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Ground vibration induced by blasting operations is considered one of themost

common environmental e�ects of mining projects. A strong ground vibration

can destroy buildings and structures, hence its prediction and minimization

are of high importance. The aim of this study is to estimate the ground

vibration through a hybrid soft computing (SC) method, called RSM-SVR,

which comprises twomain regression techniques: the response surfacemodel

(RSM) and support vector regression (SVR). The RSM-SVR model applies an

RSM in the first calibrating process and an SVR in the second calibrating

process to improve the accuracy of the ground vibration predictions. The

predicted results of an RSM, which are obtained using the input data of

problems, are used as the input dataset for the regression process of an SVR.

The e�ectiveness and agreement of the RSM-SVR model were compared to

those of an SVR optimized with the particle swarm optimization (PSO) and

genetic algorithm (GA), RSM, and multivariate linear regression (MLR) based on

several statistical factors. The findings confirmed that the RSM-SVR model was

considerably superior to other models in terms of accuracy. The amounts of

coe�cient of determination (R2) were 0.896, 0.807, 0.782, 0.752, 0.711, and

0.664 obtained from the RSM-SVR, PSO-SVR, GA-SVR, MLR, SVR, and RSM

models, respectively.
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1. Introduction

When excavating hard rock (which is required specifically

in mining and quarrying operations, and generally when

constructing highways, subways, tunnels, and dams), a common

activity is drilling and blasting operations. As confirmed in the

relevant literature, blasting unavoidably leads to some adverse

impacts such as air blasts, ground vibrations, back breaks,

flyrocks, and noise (Figure 1) (1–11). Although it is quite

impossible to entirely eliminate all these impacts, they can be

minimized. Ground vibration, among all, is one of the most

important concerns in this sense (12–14). The extent of vibration

occurred to a given structure is dependent upon different

parameters such as the method of construction, distance from

the source, soil/rock medium, heterogeneity of the soil and

rock deposit, features of the waves propagated at the given

site, the structure’s susceptibility rating, the soil/rocks dynamic

features, and the fracture’s response characteristics (15, 16). Most

of these parameters (particularly those related to geotechnical

and geological conditions) are not controllable; however, the

amount of explosive material and other blast design parameters

such as burden (B), spacing (S), and powder factor (PF) can

be controlled (17). The literature comprises different studies

focusing on how to decrease the environmental impacts induced

by blasting operations; though, due to the complexity of the

problem, it lacks a general consistent approach or a certain

formula in this regard. Not only the wave and ground motion

features but also the complexity of blasting parameters and site

factors has limited the scholars working in this field. This hinders

the effective development of a widely-accepted criterion for

measuring the geological parameters and blasting data and also

ensuring the serviceability of susceptible constructions (18). It

is possible to control the extent of ground vibration by choosing

appropriate blastingmethods and the best drilling/firing pattern.

Generally, the vibration source produces body and surface

waves in the rock/soil medium (16). Body waves are propagated

through the rock and soil deposits. The most important types

of body waves are compression and shear waves which need

to be well considered at a comparatively small distance from

the construction sources. On the other hand, the surface waves

(whose main type is Rayleigh waves) are normally propagated

along the upper surface of the ground. As building foundations

are typically positioned near the ground surface, the Rayleigh

waves usually attract great attention from structural engineers.

Peak particle velocity (PPV) and frequency are the most

important descriptors in measuring blast-induced ground

vibration. Among them, the former has been more widely

used in previous studies (9–11). Accordingly, PPV is used in

this study to measure ground vibration. The maximum charge

used per delay (Mc) and distance from the blasting point (Di)

(which have been used in various empirical approaches) are the

two main parameters to calculate the PPV value. For example,

Ghosh and Daemen (19), Gupta et al. (20, 21), and Roy (22)

have presented several empirical approaches in this regard. In

general, different factors are considered in one excavation site

with the aim of testing the velocity equations based on actual

field measurements, which finally results in different PPV values

against the safe MC (23). To apply the controlled blasting

techniques and to specify the relevant site-specific constants,

many blasting data should be collected from the adjacent region

(24, 25). In real conditions, the collected data are sometimes

widely distributed and have a low correlation coefficient. In

such cases, the equations obtained based on the assessment of

these data typically demonstrate a low reliability level. Such

unreliability is because of the variation in site-specific constants

with direction (26, 27).

Recently, numerous soft computing (SC) methods have

been introduced across the world. These tools help to find

more accurate and authenticated solutions to complex problems

that appear in engineering contexts. Such tools (28–34) have

been developed and implemented by various scholars and

practitioners working in different fields such as mining, civil

engineering, geoengineering, and mechanics.

