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Industrial agglomeration does not only promote economic and social

prosperity of urban agglomeration, but also increases industrial pollution,

which poses a health risk to the general public. The Lanzhou–Xining urban

agglomeration in western China is characterized by industrial agglomeration

and serious industrial pollution. Based on the county panel data of the

Lanzhou–Xining urban agglomeration in western China from 2010 to 2018,

a research of the impacts of industrial agglomeration on industrial pollutant

emissions was conducted by using spatial analysis technology and spatial

econometric analysis. The results indicate that industrial agglomeration is an

important factor leading to an increase in industrial pollutant emissions. In

addition, population density, economic level, and industrial structure are also

important factors that lead to the increase in industrial pollutant emissions.

However, technological level has led to the reduction in industrial pollutant

emissions. Furthermore, industrial pollutant emissions are not only a�ected

by the industrial agglomeration, population density, economic level, industrial

structure, and technological level of the county but also by those same

factors in the surrounding counties, owing to the spatial spillover e�ect.

Joint development of green industries and control of industrial pollutant

emissions is an inevitable result for the Lanzhou–Xining urban agglomeration

in western China.
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1. Introduction

Industrial agglomeration is the main spatial organization

form of industrialization. Through the mechanisms of scale

economy, industrial agglomeration promotes economic

competitiveness, optimizes the resource allocation, and

stimulates technological innovation, which at the same time

has also led to an increase in industrial pollutant emissions

(1). The increase in industrial pollutant emissions from China’s

industrialization not only affects public health but also affects

the sustainable development of the economy and society (2).

The pollution generated from China’s industrial production

is more serious than that which is generated in daily life, and

preventing and controlling the discharge of industrial pollution

have become an important goal of environmental pollution

control in China (3).

During the past decades, urban agglomerations have seen

rapid industrialization, and rapid economic growth along

with sharply increasing industrial pollutant emissions (4).

Therefore, the impact of industrial agglomeration on industrial

pollutant emissions has received much attention in the research

community. However, the results of such research have not

always been in agreement, owing to the differences in research

areas, methods, and objectives. This indicates that the impact

of industrial agglomeration on industrial pollutant emissions is

a complex issue (5). For instance, the elimination of polluting

industries in the eastern and central provinces of China leads

to the transfer of these industries to the western provinces

of China (6). By acquiring these polluting industries, urban

agglomerations in western China have promoted the level of

industrial activity, causing environmental problems such as

increasing industrial pollutant emissions (7).

Industrial agglomeration is an inevitable result of industrial

development in urban agglomerations. Industrial agglomeration

can reduce transaction costs, increase returns on scale, and

reduce transportation costs, which together promote expansion

of the industrial scale (8). Industrial agglomeration is more

prone to rapid expansion of the industrial scale, resulting

in growing energy consumption and industrial pollutant

emissions (9). Therefore, areas with high levels of industrial

agglomeration are also areas of significant industrial pollution.

There seems to be a simple logic here: industrial agglomeration

leads to an increase in industrial pollutant emissions (10).

However, this conclusion seems to be contradictory to

traditional agglomeration economic theory, which suggests that

spatial agglomeration has economies of scale and spillover

effects (11). Therefore, whether due to the spillover effect

of pollution reduction technology or to the scale effect of

environmental factors, industrial agglomeration has contributed

to a reduction in pollutant emissions from industry. However,

does industrial agglomeration lead to an increase or decrease

in industrial pollutant emissions? The truth needs to be

verified. With the presence of rapid industrial growth in

urban agglomerations in western China, it is necessary and

urgent to analyze the impact of industrial agglomeration on

industrial pollutant emissions. Answering the above questions

would provide an effective reference for improving the

impact of industrial activity on urban agglomerations in

western China.

2. Literature review

Upon reviewing the researches that have been conducted,

we have come to the conclusion that industrial agglomeration

has an impact on industrial pollutant emissions through the

effects of pollution and self-purification. On the one hand, the

pollution effect of industrial agglomeration leads to an increase

in industrial pollutant emissions, and industrial agglomeration

leads to the expansion of industrial production scale, which

increases raw material consumption and industrial pollutant

emissions through the scale effect (12). In the process of

industrial agglomeration, some enterprises exhibit free-riding

behavior in industrial pollution reduction, resulting in severe

pollution of the industrial agglomeration area (13). In the

process of industrial agglomeration, environmental regulations

are regarded as a tool for promoting competition for resources.

Local governments usually adopt environmental regulations

in a race to the bottom, creating a refuge for pollution

and promoting pollution agglomeration (14). Meanwhile,

the self-purification effect of industrial agglomeration leads

to a reduction in industrial pollutant emissions. The scale

effect and spillover effect of industrial agglomeration reduce

industrial pollutant emissions by sharing pollution treatment

equipment and technology (15). Industrial agglomeration

reduces industrial pollutant emissions by building symbiotic

and mutually beneficial relationships between industries (16).

Through industrial agglomeration, environmental regulations

mobilize the enthusiasm of enterprises and, in turn, carry

out industrial pollution reduction to curb industrial pollutant

emissions (17).

In the process of industrial agglomeration, population

density, economic level, technological level, and industrial

structure impact industrial pollutant emissions. A thorough

investigation was conducted on the impact of industrial

pollutant emissions in light of the factors mentioned above.

Industrial agglomeration leads to changes in population

size in the area. On the one hand, industrial agglomeration

can provide more employment opportunities and effectively

improve population density. With the increase in population

density, more products are produced to meet the material needs

of residents, resulting in an increase in industrial pollutant

emissions (18). The population, on the other hand, may

migrate geographically due to an increase in industrial pollutant

emissions, resulting in a reduction in population density and

industrial pollutant emissions (19).
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Industrial agglomeration leads to changes in economic

level in the area. On the one hand, industrial agglomeration

promotes economic prosperity and social development, and

such increase in economic level leads to an increase in

raw material consumption and industrial pollutant emissions

(20). On the other hand, when the economic level reaches

a certain level, residents express greater demand for local

environmental quality, forcing the government to adopt stricter

environmental regulations, increase investment in industrial

pollution prevention and control, and reduce industrial

pollutant emissions. This is known as the Environmental

Kuznets Curve (21).

Industrial agglomeration leads to changes in the

technological level of the area. On the one hand, industrial

agglomeration can promote technology sharing, matching,

and learning by building symbiotic and mutually beneficial

relationships between industries. Furthermore, enterprises can

effectively reduce industrial pollutant emissions by sharing

pollution treatment technologies and equipment (22). On

the other hand, some studies have concluded that although

technological progress has improved the production efficiency

and expanded production scale, it has not made the production

process more environmentally friendly. When technological

level promotes the improvement of the production efficiency,

it leads to an expansion in the scale of production. Although

the pollutant emissions of a single product would have

decreased, industrial pollutant emissions would have actually

increased (23).

