
TYPE Original Research

PUBLISHED 13 January 2023

DOI 10.3389/fpubh.2022.1105965

OPEN ACCESS

EDITED BY

Zhiming Yang,

University of Science and Technology

Beijing, China

REVIEWED BY

Chunkai Zhao,

South China Agricultural University, China

Wafa Orman,

University of Alabama in Huntsville,

United States

*CORRESPONDENCE

Sheng Xu

shenghsu@163.com

SPECIALTY SECTION

This article was submitted to

Environmental health and Exposome,

a section of the journal

Frontiers in Public Health

RECEIVED 23 November 2022

ACCEPTED 29 December 2022

PUBLISHED 13 January 2023

CITATION

Li Y, Xu S, Yin J and Huang G (2023) E�ect of air

pollution on adult chronic diseases: Evidence

from a quasi-natural experiment in China.

Front. Public Health 10:1105965.

doi: 10.3389/fpubh.2022.1105965

COPYRIGHT

© 2023 Li, Xu, Yin and Huang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

E�ect of air pollution on adult
chronic diseases: Evidence from a
quasi-natural experiment in China

Yan Li1, Sheng Xu2*, Jinghua Yin3,4 and Guan Huang5

1College of Management, Guangdong AIB Polytechnic, Guangzhou, China, 2School of Health Management,

Southern Medical University, Guangzhou, China, 3School of Insurance, Guangdong University of Finance,

Guangzhou, China, 4Department of Economics, Jinan University, Guangzhou, China, 5Wenlan School of

Business, Zhongnan University of Economics and Law, Wuhan, China

We utilize a quasi-experiment derived from China’s Huai River policy to investigate

the e�ect of air pollution on adult chronic diseases. The policy led to higher pollution

exposure in cities north of the river boundary because they received centralized

coal-based heating supply from the government during winter, whereas cities in

the south did not. By applying a geographic regression discontinuity design based

on distance from the Huai River, we determine that a 10 µg/m3 increase in fine

particulate matter (PM2.5) raises chronic diseases rates by 3.2% in adults, particularly

cardiorespiratory system diseases. Furthermore, the same e�ects are observed on

multiple chronic disease rates, but the rates are reduced to 1.3%. The e�ect of

pollution exposure varies depending on age, gender, and urban/rural status. Our

findings imply that reducing 10 µg/m3 of the average nationwide level of PM2.5

concentration will save 27.46 billion CNY (4.16 billion USD) in chronic disease costs.

KEYWORDS

air pollution, chronic diseases, winter heating policy, quasi-natural experiment, regression
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1. Introduction

The prevention and treatment costs of chronic noncommunicable diseases account for the

majority of public health expenditure. The last decades have seen an increase in the fraction

of chronic noncommunicable disease prevention and treatment expenditure in China’s medical

expenditure. In 2003, the economic burden of chronic noncommunicable diseases in China was

only 858.05 billion Chinese yuan (CNY) (130.01 billion USD),1accounting for 71.45% of the total

economic burden of all diseases (1). By 2015, the economic cost of chronic noncommunicable

diseases has reached 3682.8 billion CNY2(558 billion USD), accounting for 80% of the total

economic burden of all diseases. In response to this, numerous attempts have been made to

determine the causes of chronic diseases, including medical conditions, habits, genetics, and the

environment (2, 3). Some studies have focused on the effect of air pollution on chronic diseases

(4), However, most studies are limited to exploring the determinants of a single disease, making

aggregating the total effect of air pollution on chronic diseases under the same framework

difficult due to differences in context, methodologies, and pollutant measures across studies.

Moreover, the causal relationship between air pollution and adult chronic diseases remains

largely unexplored.

In the past few decades, as a rapidly growing developing economy, China’s air quality

has deteriorated to a certain extent with the increase of industrial pollution emissions.

1 For comparison, we use the annual average exchange rate between USD and CNY in 2010: 1 USD for 6.6

CNY in this study.

2 See https://www.sohu.com/a/306526685_120099842 (in Chinese).
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Simultaneously, as a large population country, China has the

largest number of chronic patients in the world, and the

prevalence of adult chronic diseases is rising with economic

development. Therefore, China provides a unique opportunity

to study the relationship between air pollution and adult

chronic diseases. In the present work, we investigate in

particular the causal relationship between air pollution and adult

chronic diseases.

This study contributes to two strands of the literature. First,

we build upon previous work that estimates the effect of air

pollution on health. In contrast with a large number of studies

that focused on mortality (5–8), migration (9), labor supply (10),

body weight (11, 12), mental health (13), and children health (4,

14, 15), our study extends this work to encompass adult chronic

diseases. Given the lack of research in this area, the total cost

of air pollution is underestimated. Additional evidence from the

cost of chronic diseases due to air pollution will be beneficial

to policy makers and researchers to accurately calculate the total

benefits of environmental regulation. Second, chronic diseases have

considerably increased public health expenditure. Many previous

studies have focused on complex and diverse determinants, including

income (16), obesity (17), early life environment (18), genetics (2),

and medical conditions (3). This study builds upon the growing

literature by providing a new determinant of interest, namely,

air pollution.

The primary challenge in identifying causal effect is that air

pollution is likely to be endogenous due to omitted variable

bias. For example, confusion factors related to economic activities,

such as income, are among the determinants of health, while

economic activities are also highly correlated with air pollution.

To overcome the endogeneity of air pollution, the current study

utilizes the regression discontinuity (RD) approach based on a

quasi-natural experiment of China’s Huai River policy. This policy

creates discontinuous variation in air pollution by providing a

coal-based centralized heating infrastructure only in cities north

of the Huai River and no equivalent system for cities to the

river’s south.

Using the Huai River RD design, we find a statistically significant

and economically positive effect of fine particulate matter (PM2.5)

on chronic diseases. In particular, a 10 µg/m3 increase in average

PM2.5 concentrations increases the rates of chronic diseases by 3.2%

among adults. Taking advantage of a rich survey questionnaire, we

define multiple chronic disease dummy variables when respondents

answered two chronic diseases. We determine that a 10 µg/m3

(19.7%) increase in average PM2.5 concentrations increases the

probability of having multiple chronic diseases by 1.3%. Moreover,

these effects are nearly significant throughout an adult’s life cycle,

although the magnitude is different. In addition, these effects vary

across urban–rural status and gender interaction groups, depending

on the level of air pollution exposure. Our results are robust to

varying specifications, including different controls, functional forms

for the RD polynomial, bandwidth selection, sample selection, and

placebo checks.

The Huai River effects are economically meaningful. Our

estimate indicates that a 10 µg/m3 increase in PM2.5 concentrations

induces a total annual cost of 27.46 billion CNY (4.16 billion USD),

or 0.234% of China’s gross domestic product (GDP), in terms of

additional medical expenditure for chronic diseases. Notably, these

values were derived from 2003 data. As GDP rises, the medical

expenditure for chronic diseases in China increases.3 Several studies

have found that the social mortality cost of a 10 µg/m3 increase

in PM2.5 concentration is 48 billion USD (316.8 billion CNY) (7),

the cost of obesity and being overweight is 18.9 billion CNY (2.86

billion USD) (11), the cost of mental illnesses is 12.68 billion USD

(83.68 billion CNY) (13), and the total cost of medical expenditures

is 75 billion CNY (11.36 billion USD) (19). Although the difference

between the cost of chronic diseases due to air pollution and the

cost of obesity due to air pollution estimated by Deschenes et al.

(11) is the closest, directly comparing them is meaningless because

our calculation is derived from China’s data in 2003, while the values

calculated by Deschenes et al. (11) are based on 2016 data. As China’s

economy grew rapidly from 2003 to 2016, a prediction can be made

that if we use 2016 data to calculate the cost of chronic diseases,

then the cost of chronic diseases caused by air pollution will be

considerably greater than the cost of obesity. However, disregarding

the effect of chronic diseases will certainly underestimate the overall

health cost of air pollution.

The remainder of this paper is organized as follows. Section 2

presents the literature review and background information regarding

the Huai River policy, and lays out the RD design. Section 3 describes

the data sources. Section 4 presents our major findings, including

those of the validity, robustness, and heterogeneous tests. Finally,

Section 5 concludes the study.

2. Literature review and empirical
strategy

2.1. Literature review

Air pollution is a fundamental determinant affecting population

health. A large body of literature shows links between air pollution

and exacerbations of respiratory diseases, preterm birth, infant

mortality, low birth weight, neurodevelopmental disorders, deficits

in lung growth, and possibly the development of asthma (20). In view

of this fact, the medical mechanism of air pollution effects has always

been a research focus. Several studies explore the medical mechanism

of air pollution effects and believe that air pollution effects can

be mediated by oxidative stress, chronic inflammation, endocrine

disorders, and genetic and epigenetic mechanisms throughout the

life cycle (21). Another research focus is the health costs of air

pollution. Recent studies also estimate the cost of air pollution on

a variety of health outcomes, including cardiorespiratory mortality,

obesity, mental health, respiratory symptoms, asthma exacerbations,

and asthma hospitalizations (4–8, 11, 12, 14, 15). The challenge

associated with estimating the health costs of air pollution is that

air pollution is likely to be endogenous due to omitted variable bias.

