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Human disturbances have become the main factors a�ecting the ecological

environment. Therefore, evaluating the intensity of human disturbances is of

great significance for ensuring e�ective regional conservation and ecosystem

management. In this study, we constructed a novel method to quantify human

disturbances based on three components of human disturbances into three

types, namely naturalness transformation, natural resource consumption, and

pollutant emissions. These components were quantified using the land use

naturalness index (LNI), resource consumption index (RCI), and pollution

emission index (PEI). Based on these three indicators, the human disturbances

index (HDI) was calculated to reflect the intensity of human disturbances.

In addition, remote sensing (RS), geographic information system (GIS), and

multisource data were combined in the HDI method, taking into account

the temporal variability of input parameters to achieve more convenient and

comprehensive dynamic monitoring and evaluation of human disturbances.

The applicability and e�ectiveness of the HDI method were assessed in the

Huaihe River Basin, China. The obtained results revealed an increase and

decrease in the intensities of human disturbances in the Huaihe River Basin

from 1990 to 2005 and from 2010 to 2018, respectively. In addition, areas

with a high level of human disturbances in the 1990–2005 period were

mainly concentrated in the agricultural and industrial areas, while those in

the 2010–2018 period were mainly observed in urban areas. This change was

mainly due to a decrease in the pollutant emission amounts from agricultural

and industrial lands and a marked increase in resource consumption in urban

areas. This study provides theoretical guidance for regional conservation in the

Huaihe River Basin and a new method for quantifying human disturbances.

KEYWORDS

human disturbances, HDI, land use naturalness, resource consumption, pollutant

emissions, spatiotemporal change, Huaihe River Basin
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1. Introduction

Human activities have exerted considerable anthropogenic

influences on the earth system since the Anthropocene (1–

3). Indeed, the increase in human activities through the rapid

growth of population and urbanization has gradually become

an important driving factor affecting the ecological environment

on a global scale (4–7). According to previous studies, over

75 and 90% of the earth’s land surface and riverine systems,

respectively, have been altered as a result of human activities

(8–12), resulting in a series of eco-environmental problems,

such as global warming, water pollution, and land degradation

(13–15). The influence of human activities on the environment

resulted in a high ecological risk, thereby threatening human

survival (16, 17). Therefore, quantifying human disturbances

is of great significance to better understand the impacts of

human activities on the ecosystem, which is essential for

ensuring ecological protection, environmental management,

and sustainable development of human society.

Human disturbances have been mainly reflected by various

environmental indicators from different perspectives in the

initial research stage. Some researchers have assessed the

intensities of anthropogenic disturbance by investigating

biological indicators and pollution discharges to the water

bodies (18–22). However, others have used the species diversity

to reflect the intensities of human disturbance in the forest

ecosystem (23, 24). Hemeroby is a monitoring indicator,

proposed for the first time by Jalas (25) to detect the intensity

of human disturbance in forest ecosystems, then has been

extensively applied by several researchers to evaluate the

human disturbance in various types of ecosystems (10, 19,

26). In addition, numerous evaluation methods for assessing

human disturbances have been proposed in recent years,

shifting gradually the investigation of human disturbances from

qualitative description to quantitative analysis. Indeed, with

the development of Geographic Information System (GIS) and

Remote Sensing (RS) technologies, data acquisition has become

more diversified, rapid, and convenient, offering multi-source

data and developing GIS-and RS-based quantitative evaluation

methods for assessing human disturbances that integrate GIS

and RS technologies (27–30). Many scholars have used land use

data obtained from remote sensing images, as well as socio-

economic and ground survey data, to analyze the intensity

of one or multiple types of human disturbances in certain

regions (26, 31–34). On the other hand, Brown and Vivas (3)

developed Landscape Development Intensity (LDI) index using

energy theory to measure the impact of human disturbances

in wetlands. Whereas Sanderson et al. (2) used four types of

variable data, namely population density, land transformation,

accessibility, and electrical power infrastructure, to map the

human footprint as an indicator of human disturbances.