Industrial gatherings lead to changes in the industrial

structure of the area. On the one hand, industrial agglomeration

leads to adjustments in industrial structure, which can result in

extension of the industrial chain, improvement in the efficiency

of resource utilization, and reduction in the proportion of high-

polluting industries in the national economic structure, reducing

industrial pollutant emissions (24). On the other hand, industrial

pollutant emissions will increase if resource utilization efficiency

is ignored during the process of industrial structure adjustment

and the proportion of high-polluting industries is increased (25).

According to previous studies, industrial agglomeration

leads to an increase in industrial pollutant emissions through

the pollution effect. It also effectively reduces industrial

pollutant emissions through the self-purification effect. Both

effects simultaneously play a role in the process of industrial

agglomeration. Industrial agglomeration leads to changes in

population size, economic level, technological level, industrial

structure, and other factors, and these changes all have impacts

on industrial pollutant emissions. The pollution effect and self-

purification jointly effect determines the impact of industrial

agglomeration on industrial pollutant emissions (26).

The spatial effect of industrial agglomeration affects the

spatial distribution of industrial pollutant emissions. If spatial

factors are ignored, the results of estimating the impact of

industrial agglomeration on industrial pollutant emissions will

be biased. An industrial pollutant emission is a derivative

of industrial agglomeration which means it exceeds the

environment’s ability to purify itself. Therefore, due to the spatial

spillover effect, industrial pollutant emissions in this region have

an impact on industrial pollutant emissions in the surrounding

areas (27). An increase in industrial pollutant emissions suggests

that this region has lower environmental costs and is more

likely to form a pollution refuge, attracting polluting industries

to gather through pollution dividends, which affects industrial

pollutant emissions in adjacent regions (28). Therefore, it is

reasonable to include spatial factors in the analysis of the impact

of industrial agglomeration on industrial pollutant emissions.

Therefore, the impact of industrial agglomeration on

industrial pollutant emissions is not only a practical problem

faced by regional socio-economic development, but also a

scientific problem to be discussed in terms of environmental

economic geography. Previous research has demonstrated that

spatial factors play an indispensable role in the impact industrial

agglomeration has on industrial pollutant emissions (29). As

there are differences in levels of industrial development and

industrial pollutant emissions at the provincial, municipal, and

county scales, under the background of differentiated industrial

developmental policies and industrial pollution control policies,

the impact of industrial agglomeration on industrial pollutant

emissions of urban agglomeration can be more accurately

described based on county scale data (30). Only by integrating

factors such as industrial agglomeration, population density,

economic level, technological level, and industrial structure into

a unified research framework and analyzing the pollution effect

and self-purification effect created by these factors together, can

the impacts of industrial agglomeration on industrial pollutant

emissions be effectively described.

3. Materials and methods

3.1. Study area

The Lanzhou–Xining urban agglomeration is an important

carrier for economic development and industrial agglomeration,

located in the upper reaches of western China. It comprises

41 counties in Lanzhou, Xining, Baiyin, Dingxi, Linxia, and

Haidong (Figure 1) (31). Lanzhou–Xining has the typical

characteristics of a western China urban agglomeration: (1)

Pollution-intensive industries account for a high proportion

of the regional industrial structure; (2) Industrial pollutant

emissions account for a high proportion of the total regional

pollutant emissions. (3) There is a significant contradiction

between industrial development and industrial pollution

prevention (32). The Lanzhou–Xining urban agglomeration

has absolute advantages in the support of pollution-intensive

industries, such as the presence of a petrochemical industry,

non-ferrous metallurgy, salt chemical industry, building
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FIGURE 1

Geographical position and spatial extension of Lanzhou–Xining urban agglomeration in western China.

materials and energy supply. Thus, the environmental pressure

brought on by pollution-intensive industries is increasingly

severe (33). Based on data from 41 counties of the Lanzhou–

Xining urban agglomeration in western China from 2010 to

2018, this study examines the spatial characteristics of industrial

agglomeration and industrial pollution by using spatial analysis.

Spatial factors are introduced into the classic STIRPAT model,

and a spatial economic model is constructed to analyze

the impact of industrial agglomeration, population density,

economic level, technological level, industrial structure, and

other factors on industrial pollutant emissions from a spatial

perspective, investigating the impact of industrial agglomeration

on industrial pollutant emissions in the Lanzhou–Xining urban

agglomeration of western China.

3.2. Methodology

3.2.1. Calculation of industrial agglomeration

Geographic concentration index is an effective index

that considers regional area factors to measure the spatial

concentration of industrial activities. The industrial value

added represents the outcome of the industrial production

activities of industrial enterprises during the reporting period

in monetary terms. Thus, industrial agglomeration is defined as

the amount of industrial activity per unit area (34). This study

calculates the industrial agglomeration level of each county in

the Lanzhou–Xining urban agglomeration in western China

by using the geographical concentration index. The model is

defined as (35).
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Aggit = (xit/

n∑

i=1

xit)/(TERi/

n∑

i=1

TERit)(i = 1, 2, 3, · · · , n) (1)

Here, Aggit is the industrial agglomeration level of county i

at time t, xit is the industrial added value of county i at time t,

TERi is the area of county i, and n represents the total number

of counties (41) in the Lanzhou–Xining urban agglomeration in

western China.

3.2.2. Analysis of spatial correlation

Global Moran’s I was used to analyze the spatial correlation

of industrial pollutant emissions in the Lanzhou–Xining urban

agglomeration in western China (36). In case there may

be differences in the effects of industrial agglomeration on

industrial pollutant emissions of different physical forms,

industrial wastewater, industrial SO2, and industrial soot are

used to represent three different physical forms of industrial

pollution. The model is defined as (37).

Global Moran′s I =
n

∑n
i=1

∑n
j=1Wij(xi − x)(xj − x)

∑n
i=1

∑n
j=1Wij

∑n
i=1 (xi − x)2

(2)

Here, xi and xj represent the industrial pollutant emissions

of county I and county j, respectively. Variables x andWij are

the mean value and geospatial weight matrix based on Queen’s

principle, respectively, and n is the total number of counties in

the Lanzhou–Xining urban agglomeration in western China.

3.2.3. SPIRPAT model

The IPAT model divides the factors affecting environmental

change into those involving population, economy, and

technology (38). The IPAT model is widely used to analyze the

impact of human factors on environmental change because

of its concise and representative characteristics. The model is

defined as (39).