The prediction of blast-induced PPV has been done using

several methods such as SC-based models. Ghasemi et al. (5)

attempted to develop empirical models and a fuzzy model (FM)

in order to predict the PPV value. To evaluate the model with

the optimum performance, a number of performance indices,

e.g., coefficient of determination (R2), were proposed. According

to their findings, an FM was capable of predicting PPV with a

higher accuracy level in comparison with empirical equations.

The FM recorded the R2 value of 0.94, while for the empirical

equations, this value was recorded as only 0.65. Furthermore,

Radojica et al. (35) utilized empirical equations and an artificial

neural network (ANN) to predict the PPV value. The final results

showed a higher accuracy of the ANN, withR2 = 0.91, compared

to the empirical methods. To evaluate PPV, Hajihassani et al.

(6) proposed a hybridization of an ANN with the imperialist

competitive algorithm (ICA). Their results showed the R2 values

of 0.97, 0.91, and 0.87, obtained from the ICA-ANN, ANN, and

MR models, respectively, which obviously indicates the higher

effectiveness of the ICA-ANN compared to the other models.

PPV in the study of Hasanipanah et al. (36) was estimated

with the use of a genetic algorithm (GA). In separate studies,

Hasanipanah et al. (37) and Jahed Armaghani et al. (7) made

use of particle swarm optimization (PSO) and ICA, respectively,

for the same objective, i.e., estimating the PPV value. Their

findings showed the effectiveness of the GA, ICA, and PSO

models in terms of developing non-linear equations applicable

to the PPV prediction. The ANN performance was improved

by Jahed Armaghani et al. (38, 39) and Hasanipanah et al. (40)

by integrating it with optimization tools such as PSO. Taheri

et al. (41) integrated an ANN with the artificial bee colony

(ABC) algorithm as a way to estimate PPV. The comparative

results showed the high capacity of an ABC in improving the

performance quality of an ANN. Shahnazar et al. (42) predicted
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FIGURE 1

Phenomena induced by blasting (33).

PPV by integrating PSO with a neuro-fuzzy system. Their

findings revealed the superiority of the hybrid model over the

neuro-fuzzy system regarding PPV prediction. In Hasanipanah

et al.’s (43) study, an ICA was combined with the fuzzy system

(FS) and it was found successful in estimating the PPV value.

In another research, Nguyen et al. (44) tested the random forest

(RF) and extreme gradient boosting (XGBoost) models in terms

of their effectiveness in estimating PPV. Findings confirmed

that the XGBoost model was more successful than the rival

regarding the defined task. In recent years, the Gaussian process

regression (GPR) was investigated by Arthur et al. (8) regarding

its accuracy in predicting ground vibration. According to their

results, GPR had a higher capacity compared to empirical

models in predicting PPV.

Recently, a novel SC approach was proposed by Zhang

et al. (45) with the same objective. They utilized PSO in order

to optimize the XGBoost. According to the results, if the

PSO is effectively integrated with the XGBoost, the model’s

performance can be meaningfully improved. The boosted

generalized additive models (BGAMs) were introduced by

Nguyen et al. (10) with the aim of predicting PVV. They

compared the results of their models with those of an ANN and

a support vector machine (SVM). BGAMs were found practical

and effective with results better than those of the ANN, SVM,

and empirical models. Fang et al. (11), on the other hand, made

use of an ICA for the purpose of optimizing the M5Rules model

in estimating the PPV value. The findings confirmed that the

ICA-M5Rules model was more successful than the conventional

M5Rules, SVM, and RF models with regard to predicting PPV.

Chandrahas et al. (46) used the K-Nearest Neighbor, XGBoost,

and Random Forest models to predict PPV, and showed the

effectiveness of XGBoost in this field compared to two other

models. The gray wolf optimizer (GWO), as an optimization

algorithm, was combined with an extreme learning machine

(ELM) by Yan et al. (32) to predict PPV. They concluded the

hybrid method was more effective and robust than the ELM

and empirical models. The mentioned optimization algorithm

was also combined with the relevance vector regression (RVR)

with the same aim by Fattahi and Hasanipanah (33). For

comparison purposes, a bat-inspired algorithm-RVR was used.