There are different ways to solve the endogenous of air pollution in

the literature in studying the health outcomes of air pollution. In

order to address the endogenous of air pollution on body weight,

Deryugina et al. (7) use changes in local wind direction as an

instrumental variable for air pollution to estimate the life-years

lost due to pollution exposure. Thermal inversion is another useful

instrumental variable for air pollution. The strategy to instrument

3 Hu et al. (1) calculated the economic burden of chronic noncommunicable

diseases in China in 2003. Health expenditure generally increases with GDP

growth, and thus, our estimate is low bound.
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for air pollution using thermal inversion was first proposed by

Arceo et al. (5), to evaluate the influence of air pollution on infant

mortality in Mexico City. Subsequently, the strategy was used to

explore the impact of air pollution on children’s respiratory health

(15), adult obesity (11), and mental illness (13). Another way to

deal with the endogenous of air pollution is to use the exogenous

variation of air pollution generated by policies, such as China’s

Huai River policy, which leads to higher pollution exposure in cities

north of the river boundary, because they get centralized coal-fired

heating from the government in winter, while southern cities do

not. Almond et al. (22) first exploit RD design based on Huai

River policy and find that the Huai River policy led to higher total

suspended particulate levels in the north. This identification strategy

has been subsequently used to explore the effects of air pollution on

mortality, life expectancy (6, 23), and willingness to pay for clean

air (24) in China. Although various health costs of air pollution

have been estimated in the literature, the overall chronic disease

and multiple chronic disease costs of air pollution have not received

much attention under the condition of fully solving endogenous air

pollution. We then extend the previous literature by using the Huai

River RD design to investigate the cost of chronic diseases caused by

air pollution.

2.2. Background

China’s winter centralized heating system began in 1958.

However, the government only provides centralized heating to

northern cities due to energy and financial constraints (22, 23). The

north–south boundary of China roughly runs along the Huai River

and the Qinling Mountains. The government uses this line because it

is also the line where the average temperature in January is about 0◦C;

however, it is not used for other administrative purposes (8, 24). Cities

to the north of the river boundary receive centralized heating from

the government every winter. By contrast, no centralized heating is

provided by the state to southern China. Most centralized heating

systems in the north are coal-fired. The incomplete combustion

of coal during the heat generation process will lead to the release

of air pollutants, particularly particulate matter. Many studies

have found that the Huai River policy has led to an increase in

the total level of suspended particulate matter in the northern

region (22, 23).

The Huai River policy divides northern and southern

cities into treatment and control groups, respectively. Coal

consumption enables us to compare the difference in air pollution

concentration between the two groups. This scenario provides

a quasi-natural experimental environment for researchers to

estimate the effect of air pollution on health by using the

discontinuity of air pollution caused by coal burning in the

Huai River.

This approach provides us with a useful research strategy for

two reasons. First, some factors that affect health, such as economic

level, education level, and resource differences, will be controlled

because the Huai River Line is a geographical boundary rather than

an economic and administrative boundary. This strategy enables

us to identify the causal effects of air pollution on health. Second,

the difference in pollution caused by the policy has always existed

since its implementation in 1958. The pollution effect captured by

this approach may be extremely significant due to the long-term

cumulative effect of air pollution.

2.3. Empirical Strategy

Considering the effects of economic factors on health and the

correlation between air pollution and these economic confounding

factors, endogeneity may be produced by omitted variables between

air pollution and chronic diseases among adults. To address this

problem, we utilize the Huai River RD design. We estimate the

effects of winter heating on air pollution and health by using an RD

design based on distance from the Huai River. We examine whether

discontinuous changes exist in air quality and chronic diseases among

adults at the Huai River boundary.

In particular, we first estimate the first stage of air pollution by

using an RDdesign created by theHuai River heating policy following

Equation (1):

PMc = ϕ0 + ϕ1Northc + f
(

distancec
)

+ ϕ
′

2Xc + εc (1)

Where PMc indicates the PM2.5 concentration (µg/m3) in county

c; and Northc is a dummy variable for the north that takes the value

of 1 if the county is in the north of the Huai River and 0 otherwise.

The key independent variable, i.e., the running variable, distancec is

the distance between county c and the Huai River. We use positive

values of distancec for distances north of the Huai River and negative

values for distances south of the river. The function f is a polynomial

in distancec whose coefficients are estimated in the regression. Xc is a

covariate, and it includes temperature, relative humidity, cumulative

precipitation, and sunshine duration. A potential problem with the

Huai River RD design is that the space boundary is extremely

long from the west to the east of China. Therefore, factors

not observed in the east and west dimensions may confuse RD

estimates. To solve this problem, our covariates also include

the longitude quartile bin, which flexibly controls the systematic

differences between the eastern and western dimensions. εc is the

error term.

Second, the Huai River RD design utilizes the discontinuity

in air pollution caused by coal-fired heating to estimate the effect

of air pollution on health. We estimate the reduced form of the

RD design to examine whether a discontinuous change exists in

chronic diseases among adults at the Huai River boundary following

Equation (2):

Healthic = α0 + α1Northic + f
(

distanceic
)

+ α
′

2Zic + εic (2)

Where i indicates observation; and Healthic denotes health status

measures, particularly the indicators for chronic diseases, multiple

chronic diseases, and subcategories of chronic diseases. The chronic

diseases indicator take the value of 1 if i suffers from at least one

chronic disease and 0 otherwise. Northic takes the value of 1 if

i is located in county c in the north of the Huai River and 0

otherwise. distanceic indicates the distance from county c where

individual i lives to the Huai River. Zic is a vector of observed

covariates that potentially affect health, including not only Xc but also

demographic and health behavior characteristics. The coefficient of
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interest, α1, measures a discontinuous change in health at the Huai

River boundary.

Finally, some counties may have less air pollution due to

environmental protection measures, although they are located in

the north of the Huai River. We reestimate using a fuzzy RD

framework with a two-stage least squares (2SLS) regression specified

by Equations (3) and (4).

PMic = ϕ0 + ϕ1Northic + f
(

distanceic
)

+ ϕ
′

2Xic + εic (3)

Healthic = β0 + β1PMic + f
(

distanceic
)

+ β
′

2Zic + εic (4)

Equations (3), (4) are the first and second stages, respectively,

in a 2SLS system of equations. PMic refers to the exposure average

concentration of PM2.5 sustained by individual i residing in county

c. The other variables are as described above. We use Northic as the

instrument variable (IV) for PMic. We estimate the effect of PM2.5 on

health by using the fuzzy RD approach. The parameter of interest is

β1, which measures the effect of PM2.5 exposure on chronic diseases

after controlling for available covariates.

3. Data sources

We obtain chronic disease data from the China Family Panel

Studies (CFPS), which is a nationwide and comprehensive social

tracking survey project. CFPS aims to reflect the changes in China’s

society, economy, population, education, and health by tracking

and collecting data at the individual, family, and community levels.

We utilize rich questions and answers on chronic diseases in the

CFPS 2010 wave, which is a baseline survey4 that includes the

interviews of 14,960 households and 42,590 individuals from 162

counties/districts in 25 provinces, representing 95% of the population

in China. CFPS is conducted by the Social Science Research

Institute of Peking University. It uses implicit stratification, multiple

stages [county/district (six-digit code),5 village/community, and

household], multiple levels, and probability sampling in proportion

to population size.

CFPS has four advantages for our research. First, accurate

information about the geographic location of the sample from the

county is crucial for our identification strategy. CFPS documents

the geographic location and interview date of all the respondents,

enabling us to match the health characteristics of the respondents

accurately with the external air pollution data. Second, for our

research content, CFPS provides detailed information about chronic

diseases through the questions and answers and classification codes

in the health questionnaire. Third, the survey covers men and

women of different ages in rural and urban areas of China, enabling

us to conduct rich heterogeneity analysis. Fourth, the survey not

only provides health information but also detailed information

on socioeconomic and demographic characteristics, enabling us to

control a wide range of covariates.

4 CFPS conducted four consecutive tracking interviews in 2012, 2014, 2016,

and 2018. Our RD design uses the cross-section data of CFPS 2010.

5 The three administrative levels, i.e., province, city, and county, are

respectively marked as two-digit, four-digit, and six-digit codes in China. See

http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/.

We use three types of health measures. The first is chronic

diseases, which is obtained from the questionnaire question “Have

you ever suffered from any chronic disease diagnosed by your doctor

in the last 6 months?” The variable of chronic diseases is assigned to

1 if the respondent suffers from at least one chronic disease and 0

otherwise. The second is multiple chronic diseases, which is obtained

from the questionnaire question “What are the two most important

chronic diseases you have been diagnosed with by your doctor?6” The

result is assigned to 1 if the respondent answers two chronic diseases

and 0 otherwise. The third is the subcategories of chronic diseases,

which are obtained from the names and classification codes of the

chronic diseases answered by the respondents.

For the running variable and longitude covariate, we first use

ArcGIS to obtain the longitude and latitude of 162 counties surveyed

in CFPS from the map of China. Second, we make a distance variable

based on the locations of the county and the Huai River. In particular,

we use ArcGIS to measure the shortest distance from the county

centroids to the nearest point on the Huai River.7

Local governments in China are strongly encouraged to reduce

air pollution in China, and the central government uses air

quality readings to assess the environmental performance of

local governments, and thus, researchers are concerned that local

governments may manipulate data. Previously, several studies have

investigated China’s air pollution data and found a suspicious pattern

in the distribution of reported data8 (25, 26). Although previous

studies have shown that the satellite-based aerosol optical depth

(AOD) retrieval pollution data and ground-based monitoring station

measures exhibit no statistical difference (9, 27, 28), AOD-based

data have higher accuracy than ground-based pollution data, which

are more easily affected by weather conditions, because the former

has a certain correction function for pollution diffusion caused

by changes in meteorological conditions (29). To eliminate errors

and improve accuracy, our data on air pollution are from satellite-

based AOD retrievals. We obtain the AOD data from the PM2.5

concentration9 calculated by the Atmospheric Composition Analysis

Group of Dalhousie University through sensors and processed using

ArcGIS software. Wang et al. (30) showed that high ambient PM2.5

concentration is considered closely related to China’s huge primary

energy consumption, particularly coal consumption.

