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Introduction: The environmentally sound invention (ESI) is a “bridge” between

environmental sound technologies (ESTs) and green productions. This study

investigates the COVID-19 pandemic’s impact on ESI e�ciency using a multi-

methods model in three stages.

Methods: The ESI e�ciency is measured using the Slack-Based Measure (SBM)

method in the first stage. By excluding the environmental e�ect of the pandemic on

each province using the stochastic frontier analysis (SFA) model’s results in the second

stage, this study compares the ESI e�ciency change with or without the influence of

the pandemic in the third stage.

Results: The results show that the pandemic can be a “crisis” in the short term, but an

“opportunity” in the long term. First, the SBM e�ciency results in the first stage show

a decrease in the number of the average e�cient provinces in which the pandemic

is more severe during 2020-2021. Second, results of the spatial Tobit and SFA models

provide evidence that the COVID-19 pandemic negatively impacts the ESI e�ciency

during 2020, this impact is decreasing in 2021, and this impact has a spatial di�usion

e�ect.

Discussion: Based on these results, this study discussed the theoretical and political

implications. This paper enriches the knowledge of ESTs research and development

by proposing a three-stage approach with multi-methods to investigate the influence

of the pandemic’s impact on ESI e�ciency.

KEYWORDS

COVID-19 pandemic, environmentally sound invention (ESI), ESI e�ciency, environmental

sound technologies (ESTs), Slack-Based Measure (SBM), spatial Tobit, stochastic frontier
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1. Introduction

To improve environmental performance and against climate change, Environmentally

Sound Technology (EST) was defined and became a major component of international

collaborations since the Rio Summit in 1992 (1). In September 2020, China put forward the

dual-carbon goals, including carbon peaking before 2030 and carbon neutrality before 2060.

One of the operational guidelines in the Chinese action plan to reach such goals is leveraging

the government’s and the market’s strengths (2). The operational guideline aims to accelerate the

low-carbon technological revolution, emphasizing the importance of ESTs.

China has been paying attention to ESTs and their innovation for several years, and their

origin and development can be seen in a series of studies since the 2000s (3). It can also be

seen from the left part of Figure 1 that the number of Environmentally Sound Invention (ESI)

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.1102680
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.1102680&domain=pdf&date_stamp=2023-01-20
mailto:weixuan@sdufe.edu.cn
mailto:oogood@yeah.net
mailto:linzhouzhougood@163.com
https://doi.org/10.3389/fpubh.2022.1102680
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1102680/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wei et al. 10.3389/fpubh.2022.1102680

FIGURE 1

The trend of EST and the economy under the COVID-19.

patents granted in China has shown an exponential growth trend

since the 1990s. It is of great significance to ensure the steady

improvement of ESTs for an eco-friendly development pattern (4).

However, in the dual-carbon goals scenario, the COVID-

19 pandemic, a major public health emergency that began in

December 2019, has widely affected many aspects of socio-economic

development (e.g., the trend of the cumulative growth rate of retail

sales of consumers in China shows in the right part of Figure 1).

From a theoretical perspective, this pandemic contains two aspects:

“crisis” and “opportunity”, i.e., the occurrence of the pandemic

generates forces that hinder development and promote development

simultaneously. In terms of “crisis”, the pandemic has resulted in the

accelerated decoupling of China from global supply chains and the

relocation of strategic manufacturing out of China (5). In terms of

“opportunity”, the large-scale government interventions to cope with

the pandemic are expected to give rise to an opportunity for a green

recovery (6).

The ESTs listed by the United Nations Framework Convention

on Climate Change (UNFCCC) (7) provided a reference to measure

the quantity information of the ESI and its efficiency. However, the

aspects of “crisis” or “opportunity” that dominate the impact on the

ESI efficiency still lack empirical evidence. Therefore, the main goals

of this study are as follows. First, this study needs to measure the ESI

efficiency before and after the COVID-19 pandemic. ESI patent data

are used as the output indicators. The rationale for this measure is the

good nature of invention patents. I.e., the “China Patent Law (Revised

in 2020)” stipulates that “the invention granted with the patent right

shall be novel, creative and practical”, which implies that the patent

examination system has a good function of checking technological

innovation. Past empirical studies have also shown the effectiveness of

measuring innovation through patent statistics (8). Second, this study

aims to measure the different impacts of the COVID-19 pandemic on

the quantity and efficiency of the ESI. Third, this study tries to answer

the question of whether the direction and significance of the efficiency

change will be different without the COVID-19 pandemic.

The main contributions of this study are as follows.

First, ESI and ESI efficiency are new notions in academic

research, although they are familiar in practice. A provincial level’s

ESI efficiency based on the Slack-Based measure (SBM) method is

constructed in this study. This study uses three types of regional

ESI patent data, including firms, universities, and firm-university

collaborations (FUCs), as the output of ESI and uses the SBM

method to calculate the ESI efficiency from 2013 to 2021. Therefore,

the efficiency difference before and after the pandemic in different

regions can be compared preliminarily.

Second, a multi-methods model in three stages to examine the

impact of COVID-19 on ESI efficiency is constructed. In particular,

this study establishes the spatial Tobit and SFA models to test the

direct and indirect impacts of the COVID-19 pandemic on ESI output

and ESI efficiency. The Tobit model captures the pandemic’s impact

on the ESI efficiency. The SFA model captures the impact on the

potential increase of the output of ESI. This study also distinguishes

the pandemic’s heterogeneous impact on the ESI efficiency of firms,

universities, and FUCs.

Third, this study provides empirical evidence that the pandemic

can be a “crisis” in the short term but an “opportunity” in the long

term for the ESI efficiency. This research uses the environmental

condition adjusting technology to calculate the ESI efficiency under

the same environmental condition and makes a comparative analysis

with the efficiency in the first stage.

The remainder of this paper is organized as follows. Section

2 gives a literature review including the theoretical background of

ESI and its efficiency. The research design, material, and methods

are described in Section 3. Section 4 is the empirical findings.

Following the discussion in Section 5 to explore the theoretical and

practical implications of this study. We make the conclusions and

practical implications in Section 6 and practical implications and give

limitations and future research in Section 7.