The results confirmed that GWO-RVR performed better than

the bat-inspired algorithm-RVR, which proved the effectiveness

of GWO to improve the RVR model. In another hybrid model,

a combination of an ANN and a Hunger Games Search (HGS)

algorithm was tested by Nguyen and Bui (34) in terms of PPV

prediction. In their study, three other optimization algorithms

were also employed, and according to their results, the ANN-

HGS model achieved more satisfactory predictive performance

than the other models.

Zhang et al. (47) predicted PPV using chi-squared automatic

interaction detection (CHAID), an RF, an ANN, an SVM, and

classification and regression trees (CART). According to their

results, the SVM yielded better performance for the prediction

of PPV compared to others. Jahed Armaghani et al. (48)
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TABLE 1 Some studies in the field of PPV prediction.

References SC
technique

Input parameters

Khandelwal et al. (49) SVM Mc, Di

Dindarloo (50) GEP B, S, St, Mc, Di, radial

distance, number, depth

and diameter of holes

Saadat et al. (51) ANN Mc, Di, S, bench height

Taheri et al. (41) ABC-ANN Mc, Di

Mokfi et al. (52) GMDH B/S, hole depth, St, PF, Mc,

Di

Azimi et al. (53) GA-ANN Mc, Di, radial distance,

modified radial distance

Bui et al. (54) PSO-KNN Mc, Di

Chen et al. (55) MFA-SVR Mc, Di, B/S, St, E, Vp

Hasanipanah et al.

(43)

FS-ICA Mc, Di

Xue (56) FCM-ANFIS Mc, Di, scaled distance

Fang et al. (11) ICA-M5Rules Mc, Di, B, S

Hajihassani et al. (6) ICA-ANN B/S, St, Mc, Di, E

Amiri et al. (57) ANN-KNN Mc, Di

Sheykhi et al. (58) FCM-SVR B, S, St, number of holes per

delay, Mc, Di

Yu et al. (59) RVM Mc, Di, B, vertical distance,

Protodyakonovs impact

strength coefficient, total

explosive charged, delay

time of detonator

Nguyen et al. (60) GA-SVR-RBF Mc, Di, B, S

Ding et al. (61) ICA-XGBoost Mc, Di, bench height, S, St,

powder factor, B

Nguyen et al. (9) HKM-CA Mc, Di, bench height,

powder factor, St, B, S

Zhou et al. (62) FS-RF S, B, Mc, Di, hole depth

B/S, burden to spacing ratio; St, Stemming; Vp, p-wave velocity; E, Young modulus;

GEP, genetic expression programming; GMDH, group method of data handling; ANFIS,

adaptive neuro-fuzzy inference system; KNN, k nearest neighbors; SVR, support vector

regression; MFA, modified firefly algorithm; FCM, fuzzy Cmeans clustering; RBF,

radial basis function; RVM, relevance vector machine; HKM-CA, hierarchical K-means

clustering-cubist algorithm.

predicted PPV using a least square–SVM (LS–SVM), a GPR, a

minimax probability machine regression (MPMR), and a PSO-

extreme learning machine (PSO-ELM). The results indicated

that the PSO-ELM was more computationally efficient with

better predictive ability. Table 1 lists some studies in the field of

PPV prediction.

In this study, the blast-induced PPV is predicted using a

hybrid SC approach, called RSM-SVR, comprising two main

regression techniques: the response surface model (RSM) and

support vector regression (SVR). The proposed RSM-SVR

model is structured using the RSM in the first calibrating

process and SVR in the second calibrating process to improve

the accuracy of the blast-induced PPV predictions. Then, the

accuracy of the RSM-SVR model is compared with that of SVR,

the RSM, and multivariate linear regression (MLR) based on

several statistical factors. In addition, the PSO and GA, as two

optimization algorithms, were employed and compared with the

other models. The main contribution of this study to the body of

knowledge is to propose a novel and efficient hybrid SC model,

namely RSM-SVR, applicable in predicting blast-induced PPV.

The rest of this article includes the following. More details

about the source of the datasets and also the hybrid SCmodel are

explained in the second section. The results and discussions are

provided in the third and fourth sections; then, the last section

presents the conclusions of the study.

2. Materials and methods

2.1. Materials

The data used in this study were collected from the

Harapan Ramai granite quarry located in the northern

part of Johor, Malaysia. This quarry produces ∼35,000–

40,000 tons of granite aggregates per month. During

each month, 8–10 blasting operations (depending on the

weather condition) are performed. The main initiation and

explosive materials are dynamite and ANFO, respectively.

Fine gravel is used for the purpose of stemming the blast

holes required.