However, to date, quantitative research on human disturbances

has been mostly based on biased single or multiple indicators

using individual or partial components, which are not enough

for comprehensively and accurately evaluating the intensities

of human disturbances in the ecosystems. Besides the limited

applicability of the developed evaluation methods in other

areas due to spatial differences in environmental factors, the

possibility that the same type of human disturbance source

may exhibit different temporal intensities is not considered in

the evaluation methods. Therefore, more effective evaluation

methods of human disturbances need to be developed based

on more comprehensive indicator systems that reflect human

activities, taking into account the variability of indicators.

The Huaihe River Basin is an important region for the

socioeconomic development of China due to its favorable

environment and abundant natural resources, producing 1/6

of the country’s agricultural production and serving as an

important coal and electricity base in Eastern China (35,

36). In 2018, the Chinese government released the “Huaihe

River Economic Belt Development Plan,” which emphasized

the excellent location and important status of the Huaihe

River Basin, planning to accelerate the development of the

Huaihe Ecological and Economic Belt to enhance ecological

protection (15). However, the population density in the Huaihe

River Basin is substantially higher than the national average

population density, resulting in considerable pressure on the

natural resources and serious water, air, and soil pollution from

industrial pollutants. In general, human disturbances in the

Huaihe River Basin are strong and frequent, resulting in severe

constraints on its sustainable development.

In this study, multi-source data were used to develop a

new method of human disturbances to achieve more convenient

and comprehensive dynamic monitoring and evaluation of

human disturbances. The human disturbances were classified

into three types: land use naturalness transformation, resource

consumption, and pollutant emissions. In this study, RS,

GIS, and multi-source data were combined to establish the

land use naturalness index (LNI), resource consumption

index (RCI), and pollution emission index (PEI) to measure

three types of human disturbances, taking into account

the temporal variability of indicator parameters. Based on

these three indicators, human disturbances index (HDI) was

calculated to determine the intensities of human disturbances.

The applicability and effectiveness of HDI, as well as the

spatiotemporal changes in human disturbances, were assessed in

the Huaihe River Basin.

2. Conceptual framework

Lands are used by humans to obtain produce material

products and services through economic activities (3, 30).

Different land use types are affected by human activities in

different ways and to varying intensities, resulting in different

ecological processes and environmental quality. Similar to
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Ehrlich‘s classic IPAT formula (human impact, population,

affluence, and technology), in which human impacts on Earth

are equal population size times affluence (interpreted as energy

available per person) times technology (37). The number of

people in a given area is commonly considered the main

factor affecting natural ecosystems, with higher population

densities resulting in greater degrees of influence on natural

ecosystems (38). Changes in energy source structure are

responsible for many significant changes in human disturbances

(2). Indeed, fossil fuels and electrical power affect substantially

the environment (39). At the same time, air and water

pollutant emissions from human production on the supra-

regional scale and daily human activities can alter considerably

the natural characteristics of the environment (3, 40, 41).

In general, the ecosystem is under land conversion pressure,

resource consumption, and pollutant emissions caused by

human activities.

In this study, the factors of human disturbances on

land units were classified into three types, namely land

use naturalness transformation, resource consumption,

and pollutants emission, then quantified using LNI, RCI,

and PEI, respectively. Based on these three indicators,

HDI was calculated to reflect the intensities of human

disturbances on land units. Six variable data were selected

in this study to calculate the intensities of three types

of human disturbances according to their coverage,

availability, and relevance. Land use naturalness dataset

was used to calculate LNI; water and energy consumption

datasets were used to calculate RCI; CO2, N2O, and non-

point pollutant emission datasets were used to calculate

PEI. The detailed HDI framework flowchart is shown

in Figure 1.