The weather data are obtained from the Daily Data Set of China’s

Surface Climate Data on the China Meteorological Science Data

Sharing Service Website, which releases the daily weather variables

of more than 800 meteorological stations in China. We use the

inverse distance weighting method to convert the weather data from

stations to counties and select a radius of 200 km. Weather data

include temperature, relative humidity, cumulative precipitation, and

sunshine duration. This dataset has been used in previous studies

(9, 11, 13).

6 If the respondent has multiple chronic diseases, then the two most

important diseases should be provided. If the respondent has only one chronic

disease, then the answer to the second disease should be “not applicable”.

7 This distance ranges from 2km to 2200 km, and the mean distance

is 560 km.

8 Chen et al. (9) found that AOD-based pollution data in China are closely

matched with data from ground-based monitoring stations.

9 PM2.5 refers to particles with an equivalent aerodynamic diameter of 2.5µm

or less in ambient air.
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Air pollution and weather data were collapsed at the county

level average in 2010 to match the CFPS baseline survey and meet

the requirements of the Huai River RD design for cross-sectional

characteristics. We compile a dataset from three data sources: the

CFPS 2010 wave, air pollution, and weather data. Demographic

variables (e.g., age, gender, minority, urban/rural status, and income)

and health behavior variables (i.e., whether the respondent smokes

regularly, drinks heavily, and eats excessive amounts of red meat), are

obtained from the CFPS 2010 wave.

4. Empirical results

4.1. Major results

We begin investigating the effectiveness of the Huai River RD

design. An essential test is whether systematic differences exist in

observable determinants at theHuai River boundary. The RD design’s

identifying assumption is that observable determinants change

smoothly at the boundary. Table 1 provides the summary statistics of

county-level and individual-level observable covariates and evidence

for the validity of the RD design. Columns 1 and 2 report the sample

mean and standard deviation for the north and south of the Huai

River. Column 3 reports the mean difference between the north

and the south along with the associated standard errors. Notably,

this statistic shows a simple difference, which is not necessarily a

discontinuous difference at the boundary. In Column 4, we report

whether a discontinuous change occurs at the Huai River boundary

by using local linear regression, our primary RD specification in

the empirical analysis, to approximate the size of the discontinuity

estimated for the covariates with the bandwidth selected using the

common mean square error (MSE) method proposed by Calonico

et al. (31), Calonico et al. (32), and Calonico et al. (33) with a

triangular kernel and report the standard errors in brackets. We

do not find a statistically significant discontinuity for a wide range

of observable determinants at the river boundary, confirming the

internal validity of our research design.

We then present the RD results on the effect of the Huai

River policy. The RD method allows for a transparent graphical

representation of the effects of interest. We start from this analysis

and then present the parametric and nonparametric estimation

results. Before we proceed to the formal regression analysis, we

provide a graphical analysis of the first stage of the RD design based

on the regression results of Equation (1) and the reduced form of the

RD design based on the regression results of Equation (2).

Figure 1A presents a graphical analysis of the first stage of

the RD design. The points are the unconditional average values

of PM2.5 across 100 km bins to the south and north of the Huai

River boundary. The distance between counties and the boundary,

distancec, is shown on the horizontal axis. The vertical line at

distancec = 0 indicates the location of the boundary. The northern

counties are displayed on the right side of the vertical line, while

the southern counties are presented on the left side. The solid and

dashed lines are the regression fit and associated confidence intervals,

respectively, based on the quadratic polynomial regression of PM2.5

exposure on the separately estimated distance from the Huai River.

As evident from the figure, the discontinuity of PM2.5 concentration

increases at the boundary, suggesting that the heating policy has

caused higher pollution levels in the northern counties of the Huai

River boundary. Similar findings have been reported in previous

studies, such as Ebenstein et al. (6) and Ito and Zhang (24).

The right and left columns of Figure 1B display chronic disease

and multiple chronic disease rates, respectively around the Huai

River boundary, as estimated by the reduced form of the RD design.

The figures indicate a discontinuous decrease in the adult chronic

disease rate at the boundary, followed by a steady decrease. Visually,

the discontinuous jumps in Figure 1B are around 6.9% and 4.8%

for chronic diseases and multiple chronic diseases, respectively.

These findings are consistent with the reduced form regression

results presented in the next section. The figures depict an apparent

dependency of the proportions of chronic disease and multiple

chronic disease rates in adults on their location relative to the Huai

River boundary. Although transparent graphics initially show the RD

effect of interest, different regression methods and RD specifications,

such as the choice of the order of the polynomial and the bandwidth,

may exert a substantial effect on RD estimates.

In the major estimates, we use a polynomial f that is either linear

or quadratic in distancei by applying parametric and nonparametric

regression methods. In the robustness checks, however, we also probe

the sensitivity of the results to alternative RD specification.

Table 2 presents the first stage estimation results for PM2.5 when

using parametric and nonparametric regression methods. The first

two columns are the results when using a parametric method, while

the last two columns are the results when using a nonparametric

regression method. We report our estimates from local quadratic and

linear regressions.10 The results in all regressions include weather and

longitude covariates. The estimates are robust to different regression

methods, the choice of polynomial for the running variable, and

the inclusion of weather and longitude covariates. Table 2 suggests

a discontinuous change in PM2.5 at the Huai River between 27 and

30 µg/m3. This magnitude is consistent with the visual evidence

presented in Figure 1A. Following the work of Imbens and Lemieux

(34) and Gelman and Imbens (35), we use the results from the local

linear nonparametric regression application of the RD design as our

baseline results.11 Column (4) presents our baseline results, which

report the nonparametric estimates discontinuity at the Huai River

by using the triangle kernel local linear regression and bandwidth

selected by the common MSE-optimal bandwidth selector. Column

(4) suggests a significant increase in PM2.5 at the Huai River. At the

boundary, PM2.5 concentration rises by about 28.58 µg/m3.

Table 3 provides the reduced-form and second-stage results

for health outcomes when using parametric and nonparametric

regression methods. Covariates from Table 1 were included in all

regressions. Columns (1)–(4) report that the parametric regression

approach and the sample locations are restricted to within 500 km of

the Huai River. As mentioned earlier, this method can be regarded as

an informal way to implement local regression by manually limiting

bandwidth. Column (1) presents the reduced-form parametric

estimation results when using a quadratic polynomial for f . These

10 The first two columns of reports come from the RD method, which limits

the samples to 500 km of Huai River. This method can be regarded as an

informal approach for implementing local quadratic and linear methods by

manually limiting bandwidth.

11 Gelman and Imbens (35) suggested that the parametric RD methods have

several undesirable statistical properties, and local linear regression based on

data near RD cuto� may produce the most robust estimation.
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TABLE 1 Summary statistics of observables for the north and south of the Huai River.

Variable North South Di�erences in
means

RD estimates
(Nonparametric)

(1) (2) (3) (4)

Weather and longitude

Temperature (◦C) 11.095

(3.701)

18.404

(2.766)

−7.309∗∗∗

[0.512]

0.272

[0.318]

Relative humidity (%) 61.904

(6.607)

73.646

(5.097)

−11.742∗∗∗

[0.925]

−2.146

[1.583]

Precipitation (mm) 664.104

(278.597)

1447.153

(466.230)

−783.048∗∗∗

[60.713]

35.448

[103.188]

Sunshine duration (h) 2190.358

(300.363)

1520.847

(354.240)

669.511∗∗∗

[51.722]

115.746

[278.569]

Longitude 115.506

(6.887)

113.721

(6.412)

1.785∗

[1.045]

1.916

[4.548]

Demographic and health behavior characteristics

Age 45.160

(16.146)

45.924

(16.698)

−0.764∗∗∗

[0.180]

−1.211

[0.738]

Gender 0.481

(0.500)

0.489

(0.500)

−0.008

[0.005]

0.003

[0.020]

Minority 0.952

(0.214)

0.872

(0.334)

0.080∗∗∗

[0.003]

−0.009

[0.008]

Urban/rural status 0.413

(0.492)

0.524

(0.499)

−0.112∗∗∗

[0.005]

−0.017

[0.030]

Income (10,000 yuan) 0.777

(1.552)

1.184

(2.372)

−0.407∗∗∗

[0.022]

−0.069

[0.072]

Smoking regularly 0.309

(0.462)

0.287

(0.452)

0.022∗∗∗

[0.005]

0.004

[0.023]

Drinking regularly 0.048

(0.214)

0.044

(0.205)

0.004∗

[0.002]

−0.002

[0.011]

Excessive red meat consumption 0.009

(0.096)

0.019

(0.137)

−0.010∗∗∗

[0.001]

−0.004

[0.003]

Consumption of puffed/fried food 1.252

(0.984)

1.339

(1.335)

−0.088∗∗∗

[0.013]

0.000

[0.048]

Weather measurements were calculated as a county’s average reading in the CFPS survey year. Columns (1) and (2) report the mean values of the north–south samples of the boundary, and Column

(3) reports the raw differences between the mean of the two samples by using t-test. The results in Column (4) are the nonparametric estimated discontinuity at the Huai River obtained using local

linear regression and the bandwidth selected using the commonMSEmethod with a triangular kernel. The optimal bandwidth is chosen separately for each variable. In Columns (1) and (2), standard

deviations are reported in parentheses. In Columns (3) and (4), standard errors are reported in brackets. ∗Significant at 10% level; ∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

results are consistent with Figure 1B, and they provide evidence that

a statistically significant discontinuous increase occurs in the rates

of chronic diseases and multiple chronic diseases for adults at the

Huai River boundary. Column (3) uses a linear polynomial. Columns

(2) and (4) report the second-stage (2SLS IV) parametric estimation

results. Nonparametric estimates from the reduced-form and second-

stage (fuzzy RD) regressions are reported in Columns (5)–(8).