For the purpose of this study, the parameters of MC, B, S,

and St were measured before each blasting operation. Moreover,

the block samples corresponding to each blast were transferred

to the laboratory in order to measure the Vp and the unconfined

compressive strength (UCS), according to ISRM (63). Based on

the dataset collected, the burden-to-spacing ratio (B/S), St, MC,

E, Vp, and Di were set as input variables.

In each blasting, PPV was recorded using the VibraZEB

seismograph which possesses certain transducers for measuring

PPV. In total, 90 blasts were monitored and the PPV in each

event was calculated. The statistical characteristics of training

and testing data sets for input variables are listed in Table 2. As

indicated by the skewness results, the skewness does not follow

the zero values for all data and almost all the variables tended to

non-normal distributions. This means that the relations between

PPV and almost all the input data can be described based on

the non-linear form. As can be seen in Table 2, the skewness,

STD, and mean of the database in the testing and training

phases are assigned with different values for each variable of

the input data set and PPV. The robustness and accuracy of

predictions are more vital subjects for the validation of a model,

which are learned using the data set in the training phase. The

ability of a model to predict the non-linear relation is important
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TABLE 2 Statistical characteristics of data sets.

Variables Train phase Test phase

Xmin Xmax Mean STD COV Skewness Xmin Xmax Mean STD COV Skewness

Mc (kg) 133.59 534.37 345.970 131.387 0.380 −0.204 534.37 634.04 584.5004 28.776 0.049 −0.240

B/S 0.79 0.89 0.828 0.025 0.030 0.485 0.79 0.87 0.833 0.031 0.038 −0.026

St (m) 1.5 7 4.392 1.667 0.379 −0.244 7 8 7.32 0.379 0.052 0.688

E (GPa) 8.41 29.886 24.887 4.669 0.188 −1.877 19.606 29.748 24.965 3.220 0.129 −0.014

Vp (m/s) 2,805 4,506 3,769.446 525.157 0.139 −0.271 2,809 4,344 3,560.960 483.006 0.136 0.145

Di (m) 90 440 281.169 104.861 0.373 −0.560 195 430 334.040 62.618 0.187 −0.455

PPV(mm/s) 2.834 33.08 14.193 7.811 0.550 0.829 5.74 19.23 13.550 4.890 0.361 −0.400

in the current complex engineering problem. Thus, four non-

linear models, i.e., MLR, RSM, SVR, and the proposed RSM-

SVR are compared in terms of estimating PPV based on six

input variables.

2.2. Methods

To achieve an accurate prediction of PPV, a novel SCmethod

is herein proposed by integrating RSM with SVR models, i.e.,

RSM-SVR. The non-linear relation may be provided based on

two regression processes of RSM and SVR between PPV and

input factors. In this regard, RSM is combined with SVR based

on two calibrating processes through which the input data of the

proposed ML model is provided based on the RSM predictions.

The structure of the hybrid RSM as input and SVR as an ML

scheme (RSM-SVR) is plotted in Figure 2. As can be seen in

this figure, the proposed RSM-SVR has three basic layers: (i)

the input layer, (ii) the hidden layer [which is separated into

two main layers, i.e., (1) predicted data set using RSM, and (2)

the input data set using predicted data by RSM to provide the

feature data in SVR], and (iii) the predicted layer using SVR. It

is propsed that the input data set for SVR is provided based on

the non-linear RSM relations that are predicted based on two

individual input variables.

The input data sets, which are used to calibrate the response

surface polynomial functions, should be selected with different

input variables in the first calibrating process. Therefore,

m–input data were prepared to calibrate the SVR provided

based on the RSM by using n–input data. Thus, for the SVR

model, n-dimension variables are transferred into m-dimension

as follows:

m =
n!

2!× (n− 2)!
(1)

where ! is the factorial operator. This model involves two

main regression procedures: RSM and SVR. The former is used

in the first stage, which can be extracted from the input data

as presented in Figure 2. The m–input data provided in the

hidden layer is computed using an RSM, which is a second-order

polynomial function with cross-terms and two input variables

(64, 65). Therefore, a simple non-linear relation is applied to

estimate them–hidden node using the RSM. The SVR prediction

in the proposed method is dependent on the m–input data set.