3. Calculations of human
disturbance indices

3.1. Land use naturalness index (LNI)

Naturalness is defined as the preservation of natural

attributes of the ecosystem (28). Several studies have employed

land use transformation to measure the impacts of human

disturbances on land naturalness (42, 43) without appropriate

classifications. Based on the concept of land use naturalness,

Human Activity Intensity of Land Surface (HAILS) was

proposed to measure the impacts of human activities on land

surface (44), providing a clear scoring system. Therefore, the

HAILS evaluation method was applied in this study to assign

values to the naturalness of various land uses (Table 1) and

calculate the LNI values according to the land use types of the

study area. In addition, the subsequent RCI and PEI calculations

were also based on this land use classification.

3.2. Resource consumption index

Previous studies have used DMSP-OLS night light data or

calculated the consumption of non-renewable energy resources

based on Energy Theory to measure the impacts of human

disturbances on the environment (45, 46). However, these

methods are limited by data availability and have poor

comparability over long-term time scales. LDI considers water

and non-renewable resource consumption, allowing for a

comprehensive consideration of resource consumption (3).

However, the calculations of energy consumption in different

land use types and the attributions of hierarchical values of the

LDI method are based on statistical methods to calculate energy

consumption on different land use types without taking into

account the temporal variation in the attributed hierarchical

values, thereby restricting the applicability of the method in

other regions worldwide.

In this study, the residents’ consumption of non-renewable

resources and the non-renewable resources consumption per

unit area of each land use type were considered according to

the calculation method of LDI, then water consumption and

energy consumption were divided into two datasets for separate

analysis. The non-renewable resource consumption per unit

area of different land uses in the study area was calculated

for each period based on energy and water consumption

statistical data in different periods. In addition, electricity

and fossil fuel consumption were converted into standard

coal consumption to measure the non-renewable resource

consumption. The consumption of residents was calculated

using population density statistics and per capita consumption

for urban and rural populations, respectively. The water and

energy consumption datasets were obtained for different periods

by overlay processing in ArcGIS.

3.3. Pollutant emission index

Several researchers have devoted considerable attention

to point source pollution, resulting in effective control and

management of this pollution type, while non-point source

pollution still has negative impacts on the natural environment

(47–49). Indeed, considerable amounts of airborne and non-

point source pollutants have been released into the atmosphere

and surface water bodies, respectively, making it challenging

to measure their impacts on the natural environment due to

the complexity of their dynamics (21, 50). Most studies have

simulated non-point source pollution using semi-empirical and

physically-based models, such as SWAT, EcoHAT, and HSPF.

However, these models require large amounts of data for their

calibration and validation (51–53), restricting their applicability

in some regions.

In this study, the constantly updated global CO2 and N2O

emission data, published by the Emissions Database for Global
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FIGURE 1

Conceptual framework of HDI.

Atmospheric Research (EDGAR), were used to measure the

impacts of airborne pollutants, including all fossil CO2 and

N2O sources (e.g., fossil fuel combustion, non-metallic mineral

processes, agricultural liming, and solvent uses). The CO2 and

N2O emission data were separated into two datasets for separate

scoring and analysis.

The assessment of non-point pollution in water bodies is

a complex and time-consuming task. The potential non-point

pollution index (PNPI) is a GIS tool designed to assess the global

pressure of different land uses on rivers and other surface water

bodies using simple input data (47). The pollution emission per

unit area of each land use type was calculated using statistical

data, while the pollution emissions from residential areas were

determined using population density and per capita emission

data. Finally, the total pollution emission was calculated to

determine the land cover indicator (LCI) of PNPI, then PNPI

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1120576
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1120576

TABLE 1 Classification of land use naturalness.

Levels Categories Classification signs Scores

Natural cover of the land surface does not change and is not used 0

Second level CS1 Natural cover of land surface does not change but is used 0.67

CS2 Natural cover of land surface changes and perennial crops are planted 1.33

CS3 Natural cover of land surface changes and annual crops are planted 2

First level FCS1 Natural cover of land surface changes 2

FCS2 There are artificial insulation layers on the land surface. Water could be exchanged. The exchanges of

nutrients, air, and heat are impeded

2

FCS3 There are artificial insulation layers on the land surface. Nutrients could be exchanged. The exchanges

of water, air, and heat are impeded

2

FCS4 There are artificial insulation layers on the land surface. Air could be exchanged. The exchanges of

water, nutrients, and heat are impeded

2

FCS5 There are artificial insulation layers on the land surface. Heat could be exchanged. The exchanges of

water, air, and nutrients are impeded

2

There are artificial insulation layers on the land surface. The exchanges of water, nutrients, air, and

heat are impeded

2

TABLE 2 Classification of HDI values.