Columns (5)–(8) provide the results when using triangle kernel local

quadratic and linear regressions, respectively, and the bandwidth

selected by the common MSE-optimal bandwidth selector.

Two characteristics of the results in Table 3 should be noted. First,

the RD effects on chronic diseases and multiple chronic diseases

are highly statistically significantly positive for different regression

methods and RD specifications, implying that our conclusions are

robust and not strongly affected by the choice of function form.

Second, the coefficients estimated by the 2SLS IV method are smaller

than the reduced-form estimates. Such finding is not surprising

given that many counties have good air quality although they are

located north of the Huai River because of regulatory measures.

Therefore, the reduced-form estimate overvalues the effect of the

Huai River policy.

As mentioned earlier, we use the results from the local linear

nonparametric regression application of the RD design as our

baseline results. The fuzzy RD approaches suggest a substantially

smaller estimate of the health effects of PM2.5. Column (8), which

reports the estimates from the nonparametric fuzzy RD approach,

suggests that an additional 10 µg/m3 sustained exposure to PM2.5 is

associated with a statistically significant increase in the probability of

suffering from chronic diseases and multiple chronic diseases by 3.2

and 1.3%, respectively.

We also report the results of the change in subcategories of

chronic diseases at the Huai River boundary. Our primary division

is chronic diseases of the cardiorespiratory system, neuropsychiatric

system, motor system, digestive system, and all other chronic

diseases, which we have identified using the chronic disease

classification codes recorded by CFPS and the Chinese coding
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FIGURE 1

Distribution of pollution exposure and chronic diseases at the Huai river boundary. The graphs show the average value of PM2.5 exposure and rates of

chronic diseases north and south of the Huai River. The horizontal axis is the distance north (positive values) and south (negative values) from the sample

location to the Huai River. The scatterplot in (A) is the means of PM2.5 within 100 km bins, and the solid and dashed lines are the regression fit and

associated confidence intervals, respectively, based on the quadratic polynomial regression of PM2.5 exposure on distance from the Huai River estimated

separately on each side of the river. The right and left columns of (B) present the results for at least one chronic disease and multiple chronic diseases,

respectively, estimated in the same manner as shown in (A).

scheme.12 We presume that chronic diseases of the cardiorespiratory

system are the most affected by air pollution, while chronic diseases

of the neuropsychiatric and motor systems are also partially affected

by air pollution. Chronic diseases of the digestive system and other

chronic diseases will not be affected by air pollution. This prediction

is borne out by the data: a statistically significant increase in chronic

diseases of the cardiorespiratory system, neuropsychiatric system,

and motor system rates is found at the Huai River by using different

RD specifications. The RD estimation coefficient for chronic diseases

of the cardiorespiratory system is the largest. By contrast, the change

in rate of all the other chronic diseases at the Huai River is a

decrease at the Huai River line. However, this decrease is not

statistically significant.

Tomake our conclusionmore intuitive, we consider the following

counterfactual policy. The policy changes coal-fired heating into

12 The codes are provided by the Chinese Center for Disease Control

and Prevention.

natural gas, wind energy, or solar energy. Ma et al. (36) estimated

that 15.5% of North China’s PM2.5 emissions came from coal burning

in power plants during winter.13 Assuming that coal-fired power

generation in northern winter is used for heating.14 Therefore, if

the output of existing coal burning power plants is replaced with

wind power or solar power, PM2.5 will be reduced by 15.5%. This

result implies a reduction in PM2.5 concentration by 7.86 µg/m3

13 Ma et al. (36) developed an emission inventory for 2013 by using up-

to-date information on energy consumption and emission controls. They

simulated the contribution of coal combustion to the total concentration of

PM2.5 in 74major cities across the country. Notably, this study is about emissions

from coal burning power plants in northern China during winter, not overall

coal usage.

14 Evidently, this situation is di�erent from the reality, because most of the

heating is directly generated by a coal-fired boiler in an apartment building.

Building accurate emissions is frequently challenging, and thus, we would like

to emphasize that our calculation should be interpreted as a rough estimation.
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TABLE 2 RD estimates of the e�ect of the Huai River policy on PM2.5.

Dependent variable: PM2.5 in µg/m3

Parametric estimates Nonparametric estimates

(1) (2) (3) (4)

North 29.917∗∗

(12.983)

27.118∗∗∗

(8.591)

27.094∗∗

(11.489)

28.580∗∗∗

(9.786)

Weather Yes Yes Yes Yes

Longitude Yes Yes Yes Yes

Polynomial Quadratic Linear Quadratic Linear

Size of bandwidth (100 km) [−5 5] [−5 5] [−5.205 5.205] [−4.026 4.026]

Observations 85 85 162 162

Observations inside bandwidth 88 78

Bandwidth selection method MSE MSE

Kernel Triangle Triangle

This table provides the parametric and nonparametric estimates of the effect of the Huai River Policy on PM2.5 . In Columns (1) and (2), we report the parametric estimates of a dummy North = 1

for samples located to the north of the Huai River after controlling for quadratic and linear regressions in distance from the Huai River and its interaction with the dummy North, respectively. In

Columns (3) and (4), we report the nonparametric estimate discontinuity at the Huai River by using triangle kernel local quadratic and linear regressions, respectively, and the bandwidth selected

by the common MSE-optimal bandwidth selector. The results in all regressions include weather and longitude covariates. Standard errors are reported in parentheses. ∗Significant at 10% level;
∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

for the average nationwide level of PM2.5 concentration in our

data (50.72 µg/m3). The finding by Hu et al. (1) implied that

China spends 858.054 billion CNY (130.01 billion USD) on treating

chronic noncommunicable diseases every year. The application of

the study’s estimates suggests that the counterfactual policy will

save 21.58 billion CNY (3.27 billion USD) in chronic disease costs.

If the national average concentration of PM2.5 is reduced by 10

µg/m3, then the cost of chronic diseases will save 27.46 billion

CNY (4.16 billion USD).

4.2. Robustness checks

We check the robustness and validity of our results against

a variety of dimensions, such as functional forms for the RD

polynomial, selection of bandwidth, sample selection, and placebo

checks. Our robustness checks support the validity of the RD design,

giving us confidence in the robustness of our results.

Although we control for the covariates listed in Table 1 in all

regressions, one possible concern is that our RD estimates can

be confused if covariates are discontinuous across the treatment

threshold of the Huai River boundary. To address this concern,

we examine the internal validity of our research design. If the

variation near the Huai River boundary is real, then we expect that

sample location characteristics, such as weather and longitude, and

demographic and health behavior characteristics will not exhibit

significant differences between the north and south of the Huai River.

We use local linear regression and the bandwidth selected by the

common MSE method proposed by Calonico et al. (31), Calonico

et al. (32), and Calonico et al. (33) by using a triangular kernel, i.e.,

our major RD specification in the empirical analysis, to test for the

continuity of sample characteristics at the Huai River boundary. The

results are presented in Column (4) of Table 1 and the standard errors

are in brackets. The RD estimates indicate that the discontinuous

difference for the covariates is not statistically significant at the river

boundary, confirming that observables that are close to the river

boundary are identical on average.

In Table 4, we explore the robustness of the results to the selection

of bandwidth to implement the parametric RD design by restricting

the sample of locations, starting within 500 km of the Huai River

in Column (1), which is primary analysis reported in Table 3, and

then progressively narrowing the 100 km term to each subsequent

selection of bandwidth as one moves from left to right. We report

the results by using 2SLS IV estimates and controlling for a quadratic

polynomial in distance from the Huai River and its interaction

with a North dummy. The North dummy is the IV of PM2.5.

Supplementary Table A1 further reports the first stage estimation

for PM2.5. Although the results fluctuate to a certain extent, the

discontinuity observed in chronic diseases, multiple chronic diseases,

and subcategories of chronic diseases is significant at the level of 1%.

This finding shows that our results are robust, even if we use samples

that are closer to the Huai River.

Table 5 further explores the sensitivity of the nonparametric

results to different bandwidth selection and kernel weighting

methods. Column (1) reports the baseline regressions, and they are

the same as those reported in Column (8) of Table 3. In the baseline

regression, we use the triangle kernel local linear regressions and

the bandwidth selected by the common MSE-optimal bandwidth

selector. In Columns (2) and (3), we reestimate our MSE-optimal

bandwidth results by using different kernel types (Epanechnikov

and Uniform). To cross-validate the sensitivity of the results to

different bandwidths, we use the same kernel local linear regressions

as those in Columns (1)–(3) in Columns (4)–(6), but with an

alternative bandwidth choice criterion. The common coverage error

rate (CER) optimal bandwidth method proposed by Calonico et al.