The input database-based estimated RSM is represented by a

non-linear map φn with weights w0-w5 and two individual basic

input data of xi and xj, as the following function:

φn = w0 + w1xi + w2xj + w3x
2
i + w4x

2
j + w5xixj (2)

The data set provided by non-linear map φn using the RSM

provides the second-order non-linear relations with a linear

correlation between input data as xixjusing Equation (2). φn

n = 1,2,. . . , m has a similar dimension as well as PPV due to the

use of RSM as the predictor of PPV. The last square estimator is

applied to estimate the weights in Equation (2) as follows (66):

w = [P(X)TP(X)]
−1

[P(X)T

{

xi

xj

}

] (3)

where,

P(X) =















1 xi,1 xj,1 x2i,1 x2j,1 xi,1xj,1

1 xi,2 xj,2 x2i,2 x2j,2 xi,2xj,2

...
...
...

...
...

...

1 xi,N xj,N x2i,N x2j,N xi,Nxj,N















(4)

where i and j are the two input variables, and N represents

the number of data points in the training phase. The data in the

hidden nodes can be predicted using the weight. In the second

process, using the m–input data provided by RSM, the SVR

model is trained by the following relation (67):

y = b+

N
∑

i=1

wiK(φ,φi) (5)
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FIGURE 2

A view of RSM-SVR.

TABLE 3 Comparative error and agreement factors.

Methods Train phase Test phase Time (s)

MAE RMSE d NSE MAE RMSE d NSE

MLR 1.707 2.225 0.859 0.719 3.429 3.977 0.616 0.220 2.38

RSM 1.218 1.605 0.900 0.800 2.361 3.073 0.715 0.463 3.62

SVR 1.688 2.300 0.863 0.722 3.503 4.114 0.623 0.203 6.21

PSO-SVR 0.661 0.868 0.946 0.891 1.992 2.227 0.787 0.524 484.83

GA-SVR 1.397 1.780 0.886 0.770 2.152 2.837 0.741 0.480 543.41

RSM-SVR 0.061 0.296 0.995 0.990 1.379 1.619 0.832 0.686 8.94

where b is bias and K(φ,φi) represents the Kernel function.

The Gaussian kernel function is commonly implemented as

follows (68–71):

K(φ,φi) = exp(−0.5(φ,φi)
2/σ 2) (6)

where σ denotes the parameter of kernel functions

as σ > 0, which controls the smoothness of the

kernel function. The weights of the N–feature data

set in the SVR model are computed using the

following model:
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FIGURE 3

Comparison of predicted and observed data points of PPV for the developed models.
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FIGURE 4

Errors (PPVexp-PPVPre) of predictive models shown in bar diagrams, corresponding to distance.

Min ‖w‖2

2 + C
N
∑

i=1
(ξi + ξ∗i )

S. t.











yi− < w.K(x, xi) > −b ≤ ε + ξi

< w.K(x, xi) > +b− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

(7)

where ξi, ξ
∗
i are the positive coefficients as errors, which

are used to compute the errors of the predicted data using

SVR (w.K(x, xi) + b) and observed data (yi);ε represents the

ε-insensitive loss function to neglect the error less than ε. C is a

positive factor. The SVR model is executed using parameters of

ε, σ , and C which are given based on the trial-and-error method.

In addition, an RSM is a simple method to provide

the non-linear polynomial relation (72). It is combined by

SVR in the proposed learning approach. In an RSM, the

data for input variables of SVR is predicted based on the

least square method (73–75) in terms of the observed data,

the two input data sets selected from Mc, B/S, St, Di, E,

and Vp. The accuracy of predictions plays an essential role

in designing and reliably evaluating the simulation of a

complex engineering problem. The non-linear forms in the

hidden nodes of the proposed method are considered by both

Kernel relation and polynomial function. By applying two

regression processes, the flexibility of the RSM is increased

and then it can be applied to simulating and predicting non-

linear problems such as the prediction of dissolved oxygen

concentration (73), monthly pan evaporations (76), and the

corroded burst pressure of pipelines (72). The m–data set

provided by the RSM can be covered by the non-linear

relations for complex problems, while the accuracy of prediction

results using SVR in the next step is strongly improved by

using the RSM to make non-linear input predictions. The

proposed RSM-SVR machine learning model offers a high

level of flexibility for predictions in non-linear problems. The

regressed approach is presented by RSM-SVR based on the

following steps:

1) Apply the RSM to the first calibrating stage as follows:

i) Give inputs (x1, x2,. . . , xn);

ii) Use two input variables from step (i) as input in the RSMs;

iii) Regress nodes of hidden layer 1 using the RSM by two

input data sets provided by step (ii).

2) Apply the SVR to the second calibrating stage:
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FIGURE 5

Scatterplot of predicted and observed PPV for test data set.

i) Give the input database to SVR from hidden layer 1;

ii) Select parameters for the SVR modeling procedure

including ε, C, and σ;

iii) Train the SVRmodel using the input data set provided by

RSM in the first calibrating stage.