Human disturbance
levels

I II III IV V VI VII VIII IX X

HDI 0–6 7–12 13–18 19–24 25–30 31–36 37–42 43–48 49–54 55–60

was determined according to Munafo et al. (47). The final

obtained result is the non-point source pollution datasets.

3.4. Human disturbances index

In this study, the six datasets were overlayed in one map

projection using ArcGIS, then standardized scores from 0

(low contribution) to 10 (high contribution) were attributed

to reflect the estimated contribution to human disturbances.

The natural breaks classification in ArcGIS was used to better

classify similar values and maximize the variance between

classes. Therefore, based on information from each data during

the study period, the natural breaks classification was used

to standardize the attributed values to resource consumption

and pollutant emissions. The LNI, RCI, and PEI results were

obtained by summing the human disturbance scores for each

of the six datasets with the same weight. Afterward, stack the

three disturbance layers with the same weight were stacked

to compute the HDI. High and low HDI values indicate high

and low levels of human disturbances, respectively. To further

reflect the differences in human disturbances, the HDI values

were classified into 10 levels using equal interval classification

in ArcGIS (Table 2).

LNI + RCI + PEI = HDI (1)

where HDI denotes the human disturbance index of the study

area; LNI denotes the land use naturalness index of the study

area; RCI denotes the resource consumption index of the study

area; PEI denotes the pollution emission index of the study area.

4. Case study

4.1. Description of the study area

The Huaihe River Basin is located in Eastern China between

30◦55
′
-37◦50

′
N and 111◦55

′
-122◦42

′
E, covering a total area

of ∼3.3 × 105 km2, including Henan, Hubei, Anhui, Jiangsu,

and Shandong Provinces (Figure 2). The study area is separated

into five secondary basins, namely upstream, midstream,

downstream, Yishusihe, and Shandong Peninsula (15, 54). The

mainstream of the Huaihe River is derived from Tongbaishan

Mountain in Henan Province, China, flowing eastward into the

Yellow Sea (55). On the other hand, the topography of the study

area is dominated by low hills in the western and north-eastern

parts of the basin and plains, accounting for 1/3 and 2/3 of the

total area, respectively (56). The mean annual precipitation and

mean annual temperature of Huaihe River Basin are 883mm

and 13.7◦C, respectively (57), providing suitable environmental

conditions. In addition, the Huaihe River Basin is an important

industrial and agricultural production base in China, with a

population density of 600 people/km2, which is substantially

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1120576
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1120576

FIGURE 2

Geographic location of the Huaihe River Basin.

higher than the national population density (148 people/km2)

(36). Ecosystems in the study area have been under great

pressure due to intensive resource exploitation (56).

4.2. Data sources and preprocessing

Land use data (spatial resolution of 1 km) for 1990, 1995,

2000, 2005, 2010, 2015, and 2018, and population density data

(spatial resolution of 1 km) were obtained from the Resource and

Environmental Science Data Center of the Chinese Academy

of Sciences. The land use data were generated by processing

Landsat remote sensing images, showing overall accuracies

>90% (http://www.resdc.cn, accessed on 11 December 2021).

We used ArcGIS 10.3 software to classify land use data into nine

types, namely arable land, forest land, grassland, artificial water

body, natural water body, urban land, rural land, industrial land,

and unused land (Figure 3). In addition, soil texture data were

obtained from the National Earth System Science Data Center,

National Science & Technology Infrastructure of China (http://

www.geodata.cn, accessed on 13 December 2021). While digital

elevationmodel (DEM) data (spatial resolution of 1 km, accessed

on 11 December 2021) were downloaded from the geospatial

data cloud platform (http://www.gscloud.cn, accessed on 11

April 2022). Water consumption data were obtained from the

water resources bulletin of theHuaihe River Basin and Shandong

Peninsula (http://www.hrc.gov.cn, accessed on 11 April 2022).