(32), Calonico et al. (37), and Calonico et al. (38) is used to estimate

the effect of 10 µg/m3 of PM2.5 on health outcomes. The results

are qualitatively similar across different bandwidth selectionmethods

and choice of kernel type, suggesting that our findings are insensitive

to the method used to generate our local linear regression estimates.
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TABLE 3 RD estimates of the e�ect of the Huai River policy and 10 µg/m3 of PM2.5 on health outcomes.

Parametric estimates Nonparametric estimates

OLS 2SLS OLS 2SLS Reduced
form

Fuzzy RD Reduced
form

Fuzzy RD

Dependent variables (1) (2) (3) (4) (5) (6) (7) (8)

Chronic diseases 0.069∗∗∗

(0.018)

0.021∗∗∗

(0.006)

0.059∗∗∗

(0.012)

0.019∗∗∗

(0.004)

0.126∗∗∗

(0.020)

0.044∗∗∗

(0.007)

0.095∗∗∗

(0.017)

0.032∗∗∗

(0.006)

Multiple chronic diseases 0.048∗∗∗

(0.010)

0.015∗∗∗

(0.003)

0.027∗∗∗

(0.007)

0.009∗∗∗

(0.002)

0.068∗∗∗

(0.012)

0.024∗∗∗

(0.004)

0.061∗∗∗

(0.011)

0.013∗∗∗

(0.003)

Subcategories of chronic diseases

Cardiorespiratory 0.055∗∗∗

(0.012)

0.017∗∗∗

(0.004)

0.035∗∗∗

(0.008)

0.011∗∗∗

(0.003)

0.080∗∗∗

(0.012)

0.028∗∗∗

(0.004)

0.064∗∗∗

(0.011)

0.022∗∗∗

(0.004)

Neuropsychiatric 0.011∗∗

(0.005)

0.003∗∗

(0.001)

0.006∗

(0.003)

0.002∗

(0.001)

0.019∗∗∗

(0.006)

0.006∗∗∗

(0.002)

0.012∗∗∗

(0.004)

0.004∗∗∗

(0.001)

Motor 0.024∗∗∗

(0.009)

0.007∗∗∗

(0.003)

0.018∗∗∗

(0.006)

0.006∗∗∗

(0.002)

0.060∗∗∗

(0.011)

0.017∗∗∗

(0.003)

0.039∗∗∗

(0.009)

0.013∗∗∗

(0.003)

Digestive 0.007

(0.009)

0.002

(0.003)

0.005

(0.007)

0.002

(0.002)

0.015

(0.010)

0.005

(0.003)

0.013

(0.009)

0.004

(0.003)

Other chronic diseases −0.006

(0.010)

−0.002

(0.003)

0.006

(0.007)

0.002

(0.002)

−0.010

(0.011)

−0.003

(0.004)

−0.007

(0.010)

−0.002

(0.003)

Covariates Yes Yes Yes Yes Yes Yes Yes Yes

Polynomial Quadratic Quadratic Linear Linear Quadratic Quadratic Linear Linear

Size of Bandwidth (100 km) [−5 5] [−5 5] [−5 5] [−5 5]

Observations 17752 17752 17752 17752 33575 33575 33575 33575

Kernel Triangle Triangle Triangle Triangle

Bandwidth selection method MSE MSE MSE MSE

Each cell in the table represents a separate regression. This table shows parametric [Columns (1)–(4)] and nonparametric [Columns (5)–(8)] estimates of the effect of the Huai River Policy and 10

µg/m3 of PM2.5 on the listed outcomes. Columns (1) and (3) report the ordinary least squares (OLS) estimates of the coefficient on a north of the Huai River dummy. Columns (2) and (4) present

the 2SLS IV estimates by using the “North of Huai River” as the IV. Columns (1)–(2) and (3)–(4) show the results after controlling for quadratic and linear polynomials in distance from the Huai

River interacted with a north dummy by using the sample within 500 km of the Huai River, respectively. Columns (5) and (7) report the estimated discontinuity at the Huai River. Columns (6) and

(8) present the estimates of the effect of 10 µg/m3 of PM2.5 on the listed outcomes that regarded distance from the Huai River as the running variable and PM2.5 as the treatment variable, with

the Huai River representing a “fuzzy” discontinuity at the level of 10 µg/m3 of PM2.5 exposure. Columns (5)–(6) and (7)–(8) show the results when using the triangle kernel local quadratic and

linear regressions, respectively, and bandwidth selected by the common MSE-optimal bandwidth selector. Covariates from Table 1 were included in all regressions. Standard errors are reported in

parentheses. ∗Significant at 10% level; ∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

Overall, our parametric and nonparametric estimates for

different bandwidths are qualitatively similar to those in our primary

analysis and suggest that our core finding is insensitive to our

bandwidth choice. Notably, the stability of the results in Tables 4, 5

further indicates that our major results in this study do not depend

on parametric or nonparametric estimation methods.

In Table 6, we also report additional robustness checks for

alternative specifications and sample the first stage estimation. We

reproduce the analysis in Column (8) of Table 3 baseline estimates,

in which we use the triangle kernel local linear regressions and

the bandwidth selected by the common MSE-optimal bandwidth

selector. We first examine the OLS estimates. In contrast with the

equation estimated by OLS in Columns (1) and (3) of Table 3,

Columns (2) and (3) in Table 6 report the traditional OLS equation

that does not include a running variable for the distance from the

Huai River and its interaction with the North dummy. Column (2)

uses the full sample, while the sample within 500 km of the Huai River

is used in Column (3). The traditional OLS estimates are remarkably

smaller in magnitude compared with the baseline estimates of the

health effects of PM2.5. In particular, the OLS estimates show that the

coefficient of PM2.5 is between 0 and 0.003, and only the effect on

chronic diseases is significant when using all samples. These estimates

by conventional criteria can be explained by several reasons. One

explanation is that under the non-RD design, the air pollution effect

on health will be confused by economic factors, such as income,

because air pollution exhibits a strong correlation with economic

factors, which are also important determinants of health. Another

primary explanation is the measurement error of air pollution. We

cannot observe the precise air pollution exposure of each person, and

thus, we can only use outdoor air pollution constructed from satellite

observations to approximate actual personal pollution exposure.

Many studies in the literature on the effect of air pollution have

pointed out that allocating air pollution exposure at the regional

level (the county level in the current study) to individuals will

introduce classical measurement errors (5, 39–41). In turn, classical

measurement errors will lead to the underestimation and confusion

of air pollution effects.

Our baseline results include covariates for weather and longitude

variables in flexible specifications to control for the confusion of

weather and longitude location factors on our results and ensure

that the Huai River policy affects health through air pollution

rather than weather and location differences. In Column (4),
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TABLE 4 E�ect of alternative bandwidths on regression results, parametric estimates.

IV Estimates of 10 µg/m3 of PM2.5

500 km 400 km 300 km 200 km

Dependent variables (1) (2) (3) (4)

Chronic diseases 0.021∗∗∗

(0.006)

0.039∗∗∗

(0.007)

0.042∗∗∗

(0.008)

0.026∗∗∗

(0.005)

Multiple chronic diseases 0.015∗∗∗

(0.003)

0.021∗∗∗

(0.004)

0.024∗∗∗

(0.005)

0.016∗∗∗

(0.003)

Subcategories of chronic diseases

Cardiorespiratory 0.017∗∗∗

(0.004)

0.028∗∗∗

(0.005)

0.028∗∗∗

(0.005)

0.013∗∗∗

(0.003)

Neuropsychiatric 0.003∗∗

(0.001)

0.006∗∗∗

(0.002)

0.007∗∗∗

(0.002)

0.005∗∗∗

(0.002)

Motor 0.007∗∗∗

(0.003)

0.014∗∗∗

(0.004)

0.020∗∗∗

(0.004)

0.012∗∗∗

(0.003)

Digestive 0.002

(0.003)

0.006∗

(0.004)

0.006

(0.004)

0.006∗∗

(0.003)

Other chronic diseases −0.002

(0.003)

−0.003

(0.004)

−0.005

(0.005)

−0.003

(0.003)

Covariates Yes Yes Yes Yes

Observations 17,752 15,910 12,956 6,566

This table shows the 2SLS IV estimates of PM2.5 on the listed outcomes with the alternative size of bandwidth by using “North of Huai River” as IV after controlling for a quadratic polynomial in

distance from the Huai River and its interaction with a North dummy. Column (1) presents the baseline regressions, which are the same as those reported in Column (2) of Table 3. The covariates

from Table 1 are included in all regressions. Standard errors are reported in parentheses. ∗Significant at 10% level; ∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

TABLE 5 E�ects of alternative bandwidth selection and kernel weighting methods on regression results, nonparametric estimates.