2. Literature review

2.1. Theoretical background of ESI and its
e�ciency

From a narrow sense, inventions are new or improved devices’,

products’, or processes of systems’ ideas, sketches, or models (9).

From a broad sense, inventions are the production of knowledge
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FIGURE 2

Concepts and their relationships related to ESI.

(10). Although the invention is not unfamiliar in both practice

and academic research documents (11). Environmentally sound

invention (ESI) is a new notion in academic research to our

knowledge. Figure 2 shows key concepts and their relationships

related to ESI according to previous research. It is important because

ESI can be a “bridge” between EST and green products/processes.

The right part of Figure 2 describes that ESI is a part of the process

of green innovation (11). There are some different concepts to explain

similar innovation processes toward sustainable development. Two

representative concepts are eco-innovation (12) and environmental

innovation (13). It can be divided into green product innovation (14)

and green process innovation (15). Innovation can be successful or

unsuccessful (16). Therefore, there is a capability view that suggests

that ESI’s producers should enhance their related capabilities such as

environmental capability (17) and green core competence (18).

The left part of Figure 2 is the source of ESI. Studies on

EST began in about 1990s after the Agenda 21 defined it (19).

R&D activities based on internal and external EST accumulation

have seemed as the direct source of ESI, i.e., the so-called

technology push (20). Porter and Van der Linde’s (21) foundational

work clarifies the relationship between environmental goals and

industrial performance, i.e., environmental regulation can reduce

innovation offsets. Therefore, institutional factors can influence R&D

activities on ESI. Related connotations include abatement pressure

(22), pressure of environmental regulation (23), and government’s

greengrip (24). Another driving force of R&D activities on ESI is

marketing, i.e., the so-called demand-pull (20). Related connotations

include industry concentration (25), consumer environmental

awareness (26), and pressure of the environmentalism (27).

Then, the connotation of ESI in the center of Figure 2 and how to

measure its efficiency can be clearer. In Figure 2, from the left part to

the central part, ESI is the output of R&D activity which is influenced

by marketing and institution. From the central part to the right part,

ESI is the source of eco-innovation and green products. There are

several similar concepts compared with ESI, including green product

design (28), environmental patents (29), and green creativity (30).

In sum, for measuring the ESI efficiency, the input and influencing

factors can be found in studies of R&D activities on the base of

EST, marketing, and institution regulation. The output factors can be

found in studies of eco-innovation and environmental capabilities.

2.2. Impact of the COVID-19 pandemic on
ESI and its e�ciency

When the innovation theory was put forward, Schumpeter

(9) had already clarified that the crisis can breed innovation and

development in the economic cycle. Moreover, although the “crisis”

Schumpeter mentioned belongs to the economic category, it is

defined as the result of external things acting on the economic

field and causing interference. Therefore, external disturbances

can play a significant role in innovation-driven economic cycles.

In environmental and sustainable studies, other connotations of

external disturbances that have been defined include environmental

uncertainty (31) and environmental dynamism (32). On the one

hand, major public emergencies may disrupt innovation in the

previous economic process (33). On the other hand, public

emergencies can breed new innovations through demand-pull,

supply-push (34), or the emergence of crowd wisdom (35).

The empirical research results support this contradictory theory.

On the one hand, from the perspective of the input of ESI, some

empirical studies are optimistic about the impact of the COVID-

19 pandemic on ESI. For example, previous research has drawn

attention to the environmental pollutant treatment technology (36)

and the food supply chain’s waste problem (37) due to the pandemic

and expects substantial progress in related technologies (38). The

investment in smart city projects in China during the COVID-19

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1102680
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wei et al. 10.3389/fpubh.2022.1102680

pandemic reduced the infection rate and promoted the innovative

development of digital industries and urban sustainable technologies

(39). Studies in Brazil and Portugal show that the pandemic has

significantly enhanced the awareness of environmental protection

and sustainable consumption among the residents of Baby Boomers

and Generations X and Y (40).

On the other hand, from the perspective of the output of

ESI, there is also evidence highlighting the negative impact of

the pandemic on ESI. For example, a survey of 526 companies

in Norway showed that the average level of firms’ adoption of

environmental innovations had dropped significantly due to the

COVID-19 pandemic (41). The COVID-19 pandemic has affected

the implementation of plastic reduction policies in Europe and

around the world, thus leading to an increase in plastic waste, which

harms the environment and human health (42). The macroeconomic

blockade effect caused by the pandemic has brought many adverse

effects on the innovation of SMEs (43).

It can be noticed that topics of the optimistic studies, including

promotion in EST, investment in smart city projects, environmental

protection awareness, and sustainable consumption, are all input

factors for ESI. Topics of pessimistic studies, including firms’

adoption of environmental innovations, increase in plastic waste, and

negative effects on SMEs’ innovation, are all output factors for ESI.

According to this background, although there is still no previous

study research on the effect of the COVID-19 pandemic on ESI

efficiency, this study put forward the following hypotheses.

HYPOTHESIS 1. The COVID-19 pandemic has a negative effect

on regions’ ESI efficiency.

Moreover, the spatial effects of the COVID-19 pandemic on

human activities may result in changes in ESI efficiency across

regions. For example, Chen et al. (44) found that the lockdown

policy because of the pandemic had resulted in a decrease in the

flow of goods and services between cities. Huggins and Thompson

(45) argued that the pandemic is likely to heighten rather than

slow down the trend that more spatially distributed patterns of

entrepreneurial innovation are emerging across a wider range of

cities and regions. Korkmaz et al. (46) revealed that the response

to the pandemic had caused education inequalities across regions.

Dannenberg et al. (47) believed that the increase in online trade

which was led by the pandemic has changed the trend of the spatial

economics of innovation. Therefore, this study put forward the

following hypotheses.

HYPOTHESIS 2. The COVID-19 pandemic has a significant

spatial effect on ESI efficiency.