I = P × A× T. (3)

Based on the original variables of the IPAT model, the

STIRPATmodel is constructed by adding random variables. The

standard form of the STIRPAT model is (40).

I = αPbAcTde (4)

Here, I is the environmental impact, P is the population

size, A is the affluence, T is the technical level, α is a constant,

and e is the random error. In addition, b, c, and d are indexes

of population size, affluence, and technical level, respectively.

Model (4) can be logarithmically processed to obtain an

empirical model (41).

ln I = lnα + b ln P + c lnA+ d lnT + ln e. (5)

Here, b, c, and d are explanatory variable coefficients.

The STIRPAT model allows the inclusion of other explanatory

variables in the application process (42). Based on the

representative studies that have been carried out, industrial

agglomeration and industrial structure are added to the

empirical form of STIRPAT model, and STIRPAT is updated to

the following model (43).

ln POLit = β0 + β1 lnAggit + β2 ln Pit + β3 lnAit

+β4 lnTit + β5 lnGit + εit (6)

Here, POLit is the industrial pollutant emissions of county

i at time t. Industrial pollutant emissions are expressed by

the industrial wastewater, industrial SO2, and industrial soot.

Aggit is the level of industrial agglomeration, expressed by the

geographical concentration of industrial added value of county

i at time t (44). Pit is the population density, expressed by the

population per unit area of county i at time t (45). Ait is the

economic level, expressed by the per capita GDP of county i at

time t (46). Tit is the technical level, expressed by the industrial

energy consumption intensity of county i at time t (47). Git is

the industrial structure and is expressed by the ratio of the added

value of the secondary industry in the regional GDP of county i

at time t (48). β1, β2, β3, β4, and β5 are explanatory variable

coefficients. β0 is the constant term, and εit is the random error.

3.2.4. Spatial econometric models

It is more effective to solve the problem of spatial

dependence by using spatial econometric models, which cannot

be handled by linear regression analysis. By adding the

spatial term of explanatory variables and the spatial term of

explained variables to the STIRPAT model, the spatial impact of

industrial agglomeration on industrial pollutant emissions can

be examined effectively (49). Based on the improved SPIRTAT

model, a spatial econometric model is established. Spatial

econometric models mainly include spatial lag panel data model

(SLM), spatial error panel data model (SEM), and spatial Durbin

panel data model (SDM). This study offers three alternative

models (50).

(1) Spatial lag panel data model (SLM):

lnPOLit = ρ

n∑

j=1

Wij ln POLjt + β1 lnAggit + β2 ln Pit

+β3 lnAit + β4 lnTit + β5 lnGit + µi + λi + εit . (7)

Here, POLit is the industrial pollutant emissions of county

i at time t. Aggit , Pit , Ait , Tit , and Git represent the

industrial agglomeration level, population density, economic

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1109139
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jia et al. 10.3389/fpubh.2022.1109139

level, technical level, and industrial structure, respectively, of

county i at time t. Additionally, ρ represents the spatial lag

coefficient, and Wij is the geospatial weight matrix based on

Queen’s principle. β1, β2, β3, β4, and β5 are explanatory

variable coefficients, µi represents the space fixed effect, λi

represents the time fixed effect, and εit is the random error.

(2) Spatial error panel data model (SEM):

lnPOLit = β0 + β1 lnAggit+β2 ln Pit + β3 lnAit

+β4 lnTit + β5 lnGit + µi + λi + δ

n∑

j=1

Wijφit + εit . (8)

Here, POLit is the industrial pollutant emissions of county

i at time t. Aggit , Pit , Ait , Tit , and Git represent the

industrial agglomeration level, population density, economic

level, technical level, and industrial structure, respectively, of

county i at time t. β0 is the constant term. β1, β2, β3, β4, and

β5 are explanatory variable coefficients, δ is the spatial error

coefficient, and Wij is the geospatial weight matrix based on

Queen’s principle.Wijϕit is the spatial error term,µi is the space

fixed effect, λi is the time fixed effect, and εit is the random error.

(3) Spatial Durbin panel data model (SDM):

lnPOLit = ρ

n∑

j=1

Wij ln POLit + β1 lnAggit + β2 ln Pit

+ β3 lnAit + β4 lnTit + β5 lnGit + θ1

n∑

j=1

Wijβ1 lnAggit

+ θ2

n∑

j=1

Wij ln Pjt + θ3

n∑

j=1

Wij lnAjt + θ4

n∑

j=1

Wij lnTjt

+ θ5

n∑

j=1

Wij lnGjt + µi + λi + εit . (9)

Here, POLit is the industrial pollutant emissions of county

i at time t. Aggit , Pit , Ait , Tit , and Git represent the

industrial agglomeration level, population density, economic

level, technical level, and industrial structure, respectively, of

county i at time t. β1, β2, β3, β4, and β5 are explanatory variable

coefficients. θ1, θ2, θ3, θ4, and θ5 are spatial autocorrelation

coefficients of the explanatory variables, ρ represents the spatial

lag coefficient, Wij is the geospatial weight matrix based on

Queen’s principle, µi is the space fixed effect, λi is the time fixed

effect, and εit is the random error.

3.3. Data source

Based on the availability and statistical consistency of

the data, this study used the county-based data from

the Lanzhou–Xining urban agglomeration in western China

from 2010 to 2018 (Table 1). To make the empirical data

more consistent with the normal distribution and eliminate

heteroscedasticity in the model, the economic and social data,

industrial pollutant emission data, and energy consumption data

were processed logarithmically before the model estimation.

① Economic and social data. The economic and social

data of the 41 counties in the Lanzhou–Xining urban

agglomeration from 2010 to 2018, which included the resident

population, industrial added value, added value of the secondary

industry, and regional GDP, were derived from the 2011–2019

Gansu Development Yearbook, 2011–2019 Qinghai Statistical

Yearbook, and Statistical Yearbooks of Lanzhou, Xining, Baiyin,

Dingxi, Linxia, and Haidong over the years, adjusting the

economic data to the price in 2010, according to the GDP

deflator. ② Industrial pollutant emission data and energy

consumption data. Data of industrial pollutant emissions and

energy consumption from the 41 counties in the Lanzhou–

Xining urban agglomeration from 2010 to 2018 were taken

from the Environmental Statistical Systems of Lanzhou, Xining,

Baiyin, Dingxi, Linxia, and Haidong. ③ Geospatial data. From

2010 to 2018, the administrative divisions of the 41 counties in

the Lanzhou–Xining urban agglomeration were slightly adjusted

in general. To show the comparison, the geospatial data are

based on the 2015 China county administrative boundary data,

provided by the resource and environment science and data

center of the Chinese Academy of Sciences.