Bandwidth: MSE-optimal bandwidth Bandwidth: CER-optimal bandwidth

Dependent variables (1) (2) (3) (4) (5) (6)

Chronic disease 0.032∗∗∗

(0.006)

0.031∗∗∗

(0.006)

0.026∗∗∗

(0.006)

0.023∗∗∗

(0.005)

0.026∗∗∗

(0.005)

0.020∗∗∗

(0.005)

Multiple chronic diseases 0.020∗∗∗

(0.004)

0.017∗∗∗

(0.003)

0.013∗∗∗

(0.003)

0.014∗∗∗

(0.004)

0.079∗∗∗

(0.040)

0.018∗∗∗

(0.004)

Subcategories of chronic diseases

Cardiorespiratory 0.022∗∗∗

(0.004)

0.022∗∗∗

(0.004)

0.010∗∗∗

(0.002)

0.016∗∗∗

(0.003)

0.016∗∗∗

(0.003)

0.019∗∗∗

(0.004)

Neuropsychiatric 0.004∗∗∗

(0.001)

0.004∗∗∗

(0.001)

0.002∗

(0.001)

0.005∗∗∗

(0.002)

0.004∗∗∗

(0.002)

0.004∗∗∗

(0.001)

Motor 0.013∗∗∗

(0.003)

0.012∗∗∗

(0.003)

0.007∗∗∗

(0.003)

0.012∗∗∗

(0.003)

0.012∗∗∗

(0.003)

0.014∗∗∗

(0.003)

Digestive 0.004

(0.003)

0.004

(0.003)

0.000

(0.002)

0.003

(0.003)

0.003

(0.003)

0.007∗

(0.003)

Other chronic diseases −0.002

(0.003)

−0.002

(0.003)

0.001

(0.002)

−0.005

(0.003)

−0.005

(0.003)

−0.001

(0.003)

Covariates Yes Yes Yes Yes Yes Yes

Observations 33575 33575 33575 33575 33575 33575

Kernel Triangle Epanechnikov Uniform Triangle Epanechnikov Uniform

This table shows the nonparametric estimates of the effect of PM2.5 on the listed outcomes with the Huai River representing a “fuzzy” discontinuity in the level of PM2.5 by using local linear

regression different bandwidth selection and kernel weighting methods. Column (1) reports the baseline regressions, which are the same as those reported in Column (8) of Table 3. The table reports

the bandwidth selection methods, i.e., one common MSE-optimal bandwidth selector or one common CER-optimal bandwidth selector. Covariates from Table 1 are included in all regressions.

Standard errors are presented in parentheses. ∗Significant at 10% level; ∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

we exclude weather and longitude variables and find that the

magnitude and statistical significance of the estimation coefficient are

essentially unchanged.

As mentioned earlier, we construct the individual sustained

pollution exposure variable based on the PM2.5 concentration in the

residential county. A potential concern is that relocation to other
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TABLE 6 Robustness of results to alternative specifications and samples.

Baseline OLS OLS within
500 km

No
Covariates

Hukou Prefecture
level

(1) (2) (3) (4) (5) (6)

Chronic diseases 0.032∗∗∗

(0.006)

0.003∗∗∗

(0.001)

0.001 (0.001) 0.035∗∗∗

(0.006)

0.035∗∗∗

(0.006)

0.033∗∗∗

(0.006)

Size of bandwidth (100 km) [−2.749 2.749] [−1.838 1.838] [−2.415 2.415] [−2.749 2.749]

Observations inside Bandwidth 12,044 5,927 10,582 12,044

Multiple chronic diseases 0.020∗∗∗

(0.004)

0.001

(0.001)

0.000 (0.001) 0.019∗∗∗

(0.004)

0.020∗∗∗

(0.004)

0.021∗∗∗

(0.004)

Size of bandwidth (100 km) [−2.236 2.236] [−2.656 2.656] [−2.268 2.268] [−2.236 2.236]

Observations inside bandwidth 10,217 12,044 9,859 10,217

Observations 33,575 33,575 17,752 33,575 30,898 33,575

This table presents the results of various robustness checks for alternative specifications and samples. Column (1) reports the baseline regressions, which are the same as those reported in Column

(8) of Table 3. In Columns (3) and (4)–(6), we estimate the effect of PM2.5 on the listed outcomes with the Huai River representing a “fuzzy” discontinuity at the level of PM2.5 with a triangle kernel

local linear regression and bandwidth selected by the commonMSE-optimal bandwidth selector. Column (4) excludes weather, longitude, and demographic covariates. Column (5) excludes samples

without local hukou registration. Column (6) collapses pollution data at the prefecture level, which typically includes 5 to 15 counties. In Columns (2) and (3), we report the OLS estimates of the

association between PM2.5 and the listed outcome. All the results report the effect of 10 µg/m3 of PM2.5 on these outcomes. Standard errors are presented in parentheses. ∗Significant at 10% level;
∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

counties may be required to work or seek cleaner air. Such migration,

if it occurs, can pose a potential challenge to our pollution exposure

measurement, which assumes that the level of exposure to pollution

is at the level observed at their hukou (obtained at one’s city of birth).

In addition, large-scale migration will also pose potential challenges

to the RD design based on the Huai River boundary if migration

occurs across boundaries. Although some studies have pointed out

that migration is unlikely to affect our estimates significantly due

to strict migration policies and low real migration rates across

boundaries (6, 24), we still explore the potential effect of migration

on the results by using two methods. First, we exclude samples

without local hukou registration because data collection on migrant

populations is notoriously difficult. The results are presented in

Column (5), and they remain robust. Second, job-oriented migration

has a considerable rate of mobility within a prefecture-level city,

which typically contains 5–15 counties. That is, people may live in

one county but work in another. We collapse the pollution data

at the prefecture level for RD estimation. The results are presented

in Column (6), and they remain robust. Supplementary Table A2

further reports the same robustness checks for cardiorespiratory and

non-cardiorespiratory chronic diseases. The results fail to contradict

the study’s qualitative findings.

The asymptotic properties of parametric and nonparametric

estimators depend on the order of the polynomial and the bandwidth,

respectively. A trade-off exists between the bias and variance of

estimates: higher-order polynomials and smaller bandwidths reduce

bias but increase variance. Here, we explore the sensitivity of our

results to higher-order polynomials.

Figure 2 plots the parametric estimates for the 2SLS effects

of PM2.5 on health outcomes by using the sample of locations

within 500 km of the Huai River and the associated 95% confidence

intervals when the order of the polynomial varies between linear

and sextic. The RD-estimated effects on chronic diseases, multiple

chronic diseases, and subcategories of chronic diseases, including

cardiorespiratory, neurological, and motor systems, are nearly always

significantly positive. Our results are robust to the choice of

functional forms for the RD polynomial.

The strong correlation between the Huai River Policy and

chronic diseases in adults documented in Table 3 is unlikely to have

arisen by chance. As a check on the model, we implemented a

series of placebo tests. To do this, we used the RD nonparametric

approach to estimate a reduced form boundary effect at a randomly

assigned latitude boundary. To avoid having the placebo estimate

influenced by any jump at the true boundary, we repeated the

test 1,000 times, enabling us to exclude the possibility that our

estimates are driven to a significant extent by small sample bias

within groups. We use a triangle kernel local linear regression and

the bandwidth selected by the common MSE-optimal bandwidth

selector to estimate the effect of boundary on chronic and

multiple chronic diseases. This test has been used in previous

studies (42).

Figure 3 plots the distribution of placebo estimates along with the

true discontinuity value for chronic and multiple chronic diseases.

Each placebo estimate was obtained by assigning a latitude boundary

at random, computing a “false” running variable as the distance from

the sample location to the placebo boundary. The distributions of

the placebos are centered at 0, and the actual coefficient estimates

are plotted as vertical lines. As the graphs become clear, the true

boundary effect (the Huai River Policy) on chronic and multiple

chronic diseases is less than that of most of the placebo estimates.

These findings exclude the possibility that the baseline estimates

only averaged a small sample bias. They indicate that the odds of

finding the Huai River boundary effects to be as large as ours merely

by chance are small, and thus, our major results are not likely to

be systematic artifacts caused by spurious factors around the Huai

River boundary.

4.3. Heterogeneous e�ects

In the previous sections, we estimated the average

effect of the Huai River policy on chronic diseases in

adults. However, this effect can be heterogeneous. In this

section, we investigate whether heterogeneity effects of the

Huai River policy exist on chronic diseases. In particular,

we explore heterogeneous effects on age, gender, and

urban/rural registration.
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FIGURE 2

Robustness test for di�erent RD polynomials. The graphs show the point estimates for the e�ect of PM2.5 on health outcomes and the associated 95%

confidence intervals when the degree of the polynomial used in regression varies between linear and sextic. All the graphs show the 2SLS IV estimates

and include all the covariates listed in Table 1.
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FIGURE 3

RD Estimates of the e�ect of the latitude boundary on chronic diseases, placebo estimates. The graphs show the distribution of the RD estimates by using

a nonparametric method obtained from 1,000 random permutations of the boundary. Each placebo estimate assigned a false latitude boundary and then

used a triangle kernel local linear regression and the bandwidth selected by the common MSE-optimal bandwidth selector to estimate the e�ect of the

boundary on chronic and multiple chronic diseases. The vertical solid lines denote the actual estimates.

We first examine how air pollution effect differs between young

and elderly populations. The resistance of people varies with age,

and the resistance of the elderly is generally weaker than that of

the young; accordingly, multiple chronic diseases are more common

among the elderly (43). Therefore, differences may exist in the effect

of air pollution on chronic diseases among age groups. The wide

age span of the CFPS data enables us to consider the effects of

air pollution throughout adulthood. Table 7 presents the parametric

and nonparametric estimates of PM2.5 exposure on chronic and

multiple chronic disease rates separately for different age groups.