3. Research design, material, and
methods

3.1. Research design

This study uses a multi-methods model in three stages to

examine the impact of COVID-19 on ESI efficiency. There is a

progressive foreshadowing between different methods at each stage

and a relationship of mutual robustness. In the first stage, this study

uses the SBM method to calculate the non-radial efficiency score

of ESI. Whether the efficiency scores in different provinces have

significant statistical changes before and after the pandemic outbreak

was preliminarily analyzed. In the second stage, this study tests the

significance of the impact of the pandemic on efficiency using spatial

Tobit regression. And we test the significance of the influence of the

pandemic on the potential increase of different types of ESI output

using the spatial SFA model. In the third stage, when the significant

impact is determined in the second stage, we use the environmental

effect adjustment technology of the three-stage DEA (48) to adjust

the environmental conditions faced by each region to the same level

and analyze the efficiency changes in each region compared with the

first stage.

3.2. Green technological innovation
e�ciency

This study uses the SBM method to measure the ESI efficiency.

On the one hand, this method overcomes the disadvantage that

the input and output of each decision-making unit (DMU) can

only be proportionally expanded or reduced in the traditional

radial DEA model (Data Envelopment Analysis). And on the other

hand, it can directly measure the slack value of each variable (49),

which is convenient for establishing the subsequent SFA model.

Assuming that the input vector of the ESI of kth (k∈1,. . . ,n) DMU

is Xk = [x1, x2, . . . , xm]
T , (m ≥ 1), the output vector is Yk =

[

y1, y2, . . . , ys
]T

, (s ≥ 1), define the set of production possibilities

as follows:

P =

{

(

x, y
)

∣

∣

∣

∣

∣

x ≥

n
∑

k=1

Xkλk,y ≥

n
∑

k=1

Ykλk, λk ≥ 0

}

where λk is the decision coefficient. Then for the DMU

P0= {(x0, y0)}, the formula for calculating the ESI efficiency

value is:

ρ0 = min
1− 1

m

∑m
i=1

s−i0
xi0

1+ 1
s

∑s
r=1

s+r0
yr0

s.t.











x0 =
∑n

k=1 Xkλk + s−0
y0 =

∑n
k=1 Ykλk − s+0

s−0 ≥ 0, s+0 ≥ 0, λk ≥ 0

where ρ0 is the DMU’s ESI efficiency score of P0 =
{(

x0, y0
)}

. x0 is

the vector of the input variable value, xi0 is its i-th dimension. y0 is

the vector of the output variable value, yr0 is its r-th dimension. s−0
is the vector of the input variables’ slack or the so-called “potential

decrease”, s−i0 is its i-th dimension. s+0 is the vector of the slack or

potential increase of the output variables, and s+r0 is its r-th dimension.

3.3. Model

3.3.1. Spatial Tobit model
The value interval of the ESI efficiency is [0,1], which is not

a normal distribution and does not meet the fitting model of the

general least squares method. Therefore, to study the impact of the
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COVID-19 pandemic on the ESI efficiency, this study adopts the

Tobit regression method. At the same time, considering the possible

spatial spillover effects of the ESI, pandemic, and other variables,

referring to the research of Li and Hong (50), this study constructs

the following spatial Tobit regression model with ESI efficiency as the

explained variable:

ρ = λWρ + (COVID,CONTROL) β

+W (COVID,CONTROL) δ + µ

µ = λWµ + ε

where ρ represents the vector of the efficiency scores. W is a

spatial weight matrix. The spread of the pandemic has a natural

correlation with geographic location. Therefore, this study uses

geographic adjacency to establish the spatial weight matrix. λWρ

represents the spatial effect of the efficiency of other regions.

(COVID,CONTROL) is the block matrix composed of the CIVID-

19 variable and control variables, β is the coefficient matrix of the

block matrix.W (COVID,CONTROL) δ represents the spatial effect

of the independent variable and control variables in other regions. µ

represents the spatial effect of random disturbance, ε is the random

error term. When µ = 0, the model is a spatial independent variable

lag model, whenµ= 0 and δ = 0, the model is a spatial autoregressive

model, and when λ = 0 and δ = 0, the model is a spatial error model.

3.3.2. SFA model
This study refers to the three-stage DEA model constructed by

Fried et al. (48) to test the impact of the COVID-19 pandemic on the

slack of ESI output and to analyze the efficiency changes of eachDMU

that has adjusted the pandemic environment to the same level.

Taking the slack of the output variables in the first-stage SBM

model as the dependent variable, the SFA model is as follows:

s+r = f (COVID,CONTROL;βc,βcon) + vr + µr

where s+r is the DMU’s slack of the r-th output variable. COVID and

CONTROL are the environmental conditions faced by the DMU.

βc and βcon are the parameters to be estimated. vr + µr represents

the mixed error, where vr ∼ N(0, σ 2
ν ) represents the effect of random

factors, µr ≥ 0 represents the effect of management inefficiency.

Assuming that µr ∼ N+(µs, σ 2
µ), vr and µr are independent of

each other.

3.3.3. Adjusting of environmental e�ects
Based on the results of the SFA model, the equation for slack

adjustment is as follows:

xAr = xr +
[

max
{

(COVID,CONTROL) (β̂c, ˆβcon)
T
}

− (COVID,CONTROL)

(

β̂c, ˆβcon

)T
]

+
[

max
{

v̂r
}

− v̂r
]

where xr and xAr are the values of the r-th output before and after

adjustment, respectively. Therefore, the adjusted output value can be

used to evaluate and compare the green innovation efficiency with the

results in the first stage.