4. Results

4.1. Spatial pattern of industrial
agglomeration

According to Formula 1, the industrial agglomeration

of the Lanzhou–Xining urban agglomeration was calculated,

and spatial visualization was carried out through ArcGIS10.2

(Figure 2). The spatial pattern of industrial agglomeration of

the Lanzhou–Xining urban agglomeration in western China

has the following characteristics. ① Spatial imbalance. In the

1950s and 1970s, Lanzhou, Xining, and Baiyin were regarded

as important industrial and energy bases in western China and

won key construction projects in China. Owing to the inertia

of industrial development, Lanzhou, Xining, and Baiyin have

become the high-level areas of industrial agglomeration in the

Lanzhou–Xining urban agglomeration. Meanwhile, cities with

relatively slow industrial development, such as Dingxi, Linxia,

and Haidong, have become the low-level areas of industrial

agglomeration in the Lanzhou–Xining urban agglomeration.

② Matthew effect. On the one hand, population, capital,

technology, and other factors continue to flow from the low-level

areas of industrial agglomeration to the high-level areas through

the siphon effect. On the other hand, the high-level areas of

industrial agglomeration prioritize becoming the geographical

space to assume the transferred industries from the eastern
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TABLE 1 Definition and explanation of variables.

Variables Definition Sample size Std.Dev Min Max

Water Industrial wastewater emission (10,000 tons) 9∗41= 369 4.29 0.20 3,245

SO2 Industrial SO2 emission (tons) 9∗41= 369 8.52 10.00 46,126

SOOT Industrial SOOT emission (tons) 9∗41= 369 4.15 5.00 25,000

Agg Geographical concentration of industrial added value 9∗41= 369 10.57 0.02 67.23

P Population density (10,000 people/km2) 9∗41= 369 3.12 0.41 0.59

A Economic level (10,000 Yuan/person) 9∗41= 369 1.22 1.35 7.15

T Industrial energy consumption intensity (standard coal/10,000 Yuan) 9∗41= 369 3.15 2.30 10.27

G Percentage secondary industries in GDP (%) 9∗41= 369 2.37 0.34 0.78

FIGURE 2

Spatial pattern of industrial agglomeration of Lanzhou–Xining urban agglomeration in western China.

and central regions. Consequently, the industrial agglomeration

level difference among the counties under the jurisdiction of

the urban agglomeration has gradually increased. In 2010, the

industrial agglomeration level was between 0.02 and 42.64, while

in 2018, the industrial agglomeration level was between 0.03 and

67.23. The ratio of the highest value to the lowest value increased

from 1888.15 to 2389.93.

4.2. Spatial pattern of industrial pollutant
emissions

ArcGIS10.2 was used to visualize the industrial pollutant

emissions of the Lanzhou–Xining urban agglomeration in

western China in 2010 and 2018 (Figure 3). The spatial

pattern of the industrial pollutant emissions of the Lanzhou–

Xining urban agglomeration in western China has the

following characteristics. ① Spatial patterns of industrial

pollutant emissions and industrial agglomeration have spatial

convergence. High-level areas of industrial pollutant emissions

are concentrated in Lanzhou, Xining, and Baiyin, whereas low-

level areas of industrial pollutant emissions are concentrated in

Dingxi, Linxia, and Haidong. ② Industrial pollutant emissions

have generally declined. Industrial pollutant emissions have

been effectively controlled as a result of the continuous

implementation of the concept of ecological civilization and

the deepening of pollution prevention and management. From

2010 to 2018, the gap between the high-level areas and low-level

areas of industrial pollutant emissions among the 41 counties
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FIGURE 3

Spatial pattern of industrial pollutant emissions of Lanzhou–Xining urban agglomeration in western China.
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of the Lanzhou–Xining urban agglomeration in China has been

narrowing. In 2010, the county with the highest industrial

wastewater emissions had 3,245 × 104 tons of emissions, and

the county with the lowest industrial wastewater emissions

had 0.2 × 104 tons; meanwhile, in 2018, the county with

the highest industrial wastewater emissions had 2,258 ×104

tons of emissions, and the county with the lowest industrial

wastewater emissions had 0.2 × 104 tons. In 2010, the county

with the highest industrial SO2 emissions emitted 65,658 tons,

and the county with the lowest industrial SO2 emissions emitted

24 tons; in 2018, the county with the highest industrial SO2

emissions accounted for 23,000 tons, and the county with the

lowest industrial SO2 emissions accounted 10 tons. In 2010, the

county with the highest industrial soot emissions yielded 25,000

tons, and the county with the lowest industrial soot emissions

yielded 7 tons; meanwhile, in 2018, the county with the highest

industrial soot emissions yielded 24,477 tons, and the county

with the lowest industrial soot emissions yielded 5 tons.

4.3. Estimation results of traditional panel
data model

This linear regression model is commonly estimated by

OLS. Tables 2–4 show the impact of industrial agglomeration

on industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions, respectively, by OLS. It can

be seen from the estimation results in Tables 2–4 that the

regression coefficient of industrial agglomeration is significantly

positive when the spatial effect is not considered, indicating

that the improvement in industrial agglomeration leads to

an increase in industrial pollutant emissions. Meanwhile, the

impact of industrial agglomeration on industrial wastewater

emissions, industrial SO2 emissions, and industrial soot

emissions is different. The impact of industrial agglomeration

on industrial SO2 emissions is the most significant, whereas

the impact on industrial wastewater emissions is the weakest.

Meanwhile, the impact of industrial agglomeration on

industrial soot emissions is at the intermediate level.

The regression coefficients of economic level, population

density, and industrial structure are all significantly positive,

indicating that economic level, population density, and

industrial structure have a promoting effect on industrial

pollutant emissions. The regression coefficients of the

technical level are significantly negative, indicating that

the technical level has an inhibitory effect on the industrial

pollutant emissions.

4.4. Spatial autocorrelation test

Based on GeoDa 1.14, global Moran’s I was used to analyze

the spatial correlation of industrial wastewater emissions,

industrial SO2 emissions, and industrial soot emissions of

the Lanzhou–Xining urban agglomeration in western China.