The results of the subcategories of chronic diseases are reported in

Supplementary Figure A1. As reported in Table 7, all the regressions

include weather, longitude, and demographics other than age controls

or covariates. We report the 2SLS IV estimates by using all the

samples and the sample within 500 km of the Huai River and fuzzy

RD estimates with a triangle kernel local linear regression. Our results

show that the Huai River has significantly increased the prevalence

of chronic diseases in adults aged 20–50 years. For multiple chronic

diseases, the estimated coefficients are nearly significant throughout

the adult life cycle, and magnitude increases with age. These results

show that air pollution will not aggravate the prevalence of chronic

diseases among the elderly, but will aggravate the incidence rate

of multiple chronic diseases among the elderly. One explanation

is that chronic diseases are extremely common among the elderly,

and air pollution only aggravates the rate of suffering from multiple

chronic diseases. For young people, regardless of whether chronic

or multiple chronic diseases, air pollution has a significant positive

effect on them, suggesting that PM2.5 is an important determinant

of health. Supplementary Figure A1 plots the change in subcategories

of chronic disease rates at the Huai River throughout the adult life

cycle by using the local linear regression estimates of the magnitude

of discontinuity, including the 95% confidence interval. The results

indicate that the increase in cardiorespiratory chronic diseases is

statistically significant for a large range of the adult life cycle. These

results help explain the study’s central finding of a large effect of PM2.5

on chronic diseases.

Second, we examined gender heterogeneity. Similar to Table 7,

we report the parametric and nonparametric results and all the

regressions, including weather, longitude, and demographics other

than the age controls or covariates in Table 8. As indicated in

Table 8, when estimated separately for men and women, evidence of

consistencies across genders in the effect of PM2.5 on chronic diseases

and multiple chronic diseases seems to be strong. For example, in the

preferred specifications for using local linear regression in Columns

(3) and (6), we estimate that the rate of men and women with

chronic diseases at the Huai River increased by 3.3%, respectively.

Similarly, the rate of men and women with cardiorespiratory chronic

diseases at the Huai River increased by 2.1 and 2.3%, respectively.

The rate of men and women with motor chronic diseases at the Huai

River increased by 1.4 and 1.1%, respectively. The results between

different genders are similar in quality, which is consistent with the

interpretation of the results driven by joint exposure to air pollution,

rather than a false correlation with omitted variables.

Finally, regional heterogeneity may exist for two reasons. First,

China’s rural residents are considerably poorer than its urban

residents. Given that income levels play an important role in food

intake and the incidence of chronic diseases (44), urban residentsmay

have a high prevalence of chronic diseases, confusing the effects of

air pollution. We expect that the effect of air pollution on chronic

diseases is insignificant in urban areas. Second, pollution in cities is

more serious due to industrial agglomeration (45), and thus, the total

air pollution exposure of rural residents may be significantly lower

than that of urban residents. We expect that the effect of air pollution

in urban areas will be greater.

Table 9 provides the 2SLS IV and local linear estimates of

PM2.5 on chronic and multiple chronic diseases by urban/rural-

specific. We analyze our preferred specification by using local linear

regression results reported in Columns (3) and (6). For chronic

diseases, the effect of PM2.5 is statistically significant in rural areas

but not in urban areas. The different effects may be related to

the income gap between urban and rural areas. Given the higher

income level of urban residents and their excessive calorie intake,
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TABLE 7 E�ect of the Huai River policy on chronic diseases by age.

Chronic diseases Multiple chronic diseases

2SLS Fuzzy RD 2SLS Fuzzy RD

Age (years) (1) (2) (3) (4) (5) (6)

<20 0.011

(0.009)

0.005

(0.015)

0.014

(0.014)

−0.001

(0.004)

−0.000

(0.001)

−0.002

(0.002)

[20, 30) 0.012∗∗

(0.005)

0.027∗∗∗

(0.008)

0.027∗∗∗

(0.009)

0.002

(0.003)

0.007∗

(0.004)

0.006∗

(0.003)

[30, 40) 0.015∗

(0.007)

0.019∗∗

(0.009)

0.027∗∗∗

(0.009)

0.008∗∗

(0.003)

0.011∗∗

(0.005)

0.011∗∗∗

(0.004)

[40, 50) 0.031∗∗∗

(0.008)

0.043∗∗∗

(0.012)

0.052∗∗∗

(0.012)

0.007∗

(0.004)

0.010

(0.006)

0.013∗

(0.007)

[50, 60) 0.012

(0.009)

0.022

(0.014)

0.027∗∗

(0.014)

0.010∗∗

(0.005)

0.016∗∗

(0.008)

0.017∗∗

(0.008)

[60, 70) 0.012

(0.012)

−0.002

(0.019)

0.014

(0.017)

0.020∗∗∗

(0.007)

0.028∗∗

(0.012)

0.031∗∗

(0.012)

[70, 80) 0.021

(0.017)

0.018

(0.023)

0.042∗

(0.023)

0.026∗∗

(0.011)

0.029∗

(0.016)

0.052∗∗∗

(0.016)

≥80 −0.004

(0.030)

0.024

(0.042)

0.075∗

(0.038)

0.023

(0.017)

0.027

(0.027)

0.046

(0.028)

Covariates Yes Yes Yes Yes Yes Yes

Polynomial Quadratic Quadratic Linear Quadratic Quadratic Linear

Size of bandwidth (100 km) All [−5 5] All [−5 5]

Kernel Triangle Triangle

Bandwidth selection method MSE MSE

Each cell in the table represents a separate regression. In Columns (1)–(2) and (4)–(5), we report the 2SLS IV estimate of PM2.5 on the listed outcomes by using “North of Huai River” as the IV, after

controlling for a quadratic polynomial in distance from the Huai River and its interaction with a North dummy. In Columns (3) and (6), we estimate the effect of PM2.5 on the listed outcomes with the

Huai River representing a “fuzzy” discontinuity at the level of PM2.5 with a triangle kernel local linear regression, respectively, and the bandwidth selected by the common MSE-optimal bandwidth

selector. Covariates from Table 1 other than age are included in all regressions. Standard errors are presented in parentheses. ∗Significant at 10% level; ∗∗Significant at 5% level; ∗∗∗Significant at

1% level.

urban residents have a higher rate of chronic disease. This income-

driven chronic disease effect may be sufficient to offset the effect

of air pollution. Consequently, the estimated coefficient of urban

samples is insignificant. For multiple chronic diseases, the estimation

coefficient is significantly positive across urban and rural areas.

However, compared with rural area residents, urban area residents

have a higher risk of multiple chronic diseases during adulthood. This

comparison supports the effect of total exposure to air pollution on

chronic diseases and the argument that cities are more exposed to

air pollution.

Although we do not find evident gender heterogeneity from

Table 8, gender heterogeneity may be confused by urban–rural

differences. For example, differences exist in the amount of physical

labor between men and women in rural China, but it may not exist

in cities. More manual work (physical activities) can reduce the

incidence of many diseases (46, 47), leading to gender heterogeneity

being different between rural and urban samples. To test this

hypothesis, we further divide the rural and urban samples into four

subsamples based on gender and estimate the effect of the Huai

River policy on the rural male, rural female, urban male, and urban

female populations. As reported in the graph on the right of Figure 4,

no significant gender difference is found in the effect of the Huai

River policy on multiple chronic diseases in urban samples, but

differences are observed in rural samples. In particular, the effect of

PM2.5 on rural women is statistically significant, but the effect on

rural men is insignificant. This comparison supports the conjecture

that differences exist in the amount of physical labor between rural

men and women. In addition, gender difference in rural samples may

also be explained by the difference in total exposure to air pollution

between men and women. Women are mostly engaged in outdoor

agricultural production (e.g., work on the field), while men are mostly

engaged in non-agricultural work in rural China. Given the nature of

their work, the total exposure to air pollution of rural women may be

significantly higher than that of rural men. The same results are found

for cardiorespiratory chronic diseases, as presented in the graph on

the left of Supplementary Figure A2.

4.4. Mechanism tests

Two main conclusions can be drawn from the results obtained so

far. First, air pollution increases the risk of chronic diseases in adults.

Second, in addition to cardiorespiratory system diseases, a statistically

significant increase in chronic diseases of the neuropsychiatric system

and motor system rates is also found at the Huai River by using

different RD specifications. Many studies show that air pollution

has a direct impact on cardiorespiratory diseases (6, 23). In this

section, we mainly explore the possible channels of air pollution

affecting the neuropsychiatric system and motor system diseases.

First, air pollution may affect neuropsychiatric system diseases
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TABLE 8 Heterogeneous e�ect of the Huai river policy on chronic diseases by gender.