3.4. Data

3.4.1. Input-output variables in SBM
The input-output variables in this study are shown in Table 1.

The input factors on the demand side are usually difficult to measure

(51). Therefore, this study mainly considers the input variables on the

supply side. The input variables include government R&D (Research

and Development) expenditure, R&D expenditure of industrial firms

above the designated size, R&D personnel of industrial firms above

the designated size, and the number of senior full-time teachers in

universities (52). The output variable is selected according to the type

of inventors’ organizations (53), including the number of ESI patent

applications of firms, universities, and FUCs. The reason for choosing

the number of ESI patent applications is that invention patents have

higher requirements for novelty and creativity than utility model and

design patents, and the measurement of technological innovation is

more accurate (54). On the other hand, the number of applications

has better timeliness and stability than the number of authorized

patents. The data source of the ESI patent applications is the

Patsnap Database (https://www.patsnap.com/). We screened the ESI

patents using the International Green Patent Inventory published by

the World Intellectual Property Organization (https://www.wipo.int/

classifications/ipc/green-inventory/). The patent data generally have

the problem of duplicate data of the same application with different

publication numbers. This study deletes duplication according to

the same application documents and counts them according to the

oldest application date. The time horizon for the output variable is

2013–2021 (data collection time is May 2022, so the effect of not

the first disclosure of patents filed in 2021 can be ignored). The data

source of the input variable is the website of the National Bureau of

Statistics, and the time is 2012–2020. That is, a 1-year lag period is

set between the input variable and the output variable. Due to the

problem of missing data and abnormal values, provinces data from

Tibet, Qinghai, Hainan, Hubei, Hong Kong, Taiwan, and Macau are

not included.

3.4.2. Independent and control variables
Based on previous research on the severity of the COVID-19

pandemic (55). This study uses the number of confirmed COVID-

19 cases (confirmed) as the primary explanatory variable. The data

on the number of confirmed cases comes from the pandemic

monitoring data of DingXiangYiSheng (https://ncov.dxy.cn/ncovh5/

view/pneumonia). The period of the data is 2020–2021. At the

same time, this study sets a series of variables that impact green

technological innovation efficiency as control variables. The main

theoretical basis is the supply-push theory, demand-pull theory, and

Porter hypothesis which have been mentioned in Section Theoretical

background of ESI and its efficiency. The indicators include GDP

(Gross Domestic Product, supply-push factor) (56), total investment

in industrial pollution control (poluinvest) (demand-pull factor) (57),

industrial water consumption (usewater) (demand-pull factor) (58),

and dummy variables set for SO2’s or carbon’s trading market’s pilot

provinces (environmental regulatory factors) (59). The data source is

the website of the National Bureau of Statistics of China. The period

of the data is 2012–2020, i.e., a one-year lag is set for the impact of

control variables on the efficiency of green technological innovation

and potential output increase. The descriptive statistics of the data are

shown in Table 2.
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TABLE 1 Input-output variables of SBMmodel and data sources (N = 243).

Variables Mean Min Max Data source

Input Government R&D expenditure 141.83 9.61 1,168.79 ①

R&D expenditure of industrial firms above designated size 394.20 14.37 2,499.953 ①

Number of R&D personnel in industrial firms above designated size 9.93 0.42 70.00 ①

Number of senior full-time teachers in universities 0.71 0.09 2.28 ①

Output Number of universities’ ESI patent applications 777.03 9.00 5,818.00 ②

Number of firms’ ESI patent applications 2,490.33 37.00 21,164.00 ②

Number of FUCs’ ESI patent applications 113.59 1.00 1,959.00 ②

①State Intellectual Property Office of China; ②Patsnap Database. The units of government R&D expenditure, R&D expenditure of industrial firms above designated size, R&D personnel of industrial

firms above designated size, and the number of senior full-time teachers in universities are 100 million yuan, 100 million yuan, 10,000 people, and 10,000 people, respectively; the unit of ESI

applications is pieces.

TABLE 2 Descriptive statistics of variables.

Variable type Symbol N Mean SD Min Max

Independent Confirmed 54 139.10 355.90 0.000 2,046.00

Control Supply-push GDP 243 2.95 2.30 0.23 12.44

Demand-pull Poluinvest 243 25.05 22.73 512.20 141.65

Usewater 243 44.10 47.28 3.00 255.20

Environmental regular Shidian 27 0.43 0.50 0.00 1.00

The units of confirm, GDP, poluinvest, and usewater are people, trillion yuan, billion yuan, and billion cubic meters, respectively.

4. Empirical findings

4.1. E�ciency evaluation results

Based on each province’s evaluation result of ESI efficiency shown

in Table 3. Table 4 shows a change in the number of efficient DMUs

from 2013 to 2021. From the following two perspectives, it can be

preliminarily judged that the pandemic has negatively affected the

ESI efficiency.

First, from the number of provinces at the frontier each year,

the ESI efficiency from 2013 to 2021 can be roughly divided into

three stages. The first stage is from 2013 to 2016, and the number

of provinces at the frontier is 4–5 each year. The second stage is from

2017 to 2019, and the number of provinces at the frontier is 9–10

each year. The third stage is from 2020 to 2021, and the number of

provinces at the frontier is 7 each year.

Second, this study divides different provinces into four types

based on the severity of the pandemic. When the number of

confirmed cases in a province is in the first half of all provinces in

a year, the severity is defined as “High”. Otherwise, the severity is

defined as “Low”. There are four different types of provinces: High

in 2020 and Low in 2021 (HL), High in 2020 and High in 2021 (HH),

Low in 2020 and High in 2021 (LH), Low in 2020 and Low in 2021

(LL). This study analyzes the average rank of ESI efficiency scores

of different types of provinces. The more efficient DMUs, the little

the average rank of ESI efficiency scores. Its trend chart is shown

in Figure 3. It can be seen from Figure 3 that there is a peak of the

average rank of all types of provinces in 2017. And the average rank of

the four types of provinces is at the lowest point in 2019. The average

rank of the HH provinces is the lowest in 2020 and 2021. While the

leader of the rank is the HL provinces in 2020 and LL provinces in

2021. Moreover, the rank of HH and LH provinces has a declining

trend, and the rank of HL and LL provinces has an increasing trend.

These efficiency rank results show an abnormal decline in the

number of efficient DMUs in 2020, which is synchronized with the

outbreak of the COVID-19 pandemic. The trend of the average rank

of different types of provinces also shows a correlation between the

pandemic and ESI efficiency. Therefore, these results preliminarily

prove that the pandemic has a negative effect on ESI efficiency.

However, it is uncertain whether there is an explanation-to-explained

relationship between the outbreak’s severity and this phenomenon.

Therefore, more inspection is necessary.

