in each sleep

stage. Second, only the HRV-derived variables were included.

For evaluating the influence of HRV-derived variables, modeling

was implemented with a train/valid dataset that consists of only

derived variables, not the Maxim raw data features. The model

TABLE 5 Confusion matrix of one model that includes only the

activity count-derived variables.

REM 97 3 3 15 0

Wake 6 29 5 12 0

True label S1 2 12 16 33 1

S2 15 10 15 228 18

S3 0 1 1 16 41

REM wake S1 S2 S3

Predicted label

showed almost perfect agreement, with the kappa coefficient

of 0.951 (p <0.001). The confusion matrix of this model is

presented in Table 7. The valid accuracy was 0.97, implying still

excellent accuracy, although the figure was lower than that of

the other case, including the Maxim feature. Among numerous

variables, min_hr and median_nni were the most important

for classifying sleep stages. In addition, recall, precision, and

F1-score were obtained as 0.95.

3.3. Sleep e�ciency prediction

3.3.1. Machine learning modeling

The accuracy of the estimated sleep efficiency of 30 subjects

was calculated. The final average accuracy was about 86.19%,
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TABLE 6 Confusion matrix of the model that includes the Maxim raw

features and the HRV-derived variables.

REM 445 1 0 2 0

Wake 3 100 2 1 0

True label S1 1 6 136 4 0

S2 4 2 4 816 0

S3 0 0 0 0 184

REM wake S1 S2 S3

Predicted label

TABLE 7 Confusion matrix of one model that includes only the

HRV-derived variables.

REM 433 5 1 9 0

Wake 7 94 3 2 0

True label S1 5 7 131 4 0

S2 8 3 2 813 0

S3 0 0 0 0 184

REM wake S1 S2 S3

Predicted label

implying that the estimated predicting efficiency of sleep also

shows an accuracy of about 86.19%.

3.3.2. Calculation for sleep e�ciency

The mean standard SE, calculated using the PSG data of 30

subjects, was 85.11 ± 6.48% and the mean estimated SE using

the proposed modeling was 73.41 ± 8.18%. The accuracy in

predicting sleep efficiency (%) could be calculated by Equations

(1) and (2). The mean accuracy for estimating sleep efficiency

was 86.19 ± 6.07 %. The standard SE and estimated SE were

compared by paired t-test. The estimated SE was significantly

lower than the standard SE (p <0.001), and the difference

between them was 11.70%.

4. Discussion

The tree-based random forest algorithm, which showed

remarkable performance in terms of AUC, Recall, and F1-

score, as well as accuracy, was chosen in this study. We made

four classification models utilizing the random forest method.

Overall, both models using the HRV-related features performed

better than the others. Sleep stage classification results were

almost perfectly matched with the PSG results (kappa = 0.974,

0.951). Also, they perfectly distinguished the sleep N3 (S3) stage.

The model with the Maxim raw features and HRV features

was the best in terms of kappa, accuracy, recall, precision,

and F1-score. However, all performance indices were decreased

when the Maxim raw features were excluded. Especially the

precision and recall for distinguishing the wake (W) stage were

significantly influenced. Comparing these two models shows

that the Maxim raw features are involved in distinguishing

between sleep and wake stages. Nevertheless, the model with

only HRV-related features showed good performance, still.

On the other hand, models with acceleration features

showed poorer performance than the former ones. They showed

substantial or moderate agreements between true and estimated

labels. Regardless of whether it includes the Maxim raw features,

they failed to distinguish between the S1 and S2 stages. When

the Maxim raw features were included, the precision and

recall for classifying the S1 stage were 0.47 and 0.25. The

precision was further decreased to 0.40 when the Maxim raw

features were excluded. As sleep progresses to deeper stages,

activity decreases, so it seems that sleep stages are difficult

to be distinguished based on the activity. The result that the

REM stage was relatively well-distinguished by these models

supports that interpretation. Nevertheless, models using HRV

features successfully differentiate between S1 and S2, and

their performances were significantly better than those of the

acceleration models. So, Further studies about these acceleration

features must be done to overcome these limitations.

The mean accuracy for estimating sleep efficiency was

86.19 ± 6.07%. Compared with other research conducted with

OSA (obstructive sleep apnea) patients, the level of agreement

between the standard SE and estimated SE was not better in our

research. The OSA research used a WP100 device containing a

peripheral arterial tonometer and an oxygen saturation sensor,

as well as ASWA (sleep/wakefulness analysis software) (37).

Because that research used more sensors than our research, the

accuracy could differ. However, it could be interpreted that a

more accurate estimation would be achievable with superior

sensors in the near future. In addition, the SE estimation

model contains both HRV-derived and activity count-derived

features, and the acceleration features showed only moderate

performances on sleep stage classification. As a result, it could

decrease the accuracy of binary classification. Therefore, more

research must be conducted to investigate the effect of HRV-

derived and acceleration features on the sleep stage scoring

processes. Lastly, the sample size of 30 could not be enough to

assess the accuracy. In addition, the subjects were a heterogenous

population because some participants were diagnosed with sleep

disorders during the clinical trial. A larger scale of the test might

be needed for more accurate estimation results.

Also, as the number of wakefulness increases while sleeping,

the correlation in PSG-actigraphy tends to be weakened (38, 39).

Hence, for those with fragmented sleep patterns, this poor

capability of identifying wakefulness can be an obstacle in using

actigraphy (20). Most of our participants (93%) showed the

number of awakenings over 4 (which is not described in the

results), demonstrating they might not sleep well in the strange
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sleep environment. Based on these, the hospital environment

could contribute to the low accuracy of classifying the awake

state. Since subjects had to sleep overnight for PSG and

actigraphy data recording, they might have more fragmented

sleep than usual. Therefore, it could explain the low accuracy

of the awake stage and the discrepancy of PSG-actigraphy in

sleep efficiency.

Our research demonstrated the possibility of automation

of sleep stage classification and estimation of sleep efficiency

using actigraphy devices. Although classification models

with acceleration features showed moderate performance in

distinguishing the S1 and S2 stages, models with HRV-related

features classified each stage precisely, resulting in almost

perfect matches. Also, sleep research with machine learning

algorithms and deep learning has been conducted vibrantly

(40). Not only does this research help healthy people, it could

also help patients with various problems (41). Even though the

PSG is the gold standard so far, the use of actigraphy has been

increasing in clinical settings. Mainly the unobtrusive actigraphy

devices have been frequently used for severely ill patients (42).

Sleep deprivation in these ICU (intensive care unit) patients

is associated with adverse outcomes, so monitoring sleep

quality by actigraphy has importance in terms of patients’

status. However, among numerous studies with actigraphy,

there was no consistency in device type, epoch length, related

software, and measuring parameters among sleep research with

actigraphy devices. Thus, it is not easy to compare the results of

those studies, including this research. Studies using actigraphy

devices, therefore, need common standards for fostering sleep

research. Furthermore, if these actigraphy-based methods work

with IoT devices, a ubiquitous system for managing sleep could

be realized shortly. Recent studies are working on designing and

constructing sleep monitoring systems (43, 44). Careful sleep

monitoring with devices could prevent certain types of sleep

disorders, saving a large portion of healthcare costs.
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