Men Only Women Only

2SLS Fuzzy RD 2SLS Fuzzy RD

(1) (2) (3) (4) (5) (6)

Chronic diseases 0.016∗∗∗

(0.005)

0.020∗∗∗

(0.008)

0.033∗∗∗

(0.008)

0.015∗∗∗

(0.005)

0.021∗∗∗

(0.008)

0.033∗∗∗

(0.008)

Multiple chronic diseases 0.009∗∗∗

(0.003)

0.009∗∗

(0.004)

0.014∗∗∗

(0.004)

0.011∗∗∗

(0.003)

0.019∗∗∗

(0.005)

0.023∗∗∗

(0.005)

Subcategories of chronic diseases

Cardiorespiratory 0.011∗∗∗

(0.003)

0.015∗∗∗

(0.005)

0.021∗∗∗

(0.005)

0.009∗∗∗

(0.003)

0.018∗∗∗

(0.005)

0.023∗∗∗

(0.005)

Neuropsychiatric 0.001

(0.001)

0.005∗∗

(0.002)

0.006∗∗∗

(0.002)

0.002

(0.001)

0.002

(0.002)

0.002

(0.002)

Motor 0.006∗∗

(0.002)

0.006

(0.004)

0.014∗∗∗

(0.004)

0.007∗∗

(0.003)

0.009∗∗

(0.004)

0.011∗∗∗

(0.004)

Digestive 0.000

(0.003)

0.001

(0.004)

0.002

(0.004)

0.001

(0.003)

0.003

(0.004)

0.006

(0.005)

Other chronic diseases 0.002

(0.003)

−0.001

(0.004)

−0.002

(0.004)

−0.001

(0.003)

−0.003

(0.005)

−0.003

(0.005)

Covariates Yes Yes Yes Yes Yes Yes

Polynomial Quadratic Quadratic Linear Quadratic Quadratic Linear

Size of Bandwidth (100 km) All [−5 5] All [−5 5]

Kernel Triangle Triangle

Bandwidth selection method MSE MSE

This table replicates the RD estimates in Table 7, but estimated by gender. Covariates from Table 1, other than gender, are included in all regressions. Standard errors are presented in parentheses.
∗Significant at 10% level; ∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

FIGURE 4

Heterogeneous e�ect of additional 10 µg/m3 exposure to PM2.5 on chronic diseases by gender and urban/rural status. These graphs present fuzzy RD

nonparametric point estimates of the e�ect of additional 10 µg/m3 exposure to PM2.5 on chronic and multiple chronic diseases, regarding distance from

the Huai River as the running variable and PM2.5 as the treatment variable, with the Huai River representing a “fuzzy” discontinuity at the level of pollution

exposure by gender and urban/rural status and the associated 95% confidence intervals. The discontinuities are estimated using a triangle kernel local

linear regression and the optimal bandwidth is chosen by the common MSE-optimal bandwidth selector. Each point estimate includes all the covariates,

other than gender and urban/rural status, listed in Table 1.

such as mental health directly through the induction of systemic

or brain-based oxidative stress and inflammation. The biological

pathway of fine particulate matter inducing oxidative stress and

inflammation is that they will lead to the disorder of cytokine

signal transduction, which can lead to depression, anxiety, cognitive

dysfunction, and other mental illness (48). Second, air pollution may

also affect neuropsychiatric system diseases through sleep disorders,

which can lead to depression and anxiety. For motor system

diseases, air pollution may affect it through behavioral responses.

Many studies find that people are likely to stay indoors to avoid

air pollution, thereby increasing sedentary behaviors and reducing

outdoor physical activities (49), which causes diseases of the motor
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TABLE 9 Heterogeneous e�ect of the Huai river policy on chronic diseases by urban/rural status.

Urban only Rural only

2SLS Fuzzy RD 2SLS Fuzzy RD

(1) (2) (3) (4) (5) (6)

Chronic diseases 0.026∗∗∗

(0.005)

0.051∗∗∗

(0.010)

0.004 (0.010) 0.012∗∗∗

(0.006)

0.005 (0.007) 0.028∗∗∗

(0.007)

Multiple chronic diseases 0.017∗∗∗

(0.003)

0.028∗∗∗

(0.006)

0.034∗∗∗ (0.007) 0.006∗

(0.003)

0.009∗∗

(0.004)

0.012∗∗

(0.005)

Subcategories of chronic diseases

Cardiorespiratory 0.010∗∗∗

(0.004)

0.031∗∗∗

(0.007)

0.036∗∗∗ (0.008) 0.012∗∗∗

(0.003)

0.010∗∗

(0.005)

0.008∗∗

(0.004)

Neuropsychiatric 0.002∗ (0.001) 0.003

(0.002)

0.004∗∗ (0.002) 0.001

(0.001)

0.004∗ (0.002) 0.006∗∗

(0.002)

Motor 0.010∗∗∗

(0.003)

0.015∗∗∗

(0.005)

0.018∗∗∗ (0.004) 0.005∗

(0.003)

0.004 (0.004) 0.010∗∗∗

(0.004)

Digestive 0.002 (0.003) 0.007

(0.005)

0.008 (0.005) −0.001

(0.003)

−0.001

(0.004)

−0.001

(0.003)

Other chronic diseases 0.006∗∗

(0.003)

0.010∗

(0.006)

0.007 (0.007) −0.003

(0.003)

−0.008∗

(0.004)

−0.009∗∗

(0.004)

Covariates Yes Yes Yes Yes Yes Yes

Polynomial Quadratic Quadratic Linear Quadratic Quadratic Linear

Size of bandwidth (100 km) All [−5 5] All [−5 5]

Kernel Triangle Triangle

Bandwidth selection method MSE MSE

The results report the discontinuity in the listed outcomes by urban/rural status in the same manner as those reported in Tables 7, 8. Covariates from Table 1, other than urban/rural status, are

included in all regressions. Standard errors are presented in parentheses. ∗Significant at 10% level; ∗∗Significant at 5% level; ∗∗∗Significant at 1% level.

TABLE 10 Potential mechanisms of the Huai River policy on chronic

diseases.

2SLS Fuzzy RD

(1) (2) (3)

Sleep time 0.026

(0.017)

0.020

(0.027)

−0.075∗∗

(0.034)

Physical activity frequency −0.024

(0.021)

−0.166∗∗

(0.072)

−0.110∗

(0.060)

Covariates Yes Yes Yes

Polynomial Quadratic Quadratic Linear

Size of bandwidth (100 km) All [−5 5]

Kernel Triangle

Bandwidth selection method Mserd

Each cell in the table represents a separate regression. The dependent variables are and sleep time

and physical activity frequency. Physical activity frequency is expressed in terms of how often an

individual engages in fitness or participates in physical activity, ranging from 1 (1 time in a few

months) to 5 (almost daily). Sleep time is expressed as the number of hours of sleep on weekdays.

Standard errors are presented in parentheses. ∗Significant at 10% level; ∗∗Significant at 5% level;
∗∗∗Significant at 1% level.

system. We explore differences in sleep time and physical activity

frequency to explain the effects of air pollution on chronic diseases of

the neuropsychiatric system andmotor system. To gain some insights

into these factors, we use rich questions and answers about exercise

and sleep in the CFPS. Like the above specification, we report the

results of parametric and nonparametric estimates.

Table 10 presents the fuzzy RD estimates of PM2.5 exposure on

the frequency of physical activity and sleep time of adults. We start

with sleep time in Table 10. We find that higher concentrations of

air pollution can lead to a reduction in sleep time, and when using

our preferred specifications, Column (3), this effect is significant.

As mentioned earlier, Column (3) uses the optimal bandwidth

method, while Columns (1), (2) show insignificant positive results

due to manual bandwidth restriction. We then examine the effect

of PM2.5 on physical activity. The survey asked how often an

individual engages in fitness or participates in physical activity,

ranging from 1 (1 time in a few months) to 5 (almost daily). Since

only 6,140 observations report a valid range, these estimates should

be interpreted with caution. Nevertheless, we find a stable negative

effect of PM2.5 on physical activity frequency, indicating that less

outdoor exercise to avoid air pollution is a possible channel for the

air pollution effect.

5. Conclusions

Although the previous literature has examined the shorter

lifespan caused by airborne particulate matter, limited evidence is

available regarding the effect of air pollution on chronic diseases. We

used an RD design based on distance from the Huai River to estimate

the chronic disease consequences of the indoor heating policy. A

fuzzy RD estimate finds that sustained exposure to additional 10

µg/m3 PM2.5 is associated with a reduction of 3.2 and 1.3% in at least

one chronic disease and multiple chronic disease rates, respectively.
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Various robustness checks and placebo regressions using false latitude

boundary support our findings. Our findings suggest that the effect

of air pollution differs depending on urban or rural status, gender,

and age. In particular, women who work outdoors in agricultural

production in rural areas are more sensitive to air pollution. For

age heterogeneity, the coefficient of estimation of multiple chronic

diseases is nearly significant throughout the adult life cycle, and its

size increases with age. For young people, regardless of whether they

are suffering from chronic diseases or multiple chronic diseases, air

pollution exerts a significant positive effect on them, indicating that

PM2.5 is an important determinant of health.

The results of this study have powerful policy implications. We

demonstrate that negative effect of air pollution on chronic diseases.

Considering that the annual cost of chronic diseases in China is

858.054 billion CNY (130.01 billion USD), the estimates of this study

imply that reducing 10 µg/m3 of the average nationwide level of

PM2.5 concentration will save 27.46 billion CNY (4.16 billion USD)

in chronic disease costs.

In addition, in pursuing economic development, developing

countries are prone to disregard emission restrictions on pollutants,

leading to the deterioration of air quality and the increase in the

economic burden of diseases. Whether health risks caused by air

quality reduce labor productivity and human capital, which, in turn,

hinders economic development, further research is necessary. More

broadly, the results of this study are of enlightening significance for

environmental regulations, economic incentives, and labor policies.
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