3. Results

In this study, an MLR equation based on input parameters

(Mc, B/S, St, E, Vp, and Di) and an output parameter (PPV) was

constructed as follows:

PPV = 30.489+ 0.019Mc−
3.585B

S
+ 0.0005St

−0.054E+ 0.0004Vp− 0.074Di (8)

Four statistical factors, i.e., mean absolute error (MAE),

root mean square error (RMSE), Nash and Sutcliffe efficiency

(NSE), and agreement index (d), are used to compare the

performance of the MLR, RSM, SVR, and RSM-SVR models.

The accuracy and agreement of the predictions for all the

models are evaluated using the statistical factors presented in

Equations (9)–(12) for both the testing and training data sets.

By computing RMSE and MAE, the lower values represent the

more accurate models, while higher NSE and d values indicate

higher agreement predictions for a model. Therefore, the lowest

values for error comparative factors, i.e., RMSE and MAE, and

the highest agreement factor, i.e., d and NSE coefficients, can be

used to select a model with superior prediction from among the

other modeling approaches (77–87).

RMSE =
1

N

√

√

√

√

N
∑

i=1

[Oi − Pi]
2 (9)

MAE =
1

N

N
∑

i=1

|Oi − Pi| (10)

NSE = 1−

N
∑

i=1
|Oi − Pi|

N
∑

i=1
|Oi −

__
O |

, −∞ < NSE ≤ 1 (11)

d = 1−

N
∑

i=1
|Oi − Pi|

N
∑

i=1
|Oi − O| + |Pi − O|

, 0 < d ≤ 1 (12)

where N is the number of data in training (65 points) and

testing (25 points) phases, Oi, Pi, and O are observed data,

predicted i-th data, and mean of the observed data, respectively,

which are computed as follows:
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FIGURE 6

Taylor diagram for di�erent models in the testing phase.

O =

N
∑

i=1
Oi

N
(13)

The experimental data sets used in this study are separated

into two main categories: training and testing sets. The training

points are used to build the relations using the MLR, RSM,

and SVR models (with parameters as ε = 0.05, σ = 1.25,

and C = 1,000), the RSM-SVR model (with SVR parameters:

ε = 0.02, σ = 1.15, and C = 1,500), GA-SVR model (with

GA parameters: number of generation = 500, number of

population = 10, mutation = 0.025 and crossover percentage

= 0.8) and PSO-SVR model (with PSO parameters: number of

particles = 10, number of iterations = 500, inertia weight =

0.9, cognitive acceleration factor, i.e., C1 = 2; social acceleration

factor, i.e., C2 = 2), while the testing points are used to

validate the performance of the studied models in terms of

accuracy. The errors of the predicted data points of Oi − Pi

(i.e., error = observed -predicted PPV) in the training and

testing phases are compared to illustrate the robustness of

the predictions of the studied models. Table 3 represents the

comparative coefficients for both the training and testing data

sets. Table 3 shows that the RSM-SVR model provided more

accurate predictions than the other models for both the training

and testing phases. In other words, this model obtained the

lowest MAE and RMSE values and the highest d and NSE

values. The proposed model was found to be as efficient as

the SVR, and it strongly improved the computational B of the

modeling process compared to the hybrid intelligent models

of PSO-SVR and GA-SVR. The accuracy for decreasing the

RMSE of the predicted PPV using the RSM-SVR model was

enhanced by∼145%/650%, 90%/440%, 155%/670%, 74%/190%,

and 75%/385% compared to the MLR, RSM, SVR, PSO-SVR,

and GA-SVR models for training/testing, respectively. As can

be seen, by applying a two-regression procedure provided

by RSM in the first stage and SVR in the second one, the

proposed method can significantly improve the accuracy of

the perdition for the non-linear problem of predicting blast-

induced ground vibrations. The hybrid optimization approaches
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FIGURE 7

NSE/RMSE factors for di�erent models in the training and testing phases.

integrating GA and PSO with SVR succeeded in further

enhancing the capabilities of the predicted models compared to

SVR and RSM.

The values of PPV for both predicted and observed PPV

in the training and testing phases are plotted in Figure 3 for

all studied models. This figure clearly reveals that the RSM-

SVR model showed a superior predictive ability compared to

the PSO-SVR, GA-SVR, SVR, RSM, and MLR models. This

was because a good agreement between the predicted and

experimental PPV values was obtained, shown by the highest d

and NSE values presented in Table 3.