4.2. Spatial Tobit model selection and results

It is necessary to determine the form of the spatial model before

estimating it. The Moran’s I is calculated for each variable; the results

are shown in Table 5. From Table 5, the Moran’s I of the dependent

variables, including the ESI efficiency score and the total number

of ESI patent applications, are both nonsignificant. Therefore, the

spatial lag model is initially excluded. Among the independent

variables, the p-value of theMoran’s I of confirmed cases is significant

in 2020 and nonsignificant in 2021. The pandemic outbreak in 2020

may make a more significant spatial impact, and in 2021, the effective

control policies curb the spread between regions. The p-values of the

Moran’s I for the control variables are all significant. It implies that

it is necessary to consider the spatial effect of independent variables

and control variables.

Table 6 further shows the judgment and selection of the spatial

econometricmodel. Themain judgment indicators includeMoran’s I,
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TABLE 3 Provinces’ ESI e�ciency and means during 2013–2021.

DMU Zone 2013 2014 2015 2016 2017 2018 2019 2020 2021

Anhui HL 0.37 0.74 1.00 1.00 1.00 1.00 1.00 0.54 0.42

Beijing HL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fujian HH 0.21 0.17 0.27 0.30 0.39 0.40 0.34 0.28 0.30

Gansu LH 0.46 0.33 0.36 0.43 0.56 0.48 0.70 0.48 0.59

Guangdong LH 0.47 0.38 0.51 0.49 1.00 1.00 1.00 1.00 1.00

Guangxi LL 0.47 0.50 0.64 1.00 1.00 0.50 0.42 0.39 0.41

Guizhou LH 0.32 0.45 0.30 0.30 0.45 0.37 0.23 0.23 0.22

Hebei LL 0.13 0.14 0.13 0.29 0.24 0.29 0.31 0.25 0.72

Henan LH 0.19 0.19 0.25 0.30 0.40 0.36 0.34 0.23 0.27

Heilongjiang LL 0.49 0.48 1.00 0.43 1.00 1.00 1.00 1.00 1.00

Hunan LH 0.22 0.32 0.34 0.35 0.53 0.43 0.47 0.31 0.34

Jilin HL 0.32 0.25 0.36 0.31 0.47 0.45 0.71 0.56 0.68

Jiangsu HH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Jiangxi HH 0.17 0.17 0.15 0.22 0.32 0.27 0.22 0.20 0.18

Liaoning LH 0.38 0.33 0.34 0.46 1.00 1.00 1.00 0.50 0.51

Neimenggu HL 0.10 0.07 0.12 0.16 0.13 0.21 0.26 0.25 0.47

Ningxia HL 0.70 0.31 0.28 0.19 0.24 0.26 0.21 0.26 0.44

Shandong LL 0.37 0.43 0.44 0.40 0.47 0.47 0.37 0.33 0.34

Shanxi HH 0.20 0.12 0.15 0.23 0.34 0.39 0.32 0.31 0.32

Shannxi LL 1.00 1.00 0.60 0.45 0.82 0.97 1.00 1.00 1.00

Shanghai LH 1.00 1.00 0.65 1.00 0.67 0.56 1.00 1.00 1.00

Sichuan LH 1.00 0.41 0.86 0.69 1.00 1.00 0.46 0.35 0.42

Tianjin HL 0.80 0.62 0.84 0.64 1.00 1.00 1.00 0.56 0.54

Xinjiang HL 0.23 0.17 0.23 0.29 0.26 0.27 0.37 0.34 0.49

Yunnan HH 0.51 0.65 0.73 0.68 0.70 1.00 0.65 0.49 0.54

Zhejiang HL 0.30 0.28 0.38 0.37 0.55 0.58 0.55 1.00 1.00

Chongqing HH 0.34 0.47 1.00 0.42 0.44 0.47 1.00 0.47 0.54

The bold values are corresponding province is efficient.

TABLE 4 Number of e�cient DMUs during 2013–2021.

2013 2014 2015 2016 2017 2018 2019 2020 2021

Number of efficient DMUs 5 4 5 5 9 9 10 7 7

Average rank HL 11 13 11 12 14 9 7 7 7

HH 13 12 11 12 16 8 8 11 12

LH 9 11 11 8 10 6 6 10 10

LL 9 9 9 9 11 6 7 8 7

Lagrangian multiplier (LM), and Robust Lagrangian multiplier

(Robust LM). It can be found that the fitting results of the spatial

error model and the spatial lag model of the four different dependent

variables are all poor. Additionally, considering that the p-values of

the efficiency in Table 5 are not significant, this study excluded the

spatial error model and the spatial lagmodel. The spatial independent

variable lag model is used without spatial error and spatial lag.

In a spatial independent variable lag model without spatial

error and dependent variable lag effect, the classical linear model’s

estimation and statistical inference methods are unbiased. Therefore,

special estimation and statistical inference methods are unnecessary

(60). Table 7 shows the regression results with spatial effects of

independent variables. The dependent variables of Model (1) and

Model (2) are the numbers of ESI patent applications in 2021
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and 2020, respectively. The dependent variables of Model (3)

and Model (4) are ESI efficiency scores measured in 2021 and

2020, respectively.

From the results of Model (1) and Model (2), the number of

confirmed cases has no significant impact on the output of ESI patents

in the current and next years. It shows that the direct impact of the

COVID-19 pandemic on ESI is not significant. From Model (3) and

Model (4), the number of confirmed cases has no significant impact

on ESI efficiency in 2020, but the impact of the confirmed cases

on ESI efficiency in 2021 is significantly negative. In addition, the

spatial effect of the confirmed cases in 2020 on ESI efficiency 2020

is significantly positive. It implies at the first year of the outbreak,

although the COVID-19 pandemic has no significant direct impact

on ESI efficiency, and a province’s ESI efficiency will increase as

the number of confirmed cases in the surrounding region increases.

FIGURE 3

Variation of the average rank of ESI e�ciency score in di�erent zones.

These results are accordant with the results shown in Table 4 that the

rank of the ESI efficiency of provinces with fewer confirmed cases is

relatively higher than provinces with severe pandemic environments.