It can be seen from Table 5 that Moran’s I of industrial

wastewater emissions, industrial SO2 emissions, and industrial

soot emissions from 2010 to 2018 are all positive, and the

p-value has passed the 5% significance level test. Areas with

high levels of industrial pollutant emissions are adjacent to

areas with high levels of industrial pollutant emissions, whereas

areas with low levels of industrial pollutant emissions are

adjacent to areas with low levels of industrial pollutant emissions

(51). This means that the industrial wastewater emissions,

industrial SO2 emissions, and industrial soot emissions all

have spatial positive correlation. According to the analysis

of global Moran’s I for industrial wastewater emissions, SO2

emissions, and industrial soot emissions, the spatial positive

correlation of industrial wastewater emissions is the weakest,

and the global Moran’s I is between 0.101 and 0.151. The

spatial positive correlation of industrial soot emissions is the

most significant, and the global Moran’s I is between 0.219

and 0.297. The spatial positive correlation of industrial SO2

emission is at the intermediate degree, and the global Moran’s

I is between 0.115 and 0.177. Based on GeoDa 1.14, Global

Moran’s I was used to analyze the spatial correlation of

industrial agglomeration level, population density, economic

level, technical level, and industrial structure of the Lanzhou–

Xining urban agglomeration in western China (52). It can be

seen from Table 5 that Moran’s I of industrial agglomeration

level, population density, economic level, technical level, and

industrial structure from 2010 to 2018 are all positive, and the

p-value has passed the 5% significance level test.

4.5. Model selection

As the industrial wastewater emissions, industrial SO2

emissions, and industrial soot emissions of the Lanzhou–

Xining urban agglomeration in western China are all positively

correlated in space, a spatial econometric model should be built

when analyzing the impact of industrial agglomeration on the

emission types. As far asmodel selection is concerned, the spatial

panel model should be constructed in such a way that it can

be further evaluated through comparison with non-spatial panel

models. This research utilizes the LM test for the derived spatial

panel data (53). If the results of both the LM-ERR and LM-LAG

are not statistically significant, the traditional panel model is

chosen; if any of them is significant, then the spatial econometric

model is utilized to capture the spatiality.

Our LM test results are presented in Table 6. According

to the results, LM-ERR and LM-LAG of industrial wastewater

emissions are significant at the 5% level. LM-ERR and LM-

LAG of industrial SO2 emissions are significant at the 1%

level. LM-ERR and LM-LAG of industrial soot emissions are

significant at the 5% level. As the LM test rejected the original

Frontiers in PublicHealth 09 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1109139
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jia et al. 10.3389/fpubh.2022.1109139

TABLE 2 OLS estimation results of industrial agglomeration impact on industrial wastewater emissions.

Determinants Model (1) Model (2) Model (3) Model (4) Model (5)

ln Aggit 0.213∗∗(3.21) 0.241∗∗(3.45) 0.225∗ (3.09) 0.217∗∗(3.07) 0.205∗∗(2.95)

ln Pit - 0.119∗(2.45) 0.203∗(2.78) 0.117∗(2.76) 0.122∗(2.46)

ln Ait - - 0.175∗(2.56) 0.154∗(2.34) 0.134∗(2.32)

ln Tit - - - −0.107∗ (2.08) −0.121∗(2.03)

ln Git - - - - 0.251∗∗∗(3.27)

R2 0.256 0.267 0.264 0.252 0.283

Obs 369 369 369 369 369

In parentheses the t-values are given. ∗∗∗ , ∗∗ , or ∗ indicates significance at the 1, 5, and 10% levels, respectively.

TABLE 3 OLS estimation results of industrial agglomeration impact on industrial SO2 emissions.

Determinants Model (1) Model (2) Model (3) Model (4) Model (5)

ln Aggit 0.281∗ (3.89) 0.254∗ (3.63) 0.237∗ (3.32) 0.243∗∗ (3.41) 0.261∗ (3.52)

ln Pit - 0.101∗ (2.02) 0.190∗ (2.38) 0.182∗ (2.29) 0.131∗ (2.17)

ln Ait - - 0.106∗ (2.26) 0.117∗ (2.42) 0.115∗ (2.36)

ln Tit - - - −0.119 (2.28) −0.106∗ (2.14)

ln Git - - - - 0.270∗∗ (3.89)

R2 0.297 0.294 0.301 0.322 0.341

Obs 369 369 369 369 369

In parentheses the t-values are given. ∗∗∗ , ∗∗ , or ∗ indicates significance at the 1, 5, and 10% levels, respectively.

TABLE 4 OLS estimation results of industrial agglomeration impact on industrial soot emissions.

Determinants Model (1) Model (2) Model (3) Model (4) Model (5)

ln Aggit 0.203∗ (2.35) 0.216∗ (3.10) 0.276∗ (3.52) 0.217∗∗∗ (3.09) 0.223∗ (2.65)

ln Pit - 0.142∗ (2.54) 0.174∗ (2.96) 0.155∗ (2.94) 0.120∗ (2.33)

ln Ait - - 0.107∗ (2.31) 0.138∗ (2.73) 0.124∗ (2.51)

ln Tit - - - −0.131 (2.11) −0.141∗ ((2.36)

ln Git - - - - 0.171∗∗ (2.73)

R2 0.224 0.245 0.256 0.278 0.287

Obs 369 369 369 369 369

In parentheses the t-values are given. ∗∗∗ , ∗∗ , or ∗ indicates significance at the 1, 5, and 10% levels, respectively.

hypothesis, it shows that the spatial effect should be considered

when analyzing the impact of industrial agglomeration on

industrial wastewater emissions, industrial SO2 emissions, and

industrial soot emissions. This spatial effect shows that spatial

autocorrelation and spatial error correlation coexist in the

model. Thus, it is more appropriate to analyze and select the

SDM with the dual effects of spatial lag and spatial error

autocorrelation at the preliminary stage (54).

The Wald test and LR test were used to determine whether

SDM would degenerate into SLM or SEM. As shown in Table 6,

the Wald test spatial lag, Wald test spatial error, LR test spatial

lag, and LR test spatial error of industrial wastewater emissions

are all significant at the 1% level. The Wald test spatial lag, Wald

test spatial error, LR test spatial lag, and LR test spatial error

of industrial SO2 emissions are all significant at the 5% level.

The Wald test spatial lag, Wald test spatial error, LR test spatial

lag, and LR test spatial error of industrial soot emissions are all

significant at the 5% level. Since the Wald test and LR test reject

the original hypothesis, it indicates that SDMwill not degenerate

into SLM or SEM. Therefore, the SDM including the spatial

lag dependent variable and spatial autocorrelation error term

should be used to analyze the impact of industrial agglomeration

on industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions (55).
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TABLE 5 Global Moran’s I statistics of and industrial pollutant emissions, industrial agglomeration level, population density, economic level,

technical level, and industrial structure.