The errors observed-predicted data points of PPV, i.e.,

PPVexp-PPVPre, were evaluated for developed models. The bar

diagrams of errors and the scatter points for both the training

and testing data sets with respect to the input variables of

distance are presented in Figure 4. As this figure shows, the

standard divisions (STD) for errors were obtained as 2.693,

2.217, 1.541, 2.124, 2.719, and 0.878 mm/s for the MLR, RSM,

PSO-SVR, GA-SVR, SVR, and proposed RSM-SVR models,

respectively. The MLR, RSM, and SVR models presented the

predicted data with the same scatter. The distributed formats of

the errors for these models are presented in error bars; the PSO-

SVR model is offered among the models studied. The proposed

model shows the perfect predictions for PVV in the training

phase for almost all data points and its error bar shows narrower

distributed bars compared to the PSO-SVR. This means that the

proposed model has high flexibility to provide the non-linear

relations for complex engineering problems, while the existing

modeling approach based on MLR, GA-SVR, and SVR provides

an error bar scattered similar to the regression approaches RSM.

The hybridization approach to regression using the proposed

RSM-SVR and PSO-SVR models enhances the predictions of

complex engineering problems such as the PPV estimation.

Figure 5 shows the scatterplots for the predicted data points

in the testing set corresponding to the observed PPV. According

to this figure, the PSO-SVR, SVR, and RSM-SVR models

provided relations of higher non-linearity compared to the

MLR models with higher correlation coefficients: R2 = 0.896

for RSM-SVR, R2 = 0.807 for PSO-SVR, R2 = 0.782 for

SVR, the MLR with R2 = 0.752, and GA-SVR with R2 =

0.711. Consequently, it can be concluded that the flexible non-

linear relations are provided based on two regression phases

in the proposed models, while other comparative models are

established based on one regression phase. The non-linear map

using the RSM as input variables provides an acceptable input

variable for the prediction of SVR in the proposed hybrid model

for accurate predictions of PPV. The RSM shows the prediction

results with the lowest accuracy, R2 = 0.664, while the non-

linearity degree of the RSM is more than MLR but still does not

show the acceptable flexibility for modeling this problem with
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less error than MLR. Due to the high flexibility in providing

the non-linear relation, the accuracy of the proposed RSM-SVR

model is strongly improved compared to the SVR, GA-SVR,

and RSM models. The proposed model strongly improved the

prediction performance of the RSM for this complex problem.

4. Discussion

To have a better discussion about the accuracy and

agreement of the models, the Taylor diagram was used

and the NSE/RMSE of the developed models were taken

into consideration. The Taylor diagram is used by standard

deviations and R2 of predicted results for different models can

show the models performance. The NSE/RMSE is computed

based on the comparative statistics, which can be used for

measuring accuracy (i.e., RMSE) and agreement (i.e., NSE).

The larger the NSE/RMSE value, the superior the performance

of the model. The Taylor diagrams for the RSM, MLR, SVR,

PSO-SVR, GA-SVR, and RSM-SVR models with observed

data (represented by the red point on the horizontal line as

observation) are presented in Figure 6, for the testing database.

The NSE/RMSE results for different models in the testing and

training data sets are shown in Figure 7.

Figure 6 and the NSE/RMSE ratios presented in Figure 7

indicate that the models have performed differently in accuracy

and agreement. SVR offered higher agreement than MLR and

the RSM, while it showed less agreement than the PSO-SVR,

GA-SVR, and RSM-SVR models. MLR and the RSM-SVR

showed close standard deviations compared to the others. The

RSM-SVR offered more accurate predictions than the other

models and it showed a higher agreement compared to the SVR,

GA-SVR, RSM, and MLR models for the complex problem at

hand. The optimization method for tuning the parameters of

the hybrid SVR models (i.e., ε, C, and σ ) of PSO-SVR can

improve the capabilities of SVR models for this problem. By

comparing the results represented by the Taylor diagram, the

models were ranked from best to worst as follows: (1) RSM-SVR,

(2) PSO-SVR, (3) GA-SVR, (4) SVR, (5) MLR, and (6) RSM.

The capabilities of the proposed hybrid SVR method in

terms of both agreement and accuracy were enhanced using two

regression procedures. The data handling set as input (which

was provided by the RSM) was used for the training process

of the SVR model, while the main objective for hybridizing

the SVR with the optimization methods of PSO (PSO-SVR)

and GA (GA-SVR) was to find the best parameters of the SVR

model. The use of optimization algorithms in the PSO-SVR and

GA-SVR models causes them to consume more computation

time than the RSM-SVR model. By comparing the RSM-SVR

model with hybrid intelligent models of PSO-SVR and GA-SVR,

the main advantages of the RSM-SVR model is the use of only

one process for the SVR model regression and also the use of

the handling input data computed by RSM. In future research,

the proposed model and the models hybridizing SVR with

optimization methods can enhance the quality of prediction in

complex engineering problems.