This evidence further supports the hypothesis that the pandemic has

a negative effect on ESI efficiency.

4.3. Spatial SFA model results

Considering the spatial autocorrelation, the spatial effects of

independent and control variables are incorporated into the SFA

model. The results are shown in Table 8. The results include a total

of 6 models. The dependent variables of Model (1)–Model (3) are the

slack values of the output variables in the SBMmodel in 2020, i.e., the

number of ESI patent applications of firms, universities, and FCUs,

respectively. The dependent variables of Model (4)–Model (6) are the

slack values of the output variables in the SBMmodel in 2021.

The results of Model (1)–Model (3) show that in 2020, the

confirmed cases have a negative impact on the slack of ESI output.

The spatial effect of the confirmed cases in 2020 also has a significant

negative impact on the slack of ESI output. That indicates that

a province with more confirmed cases may negatively impact the

potential increase of ESI not only itself but also its surrounding

regions. The results of Model (4)–Model (6) show that the impact

of the confirmed cases is not significant on the slack of ESI output

in 2021. Additionally, the spatial effect term of the confirmed cases

in 2020 negatively impacts the slack values of universities in 2021.

That indicates that the negative effect of the COVID-19 is decreasing

in the second year. Moreover, the values of γ of Model (1)–(6) are

between 0.1 and 0.4, indicating that environmental variables and

statistical noise dominate the disturbance of insufficient output of

ESI in firms. Therefore, it is judged that the continuous impact of

the COVID-19 has created a more challenging external environment

for EST innovation. These results indicate that a region with a more

severe pandemic led to a more difficult environment for ESI output in

2020 and 2021 for both the region itself and regions surrounding it.

Therefore, this evidence supports both hypothesis 1 and hypothesis 2.

TABLE 5 Moran’s I test results for each variable.

Variable Year Moran’s I E(I) sd(I) t p-value

Dependent Total invention patent applications 2021 0.12 −0.04 0.12 1.42 0.17

2020 0.16 −0.04 0.12 1.69 0.10∗

Efficiency score 2021 0.01 −0.04 0.12 0.38 0.71

2020 0.02 −0.04 0.12 0.46 0.65

Independent Confirmed 2021 −0.16 −0.04 0.12 −1.01 1.68

2020 0.17 −0.04 0.12 1.75 0.09∗

Control GDP 2020 0.26 −0.04 0.12 2.57 0.02∗

2019 0.26 −0.04 0.12 2.54 0.02∗

Usewater 2020 0.26 −0.04 0.08 3.57 0.00∗∗∗

2019 0.26 −0.04 0.09 3.25 0.00∗∗

Shidian 2020 0.27 −0.04 0.12 2.64 0.01∗∗

2019 0.42 −0.04 0.11 4.14 0.00∗∗∗

2-tail test; ∗ , ∗∗ , ∗∗∗ indicate 10, 1, and 0.1% significance, respectively.
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TABLE 6 Spatial measurement model selection.

Dependent variable Spatial error Spatial lag

Moran’s I LM Robust LM LM Robust LM

ESI efficiency in 2021 Statistic 0.47 0.24 0.63 0.68 1.07

p-value 0.64 0.63 0.43 0.41 0.30

ESI efficiency in 2020 Statistic 0.65 0.05 0.36 0.27 0.57

p-value 0.51 0.82 0.55 0.61 0.45

Total ESI patent applications in 2021 Statistic 0.44 0.36 0.71 0.07 0.43

p-value 0.66 0.55 0.40 0.79 0.52

Total ESI patent applications in 2020 Statistic 0.61 0.14 0.35 0.02 0.22

p-value 0.54 0.70 0.55 0.90 0.64

TABLE 7 Spatial Tobit regression results.

Variable Total invention
patent applications

in 2021

Total invention
patent applications

in 2020

E�ciency in 2021 E�ciency in 2020

(1) (2) (3) (4)

Confirmed in 2021 −0.8488

(−0.4798)

−0.0001∗

(2.0543)

Confirmed in 2020 −1.8555

(−0.5071)

−1105.9037

(−0.6491)

−0.0000

(−0.1411)

0.0001

(0.8938)

Wconfirmed in 2020 0.1496

(0.0655)

−0.5565

(−0.2842)

0.0001∗

(1.8437)

0.0001

(1.6133)

Wconfirmed in 2021 −0.6570

(−0.6049)

−0.0000

(−0.4866)

Control variable and its spatial effect Yes Yes Yes Yes

One-year lag of the dependent variable Yes Yes Yes Yes

Var(e.te2021) 0.0067∗∗

(3.1117)

Var(e.te2020) 0.0158∗∗

(2.9937)

N 27 27 27 27

Adj. R2 0.6760 0.7493

Log-likelihood −255.5812 −253.9254 20.3231 8.9262

Standard errors in parentheses; ∗ , ∗∗ indicate 10% and 1% significance respectively. The logarithm of the independent and control variables is processed.

4.4. E�ciency change after adjusting
environmental conditions

The results of the mutual confirmation of the Tobit and

SFA models show a significant negative influence of the COVID-

19 pandemic on provincial ESI efficiency. This section further

focuses on how each region’s efficiency score would change if

all regions’ pandemic environments are adjusted to the same

level. The comparison of the ESI efficiency score of the original

SBM models with the post-adjusting models is shown in Table 9.

Table 10 shows the change in the average rank of different types of

provinces of the original and after adjusting the environment effect’s

efficiency measure.

When adjusting the pandemic environment faced by each

province to the same level, the number of production frontiers

in 2020–2021 increases significantly, which is consistent with the

growth trend before the pandemic outbreak. This study further

characterizes this trend in Figure 4. The change in the average rank

of the efficiency scores of four types of provinces before and after

the adjustment is shown in Figure 4. As seen from Figure 4, after

adjusting, the average rank efficiency score of HH increase fastest

among the four types in 2020. However, in 2021, the increase of

the rank of HH and LH provinces is no longer faster than HL and

LL provinces.