Years Water SO2 SOOT Agg P A T G

2010 0.131∗∗∗ 0.156∗∗ 0.297∗∗∗ 0.250∗∗∗ 0.269∗∗∗ 0.235∗∗∗ 0.117∗∗ 0.175∗∗∗

2011 0.101∗∗ 0.126∗∗ 0.223∗∗∗ 0.236∗∗∗ 0.252∗∗∗ 0.257∗∗∗ 0.121∗∗ 0.165∗∗∗

2012 0.120∗∗ 0.117∗∗ 0.249∗∗∗ 0.247∗∗∗ 0.249∗∗∗ 0.243∗∗∗ 0.125∗∗ 0.160∗∗∗

2013 0.151∗∗∗ 0.132∗∗ 0.233∗∗∗ 0.255∗∗∗ 0.243∗∗∗ 0.242∗∗∗ 0.127∗∗ 0.121∗∗

2014 0.140∗∗∗ 0.115∗∗ 0.273∗∗∗ 0.285∗∗∗ 0.248∗∗∗ 0.267∗∗∗ 0.128∗∗ 0.112∗∗

2015 0.146∗∗∗ 0.154∗∗∗ 0.270∗∗∗ 0.275∗∗∗ 0.266∗∗∗ 0.270∗∗∗ 0.114∗∗ 0.124∗∗

2016 0.145∗∗ 0.177∗∗∗ 0.246∗∗∗ 0.278∗∗∗ 0.267∗∗∗ 0.269∗∗∗ 0.119∗∗ 0.157∗∗∗

2017 0.151∗∗∗ 0.157∗∗∗ 0.224∗∗∗ 0.279∗∗∗ 0.269∗∗∗ 0.271∗∗∗ 0.121∗∗ 0.160∗∗∗

2018 0.143∗∗∗ 0.163∗∗∗ 0.219∗∗∗ 0.281∗∗∗ 0.270∗∗∗ 0.274∗∗∗ 0.125∗∗ 0.162∗∗∗

∗∗∗ , ∗∗ , or ∗ indicates significance at the 1, 5, and 10% levels, respectively.

TABLE 6 Spatial econometric model selection test.

Determinants Water SO2 Soot

Statistics P-value Statistics P-value Statistics P-value

LM spatial lag 7.362 0.022 8.639 0.005 9.638 0.035

LM spatial error 5.638 0.037 6.397 0.004 5.875 0.040

Wald test spatial lag 45.862 0.001 52.364 0.000 63.214 0.023

Wald test spatial error 37.661 0.007 36.530 0.000 55.638 0.025

LR test spatial lag 32.255 0.003 26.326 0.001 28.351 0.023

LR test spatial error 41.261 0.001 35.612 0.000 33.652 0.032

Hausman test 86.231 0.002 72.585 0.032 82.657 0.017

TABLE 7 Estimation results of spatial Durbin model of industrial agglomeration and industrial pollutant emissions.

Determinants Spatial fixed e�ects Time fixed e�ects Spatial–time fixed e�ects

Water SO2 Soot Water SO2 Soot Water SO2 Soot

W × POLit 0.202∗∗∗ 0.244∗∗∗ 0.230∗∗∗ 0.211∗∗∗ 0.275∗∗∗ 0.254∗∗∗ 0.217∗∗∗ 0.251∗∗∗ 0.235∗∗∗

ln Aggit 0.254∗∗∗ 0.262∗∗∗ 0.233∗∗∗ 0.263∗∗∗ 0.274∗∗∗ 0.251∗∗ 0.277∗∗∗ 0.285∗∗∗ 0.254∗∗

ln Pit 0.178∗∗∗ 0.227∗∗∗ 0.165∗∗ 0.172∗∗ 0.219∗∗ 0.173∗∗ 0.145∗∗ 0.272∗∗ 0.170∗∗

ln Ait 0.132∗∗ 0.145∗∗ 0.127∗∗ 0.131∗∗ 0.178∗∗ 0.146∗∗ 0.151∗∗ 0.162∗∗ 0.164∗∗

ln Tit −0.117∗∗ −0.102∗∗ −0.132 −0.074∗ −0.135∗∗ −0.147 −0.165∗∗ −0.149∗∗ −0.158

ln Git 0.204∗∗∗ 0.221∗∗∗ 0.218∗∗∗ 0.242∗∗∗ 0.203∗∗∗ 0.279∗∗∗ 0.254∗∗∗ 0.262∗∗∗ 0.214∗∗∗

W × ln Aggit 0.120∗∗∗ 0.112∗∗∗ 0.139∗∗∗ 0.110∗∗∗ 0.182∗∗∗ 0.169∗∗∗ 0.140∗∗∗ 0.182∗∗∗ 0.134∗∗∗

W × ln Pit 0.043∗∗ 0.057∗∗ 0.031∗∗ 0.067∗∗∗ 0.097∗∗∗ 0.055∗∗∗ 0.063∗∗∗ 0.089∗∗∗ 0.074∗∗∗

W × ln Tit 0.050∗∗ 0.082∗∗ 0.069∗∗ 0.098∗∗ 0.054∗∗ 0.088∗∗ 0.074∗∗ 0.056∗∗ 0.073∗∗

W × ln Tit −0.093∗∗ −0.077∗∗ 0.081 −0.023∗∗ −0.047∗∗ −0.031 −0.055∗∗ −0.065∗∗ −0.071

W × ln Git 0.107∗∗∗ 0.102∗∗∗ 0.109∗∗∗ 0.101∗∗∗ 0.104∗∗∗ 0.109∗∗∗ 0.093∗∗∗ 0.102∗∗∗ 0.113∗∗∗

R2 0.672 0.638 0.644 0.568 0.611 0.621 0.532 0.661 0.562

Log likelihood 353.974 274.051 310.124 320.342 223.501 265.321 319.102 258.569 270.224

Numbers in the parentheses represent t-values. ∗∗∗ , ∗∗ and ∗ indicate significance at the 1, 5, and 10% level.
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4.6. Spatial econometric regression
results