It is worth mentioning that the performance of a predictor

is significantly related to the database used as well as the

type of rock. The field investigated in this study is a granite

quarry located in Malaysia. By reviewing the previous studies,

it was found that Zhang et al. (47), Jahed Armaghani et al.

(48), and Zhou et al. (88) have previously conducted studies

on the prediction of PPV in granite quarries located in this

country. Therefore, the performance of the proposed RSM-SVR

presented in this study can be compared with that of the models

developed in the aforementioned studies. According to Zhang

et al. (47), the PPV was predicted by CHAID, RF, ANN, SVM,

and CART models. Based on their results, the values of R2

obtained from CHAID, RF, ANN, SVM, and CARTmodels were

equal to 0.68, 0.83, 0.84, 0.85, and 0.56, respectively. In the

study conducted by Jahed Armaghani et al. (48), the LS–SVM,

GPR,MPMR, and PSO- PSO-ELMmodels were employed. They

developed three autonomous groups of PSO (AGPSO) models

in combination with ELM. They showed the values of R2 in the

range of 0.8–0.89 for the MPMR, LS–SVM, GPR, PSO-ELM,

AGPSO1–ELM, AGPSO2–ELM, and AGPSO3–ELM models,

respectively. Furthermore, Zhou et al. (88) predicted PPV using

five different gene expression programming (GEP) models, and

in the best model, the value of R2 was equal to 0.88. The RSM-

SVR model proposed in this study predicted PPV with an R2

of 0.896 (∼ 0.9). A comparison with the results of the above-

mentioned models indicates the effectiveness of the RSM-SVR

model in predicting PPV.

In this study, a sensitivity analysis was also performed to

check the level of input parameters’ intensity on the output

parameter (PPV) through the following equation from Yang and

Zhang (89):

rij =

∑n
k=1 (yik × yok)

√

∑n
k=1 yik

2
∑n

k=1 yok
2

(14)

where yi and yo are the input and output parameters,

respectively. The parameter with the highest rij has the highest

effect on output. According to the results, the rij values for

the Di, Vp, E, St, B/S, and Mc were 0.729, 0.891, 0.877, 0.838,

0.892, and 0.839, respectively. Therefore, the Vp and B/S were

identified as the most effective parameters on PPV.

5. Conclusions

The accurate prediction of PPV is of high importance to

safety issues in surface mines. This study aimed to propose

a novel hybrid SC model, namely the RSM-SVR model. This

model is structured using an RSM in the first calibrating process
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and an SVR in the second calibrating process to improve the

accuracy of the PPV predictions. In addition, SVR, SVR-PSO,

SVR-GA, RSM, and MLR models were also used in this study

for comparison purposes. The above-mentioned models were

developed to predict PPV in a granite quarry located in Johor,

Malaysia. To this end, 90 blasting events were monitored and the

values of B, S, St, Mc, Di, E, and Vp were precisely measured. In

addition, the obtained PPV values for each blasting event were

recorded. After constructing the models, four statistical factors,

namelyMAE, RMSE, NSE, and d were implemented to check the

performance of the models. Finally, the following conclusions

were drawn from this study:

• Experimental results demonstrated that the RSM-SVR

model achieved the greatest evaluation criteria for R2

(0.896),MAE (1.379mm/s), RMSE (1.619mm/s), d (0.832),

and NSE (0.686).

• Comparing the results, it was found that the RSM-SVR

model provided a prediction of relatively higher accuracy

than that of the PSO-SVR, GA-SVR, MLR, SVR, and

RSMmodels.

• Hybridizing the SVR and an RSM is a powerful approach to

solving prediction-based problems and has the capacity to

be generalized to other fields.

• According to the sensitivity analysis, the Vp and B/S, were

the most effective parameters on the PPV.

To end with, future research directions include, but are

not limited to, the following: (1) applying the RSM-SVR model

to other prediction problems in the fields of mining and

geotechnical engineering; and (2) using other optimization

algorithms such as the variable depth search algorithm, cultural

algorithm, water flow-like algorithm, cyber swarm algorithm,

water wave optimization, and jaguar algorithm to improve the

SVR performance.
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