5. Discussion

This study introduced a new connotation, i.e., environmentally

sound invention (ESI), as a “bridge” between the driving force of

environmentally sound technologies (ESTs) R&D activities and eco-

innovation/green capabilities. The study investigates the COVID-19
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TABLE 8 Spatial SFA model results.

Output slacks in 2020 Output slacks in 2021

(1) (2) (3) (4) (5) (6)

Confirmed

2020

−0.6035∗

(−1.7504)

−0.1244∗

(−1.9235)

−0.0460

(−0.9644)

−0.4482

(−1.0069)

−0.0290

(−0.7927)

−0.1314

(−0.7920)

Confirmed

2021

−0.0890

(−0.4118)

−0.0211

(−1.1839)

0.0360

(0.4470)

Wconfirmed2020 −0.4777∗

(−1.7474)

−0.153∗∗∗

(−2.9864)

−0.0770∗∗

(−2.0356)

−0.2276

(−0.7901)

−0.0523∗∗

(−2.2072)

−0.0157

(−0.1465)

Wconfirmed2021 −0.0027

(−0.020)

0.0013

(0.1202)

−0.0641

(−1.2799)

Control Yes Yes Yes Yes Yes Yes

Spatial effect of Control Yes Yes Yes Yes Yes Yes

γ 0.148 0.249 0.283 0.145 0.331 0.201

N 27 27 27 27 27 27

Log-likelihood −205.7206 −160.5329 −152.3359 −207.6133 −140.1647 −180.9738

Standard errors in parentheses; ∗ , ∗∗ , ∗∗∗ indicate 10, 1, and 0.1% significance, respectively.

pandemic’s impact on ESI efficiency using a multi-methods model in

three stages.

First, this study finds that the COVID-19 pandemic has resulted

in a more challenging environment for ESI efficiency from 2020 to

2021. These results basically support HYPOTHESIS 1: The COVID-

19 pandemic has a negative effect on regions’ ESI efficiency. However,

the negative effect of the pandemic is a decrease in the second

year. These results coincide with indirect evidence from previous

studies. On the one hand, the pandemic results in an increase in the

driving force of ESTs’ R&D activities including demand-pull [e.g.,

environmental protection awareness and sustainable consumption

(40)], technology-push [e.g., environmental pollutant treatment

technology (36)], and institution regulation [e.g., altering geopolitical

and socio-economic norms (61)]. On the other hand, the pandemic

results in a decrease in the output of the eco-innovation [e.g.,

(43)] and green capabilities [e.g., (62)]. To sum up, the efficiency

is reduced because of the increase in input and the decrease

in output.

Second, this study finds that there is a spatial effect on the

relationship between the COVID-19 pandemic and ESI efficiency.

These results support HYPOTHESIS 2: The COVID-19 pandemic has

a significant spatial effect on ESI efficiency. Additionally, the results

of this study show that external environmental factors significantly

affect the slack term of ESI efficiency, that is, the potential increase in

output. That means the ESI efficiency can be improved in a suitable

environment (63). These results have two inspirations: how to create

a better production environment for ESI and how to improve the

environmental adaptability of regional ESI. This study argues that

a common solution to these two issues is strengthening regional

innovation cooperation (64). The ESI patent data collected by this

research show that the main form of cooperation in China’s ESI is

FUCs. However, the two sides of the cooperation are often firms and

universities in the same province. The number of green invention

patents from FUCs accounted for 19% of the total from 2013 to 2021.

The proportion of the green invention patent from the cooperation

between provinces is much lower than this. For example, from 2013

to 2021, the proportion of the green invention patent that came from

the cooperation between Beijing and other provinces was<0.3% of all

green invention patents in Beijing. Previous studies have proved the

beneficial of collaborations between regions to ESTs’ innovation (65).

So we suggest that ESI activities should break the barrier of the border

between regions to enhance the robustness of the whole system (66).

Based on these results, the theoretical implication of this study

can be summarized as follows.

First, a new connotation, ESI, is introduced in this study. This

new connotation may fill in gaps between the driving force and eco-

innovation. There are several benefits to embedding the ESI in the

process from driving force to eco-innovation. On the one hand, ESI

can be beneficial to classify the type of eco-innovation. Schumpeter

(67) classified five types of innovation from the perspective of

“new combination”. There are also various types of eco-innovation.

For example, Rennings (68) classified eco-innovations nature as

technological, organizational, social, and institutional innovation. So

“studies from the driving force to eco-innovation” is in a broad sense.

A mediated indicator of factors such as ESI can make the theoretical

path clearer. On the other hand, the concept of ESI can be beneficial

to alleviate the indicator confusion problem in eco-innovation

studies. Eco-innovation is not only a result but also a process,

which makes the indicator of eco-innovation can be confusion

(8). Some studies evaluate eco-innovation use indicators before

innovation’s market entry such as R&D (69), EST (70), or patents

(71), some other studies evaluate eco-innovation use indicators after

innovation’s commercialization such as quality certifications (72).

That may make a large measuring error using different indicators

to evaluate the same connotation (73). Therefore, the measure of

the ESI is a more appropriate way to evaluate eco-innovation from

different perspectives.

Second, this study’s results enrich the knowledge of the

relationship between emergencies such as the pandemic and

sustainable development of cleaner production. Previous studies have

constructed two controversial theoretical paths of the relationship

between emergencies and technological innovation in a broad sense.

One of them takes an emergency as an “opportunity” for related

development (74). The other one takes an emergency as “damage”
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TABLE 9 Comparison of original e�ciency and e�ciency after

environmental e�ect adjustment.