The aim of the Hausman test is to determine whether a

model with fixed or random effects is more appropriate. The

Hausman test results of the impact of industrial agglomeration

on industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions are all significant at the 5% level,

rejecting the original assumption of random effects (Table 6). It

was found by the Hausmann test that the results significantly

reject the original hypothesis, suggesting that the fixed effect

should be chosen (56). Therefore, this study should choose a

fixed model to analyze the impact of industrial agglomeration

on industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions. The fixed model includes a pace

fixed effect, time fixed effect, and time–space double fixed effect,

and the most suitable effect is selected according to R2 and

log likelihood (57). As is shown in Table 7, the estimation

results of the spatial fixed effect, time fixed effect, and time–

space double fixed effect, the significance, and significance test

of each explanatory variable have not changed significantly,

which indicates that the SDM is robust. The R2 and log

likelihood parameters of SDM with the spatial fixed effect of

industrial agglomeration on industrial wastewater emissions

are the largest. The R2 and log likelihood parameters of SDM

with the spatial fixed effect of industrial agglomeration on

industrial SO2 emissions are the largest, and the R2 and Log

likelihood parameters of SDM with the spatial fixed effect of

industrial agglomeration on industrial soot emissions are the

largest. Therefore, the SDM with the spatial fixed effect is

used to estimate the impact of industrial agglomeration on

industrial wastewater emissions, industrial SO2 emissions, and

industrial soot emissions (58). According to the estimation

results of SDM with fixed spatial effect, the spatial lag

coefficients of industrial wastewater emissions, industrial SO2

emissions, and industrial soot emissions are 0.202, 0.244, and

0.230, respectively, and they are all significantly positive at

the 1% level (Table 7). This indicates that there is a spatial

endogenous interaction effect among the explained variables,

indicating that industrial wastewater emissions, industrial SO2

emissions, and industrial soot emissions in each county are

affected by the relevant factors of the county. They are also

affected by the discharge of industrial wastewater emissions,

industrial SO2 emissions, and industrial soot emissions from

adjacent counties.

The regression coefficients of industrial agglomeration

with industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions are 0.254, 0.262, and 0.233,

respectively, and they are all significantly positive at the level of

1%, indicating that the increase in the industrial agglomeration

level in the Lanzhou–Xining urban agglomeration will promote

industrial wastewater emissions, industrial SO2 emissions, and

industrial soot emissions. The spatial term coefficients of

industrial agglomeration and industrial wastewater emissions,

industrial SO2 emissions, and industrial soot emissions

are 0.120, 0.110, and 0.139 respectively, and they are all

significantly positive at the level of 1%. This indicates

that the improvement in the industrial agglomeration level

of this county will lead to an increase in the industrial

production scale, thus increasing the industrial pollutant

emissions of this county, as well as the industrial pollutant

emissions of neighboring counties through the scale effect.

The trans-boundary nature of industrial pollution discharge is

demonstrated here.

The regression coefficients of population density, industrial

wastewater emissions, industrial SO2 emissions, and industrial

soot emissions are 0.178 and 0.227, respectively, which

are significantly positive at the level of 1%. The regression

coefficient between population density and industrial soot

emissions is 0.165, which is significantly positive at the 5%

level, indicating that the increase in population density can

promote an increase in economic vitality and expansion of

the industrial scale, thus increasing industrial wastewater

emissions, industrial SO2 emissions, and industrial soot

emissions. The spatial term coefficients of population density

on industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions are 0.043, 0.051, and 0.069,

respectively, and they are all significantly positive at the 5%

level, indicating that the increase in population density in

the county will lead to an increase in resource consumption

and industrial pollutant emissions, which will lead to an

increase in industrial pollutant emissions in the county.

The increase in industrial pollution and environmental

deterioration in this country will lead to a flow of residents to

the neighboring counties through various policies, resulting

in an increase in industrial pollution emissions from the

neighboring counties.

The regression coefficients between economic level and

industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions are 0.132, 0.145, and 0.127,

respectively, and are significantly positive at the 5% level,

indicating that industrial pollutant emissions have not crossed

the peak of Kuznets curve. At this stage, with an increase in

the economic level, industrial wastewater emissions, industrial

SO2 emissions, and industrial soot emissions will increase.

The spatial term coefficients of economic level, industrial

wastewater emissions, industrial SO2 emissions, and industrial

soot emissions are 0.050, 0.083, and 0.037 respectively, which

are significantly positive at the 5% level, indicating that the

improvement in the economic level of this county will lead

to an improvement in the industrial pollution discharge of

this county, and the significant promotion of economic level

of adjacent counties will lead to an improvement in the

industrial pollution discharge of this county. The reason is

that due to the economic development in this district, the
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residents will pay more attention to the quality of their living

environment, causing the polluting industries to relocate to the

adjacent areas.

The regression coefficients of technical level and industrial

wastewater emissions, industrial SO2 emissions, and industrial

soot emissions are −0.117 and −0.102, respectively, which are

significantly negative at the 5% level. Although the regression

coefficients of technical level and industrial soot emissions

are also negative, they fail to pass the significance test,

indicating that technical level has “crowding-out effect” on

industrial soot emissions and industrial wastewater emissions

and can reduce industrial SO2 and wastewater emissions.

However, the “technology rebound effect” is more common in

industrial production. Although the technology level reduces

the industrial soot emissions per unit of production, it does not

effectively reduce the total industrial soot emissions, which is

not conducive to reducing the industrial soot emissions. The

spatial term coefficients of the technical level with industrial

SO2 emissions and industrial wastewater emissions are −0.093

and −0.077, respectively, which are significantly negative at

the 5% level, indicating that the improvement of the technical

level of the county can reduce the industrial SO2 emissions

and industrial wastewater emissions of the county, leading to a

reduction in industrial SO2 emissions and industrial wastewater

emissions of adjacent counties through the demonstration

effect. The spatial term coefficient of the technical level on

industrial soot emissions is negative, but it fails to pass the

significance test. The reason for this result may be the special

feature of pollutants and the specific regional distribution of

industrial activities.

The regression coefficients of industrial structure with

industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions are 0.204, 0.221, and 0.218,

respectively, and they are all significantly positive at the 1%

level, indicating that with the increase in the proportion

of the total output value of the secondary industry in

the regional GDP, industrial wastewater emissions, industrial

SO2 emissions, and industrial soot emissions will increase.

The spatial term coefficients of industrial structure and

industrial wastewater emissions, industrial SO2 emissions,

and industrial soot emissions are 0.107, 0.102, and 0.109,

respectively, which are significantly positive at the 1% level,

indicating that the increase in the proportion of the total

output value of the secondary industry in the GDP of

the county will not only promote improvement of the

industrial pollution discharge of the county, but also lead

to improvement of the industrial pollution discharge of

adjacent counties through structural effects. That is, when

the county increases the proportion of the total output

value of the secondary industry in the regional GDP, the

neighboring county will race to the bottom to avoid becoming

disadvantageous in regional competition and then increase

the proportion of the total output value of the secondary

industry in the regional GDP, resulting in an increase

in industrial pollutant emissions. This shows that joint

prevention and control are needed in the process of industrial

pollution management.

5. Discussion

5.1. Research contributions

Scholars have different ideas on the relationship between

industrial agglomeration and industrial pollutant emissions.

However, there is no consensus on the research conclusion.

These differences in variant studies come from the differences in

time period, sample, and selection of industrial agglomeration

indicators in different studies (59). In the initial stage of

industrial agglomeration, it usually leads to an increase in

industrial pollution emissions, but under the influence of

scale effect and technology effect, it will reduce industrial

pollution emissions (60). The industrial agglomeration of

Lanzhou Xining urban agglomeration is in its initial stage,

and this study is of reference significance to other regions

or countries.

The possible innovation of this study mainly lies in

the following two aspects. First, this study considers the

Lanzhou–Xining urban agglomeration as the sample area to

explain the impact of industrial agglomeration in western

China on industrial pollutant emissions. The Lanzhou–Xining

urban agglomeration is the main reason for the increase

in industrial pollutant emissions, owing to the expansion of

production scale in the process of industrial agglomeration. The

Lanzhou–Xining urban agglomeration in western China needs

to achieve high-quality economic development by increasing

the proportion of technology intensive industries in the

national economic structure, as well as upgrade and transform

existing traditional industries. Second, the industrial pollutant

emissions of the counties under the jurisdiction of the Lanzhou–

Xining urban agglomeration in western China are spatially

related, which indicates that the spatial effect of industrial

pollutant emissions is closely related to the industrial pollutant

emission characteristics of neighboring counties. Therefore,

when formulating industrial pollution control policies, an

environmental pollution control linkage mechanism at the level

of urban agglomeration should be established to prevent the

formation of a pollution paradise.

The possible significance of this study mainly lies in the

following two aspects. First, in this paper, spatial analysis

technology and spatial econometric analysis were not only

used to analyze the impacts of industrial agglomeration

on industrial pollutant emissions, but also used to analyze

the impacts of population density, economic level, scientific

and technological level and industrial structure on industrial

pollutant emission. Second, the industrial pollutant emission
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characteristics of the counties in the Lanzhou–Xining urban

agglomeration in western China are jointly affected by the

industrial agglomeration, population density, economic level,

technological level, industrial structure, and other factors

of the county and neighboring counties. Therefore, when

reducing industrial pollutant emissions, the counties of the

Lanzhou–Xining urban agglomeration in western China need to

consider the influencing factors of the surrounding counties to

promote the overall green industrial transformation and quality

improvement of the Lanzhou–Xining urban agglomeration

in western China. It is concluded that the coordinated

development of industry is the fundamental of joint prevention

of pollution.

5.2. Deficiencies of the study

Owing to the limitations in research methods and data

materials, this study may have some research deficiencies in

the following three aspects. First, this study mainly focuses

on analyzing the impact of industrial agglomeration on the

characteristics of industrial pollutant emissions from the data

of county scale industrial pollutant emissions of the Lanzhou–

Xining urban agglomeration in western China. However, it

fails to effectively dig deeper into the enterprise and industry

level to analyze the difference in the impact of industrial

agglomeration on industrial pollutant emissions from different

industries. This will affect the comprehensiveness of the

analysis of the impact of industrial agglomeration on industrial

pollutant emissions. Second, owing to the change in the

statistical caliber of industrial pollutant emission data, this study

focuses on analyzing the impact of industrial agglomeration on

industrial pollutant emission characteristics of the Lanzhou–

Xining urban agglomeration in western China through the data

from 2010 to 2018; thus, there is a lack of long-term and

continuous tracking data. Third, the synergy and combination

effects among industrial agglomeration, population density,

economic level, technological level, and industrial structure

have not been analyzed. Meanwhile, the interaction effects

of the reverse effects of industrial pollutant emissions on

industrial agglomeration have not been deeply analyzed. The

above deficiencies will also be the areas and directions for

further research.

6. Conclusion

The impact of industrial agglomeration on industrial

pollutant emissions of the Lanzhou–Xining urban

agglomeration in western China is analyzed by using spatial

analysis and spatial econometric models. The main conclusions

of this study are as follows.

Industrial agglomeration is an important factor leading

to the increase in industrial pollutant emissions. Adhering to

the environmental bottom line of economic development and

promoting green industrial transformation are the primary

ways for the Lanzhou–Xining urban agglomeration in western

China to achieve high-quality development. Both industrial

agglomeration and industrial pollutant emissions have spatial

effects, and industrial agglomeration and industrial pollutant

emissions of adjacent counties are closely related. Coordinated

industrial development is the basis of comprehensive pollution

control. Without the common industrial improvement and

efficiency, there will be no long-term joint management and

control of pollution. It is inevitable that the Lanzhou–Xining

urban agglomeration in western China will form a spatial

synergy of industrial co-construction and pollution control.

As industrial wastewater emissions, industrial SO2

emissions, and industrial soot emissions are different types of

pollutants, the spatial patterns are significantly different, leading

to significant differences in the main influencing factors of the

different pollutant emissions. Industrial pollution discharge

is not only affected by the population density, economic

level, technological level, industrial agglomeration, industrial

structure, and other factors of the county but is also affected by

the industrial pollution agglomeration and influencing factors

of its neighboring counties. Social and economic factors play

a role in industrial pollutant emissions of this county and

neighboring counties through spatial effect, and different social

and economic factors have different spatial effects.

Industrial pollutant emissions of the Lanzhou–Xining urban

agglomeration in western China have spatial positive correlation

and spatial spillover. Therefore, it is necessary to take full

advantage of the coordination among the counties of the urban

agglomeration, pay attention to joint prevention and control,

co-construction and common governance, and form a joint

force space-wise. Industrial pollutant emissions are a derivative

problem in the process of industrial agglomeration development

during urban agglomeration; thus, it is necessary to control

industrial pollution agglomeration through the coordination of

government power, enterprise power, market power, and social

power. Industrial pollutant emissions are both an environmental

problem and a developmental problem. Therefore, on the

premise of maintaining economic development, we should

promote industrial structure adjustment and industrial chain

extension to improve the quality and efficiency of industry.

Meanwhile, we need to optimize the energy structure and

technology level as well as to promote and demonstrate emission

reduction technologies, improving the overall technological

contribution for the pollution reduction. It is concluded that the

coordinated development of industry is the fundamental of joint

prevention of pollution. It is an inevitable choice to construct

a spatial synergy of industrial co-construction and pollution

co-governance for the ecological protection and high-quality

development of urban agglomeration.
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