DMU Zone 2020 2021

O
ri
g
in
a
l

A
d
ju
st

C
O
V
ID

-1
9

O
ri
g
in
a
l

A
d
ju
st

C
O
V
ID

-1
9

Anhui HL 0.54 1.00 0.42 1.00

Beijing HL 1.00 1.00 1.00 1.00

Fujian HH 0.28 0.50 0.30 0.49

Gansu LH 0.48 1.00 0.59 1.00

Guangdong LH 1.00 1.00 1.00 1.00

Guangxi LL 0.39 0.61 0.41 0.51

Guizhou LH 0.23 0.39 0.22 0.34

Hebei LL 0.25 0.50 0.72 0.54

Henan LH 0.23 0.30 0.27 0.29

Heilongjiang LL 1.00 1.00 1.00 1.00

Hunan LH 0.31 0.44 0.34 0.38

Jilin HL 0.56 0.50 0.68 0.58

Jiangsu HH 1.00 1.00 1.00 1.00

Jiangxi HH 0.20 1.00 0.18 0.51

Liaoning LH 0.50 0.25 0.51 0.36

Neimenggu HL 0.25 1.00 0.47 1.00

Ningxia HL 0.26 0.25 0.44 0.43

Shandong LL 0.33 0.37 0.34 0.38

Shanxi HH 0.31 0.48 0.32 0.39

Shannxi LL 1.00 1.00 1.00 1.00

Shanghai LH 1.00 1.00 1.00 1.00

Sichuan LH 0.35 0.31 0.42 0.34

Tianjin HL 0.56 0.40 0.54 0.47

Xinjiang HL 0.34 0.31 0.49 0.47

Yunnan HH 0.49 0.28 0.54 0.34

Zhejiang HL 1.00 1.00 1.00 1.00

Chongqing HH 0.47 0.53 0.54 0.54

The bold values are corresponding province is efficient.

for related development (33). This study enriches the knowledge of

this relationship by providing new empirical evidence.

Third, for the change of ESI efficiency, is the pandemic a “crisis”

or an “opportunity”? It’s about time. The results of this study show

that the negative effect of the pandemic is breaking out in 2020 and

decreasing in 2021. Specifically, in the short term, the potential of

the ESI increasing is reduced because of the pandemic. Previous

studies also argue that innovating in response to the crisis, time

seems crucial (75). Ebersberger and Kuckertz (76) recognized that

start-ups have a short response time to the pandemic compared with

universities. In the short-term, the pandemic can lead to increased

input of the ESI innovation because of the pandemic’s effect on the

awareness of environmental protection and sustainable consumption

TABLE 10 Comparison of original e�ciency and e�ciency after

environmental e�ect adjustment.

2020 2021

O
ri
g
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a
l

A
d
ju
st

C
O
V
ID

-1
9

O
ri
g
in
a
l

A
d
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st

C
O
V
ID

-1
9

Number of

efficient DMUs

7 11 7 10

Average

rank

HL 7 5 7 4

HH 11 5 12 8

LH 10 8 10 10

LL 8 5 7 5

(40), the increasing investment in environmental pollutant treatment

technology (36), and the increasing investment on the digital

economics for the sustainable development (39). However, it takes

time to get the rewards of the increased input (77). Based on this

result, we argue that the pandemic can be a “crisis” in the short term

but an “opportunity” in the long term.

6. Conclusions and practical
implications

6.1. Conclusions

This is the first study to investigate the COVID-19 pandemic’s

impact on ESI efficiency. The theoretical background from the

driving force to eco-innovation with themediated of ESI is sorted out.

The empirical study is divided into three stages and conducted step-

by-step tests using a multi-method model, including SBM efficiency

measurement, spatial Tobit regression, SFA model, and three-stage

DEA analysis.

First, the efficiency measure results indicate a decrease in the

ESI efficiency after the outbreak of the pandemic. The results of the

spatial Tobit model further show that the COVID-19 pandemic in

2020 harms the efficiency of green technological innovation in both

2020 and 2021. The results of the SFA model show that the direct and

spatial effect is different in different years and for different inventors.

These results support our assumptions that the ESI efficiency is

negatively affected by the COVID-19 pandemic, and that the spatial

effect exists.

Second, additional implications can be drawn from the empirical

results. We compared the original and environmentally adjusted

efficiency scores in 2020 and 2021. It can be found that the average

efficiency rank of HH and LH provinces is more affected than in

other areas in 2020. And combined with some other studies’ results

which have been referred in the discussion section, we argue that the

pandemic can be a “crisis” in the short term but an “opportunity” in

the long term.

Third, this study’s results provide a new model to evaluate the

influence of exogenous shocks to the process of eco-innovation. And

the connotation of ESI makes the skeleton of the theoretical system
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FIGURE 4

The impact of COVID-19 on green technological innovation in di�erent regions.

from the driving force of EST R&D activities to eco-innovation/green

capabilities clearer.

6.2. Practical implications

Based on the analysis of this research, the ESI efficiency under

and post the COVID-19 pandemic is a complex system problem. The

influence can be direct and indirect, on both input and output, on

both regional macro andmicro levels, and both public ESI innovation

and private ESI innovation. On the base of these results, the practical

implications and policy suggestions can be drawn as follows.

First, policymakers can try to learn from provinces that keep

a high ESI efficiency with the high severity of the pandemic. This

study’s analysis identified the high and low-efficiency regions in

China, the method is suitable for other countries or regions. For

example, HH provinces such as Jiangsu, HL provinces such as Beijing

are efficient provinces during 2020–2021. The experience can be

found in other documents such as the system of environmental

regulation policies (78) and recovery strategies (79).

Second, through the experience of provinces that have low

severity of the pandemic, policies makers could learn how to decrease

the damage of the pandemic to the ESI efficiency from other

regions. For example, Zhejiang has a high severity in 2020 and

low severity in 2021, the efficiency value is 1 no matter whether

exclude the effect of the pandemic. Previous research has found that

the institutional innovation in Zhejiang which emerged against the

COVID-19 pandemic offers a way to transform the crisis into an

opportunity (80).

7. Limitations and future research

There are also some important limitations of this study that

need to be considered. First, this study uses a small sample for

the investigation because of the data limitation. It may meet the

minimum sample size for the regression, but the results’ reliability is

relatively not perfect. Since the pandemic is still affecting the world,

further empirical research needs to be done in the future. Second,

although we considered representative indicators as control variables

based on classical driving force theories of green innovation. Many

other factors can influence ESI and its efficiency. However, because

of the data limitation and multicollinearity problems, we cannot

account for other indicators in the regression model. That may result

in problems of missing variables.
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