Electricity and fossil fuel consumption data were derived from

the national and provincial statistical yearbook (https://data.

cnki.net/Yearbook, accessed on 10 April 2022) of China. CO2

and N2O emission data were obtained from EDGAR (https://

edgar.jrc.ec.europa.eu/, accessed on 11 April 2022).

4.2.1. Land use naturalness index of the Huaihe
River Basin

The naturalness of the Huaihe River Basin was obtained in

this study (Table 3) based on to the land use type and naturalness

classification results (Figure 3 and Table 1).

4.2.2. Resource consumption index of the
Huaihe River Basin

According to the Huaihe River Basin and Shandong

Peninsula water resources bulletin, water consumption was

classified into six main indicators, namely agriculture, industry,

urban residents, rural residents, forestry and husbandry, and

urban public. Water consumption per unit area of each land

use type was computed independently using land use data, while

that for forest land and grassland was calculated using forestry
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FIGURE 3

Temporal changes in land use types of the Huaihe River Basin over the 1990–2018 period.

TABLE 3 Land use naturalness index of the di�erent land use types in the Huaihe River Basin.

Land use types Classification signs LNI

Arable land Natural cover of land surface changes and annual crops are planted 2

Forest land Natural cover of land surface does not change but is used 0.67

Grassland Natural cover of land surface does not change but is used 1.33

Artificial water body There are artificial insulation layers on the surface. Water could be exchanged. The exchanges of nutrients, air,

and heat are impeded

6

Natural water body Natural cover of the land surface does not change and is not used 0

Urban land There are artificial insulation layers on the surface. Water could be exchanged. The exchanges of nutrients, air,

water, and heat are impeded

10

Rural land There are artificial insulation layers on the surface. Water could be exchanged. The exchanges of nutrients, air,

water, and heat are impeded

10

Industrial land There are artificial insulation layers on the surface. Water could be exchanged. The exchanges of nutrients, air,

water, and heat are impeded

10

Unused land Natural cover of the land surface does not change and is not used 0

and husbandry data. The water consumption by urban and

rural residents was calculated using population density statistics

and per capita consumption for urban and rural populations,

respectively. The water consumption datasets were obtained for

different periods using overlay processing in ArcGIS.

On the other hand, the energy consumption per unit

of each land use type and per capita of urban and rural

residents were calculated in this study based on the land

use data and total energy consumption in different provinces.

In addition, because energy consumption for transportation

is not limited to roadways, the energy consumption per

unit of transportation in urban, rural, and industrial lands

was calculated. The temporal energy consumption datasets

were obtained for different periods using overlay processing

in ArcGIS.

Because of the small area of the Huaihe River Basin in

Hubei Province, only Henan, Anhui, Jiangsu, and Shandong

Provinces were considered in the calculation. All the resource

consumption statistical data used were preprocessed to calculate

the 5-year average consumption value, except those from 2016

to 2018, which were used to calculate the 3-year average

consumption value.
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FIGURE 4

Spatiotemporal distribution of LNI, RCI, and PEI in the Huaihe River Basin over the 1990–2018 period.

4.2.3. Pollution emission index of the Huaihe
River Basin

In this study, the CO2 and N2O emission data in the Huaihe

River Basin were extracted using the extract by mask tool in

ArcGIS software then the kriging interpolation was used to

improve the spatial resolution to 1 km. The 5-year average CO2

and N2O emission values were calculated and considered in

this study.

The National Water Environment Capacity Verification

Manual, issued by the Chinese government, pointed out that

non-point source pollution in China is primarily found in rural

and arable areas, where high chemical oxygen demand (COD)

and nitrogen oxides levels were observed. Therefore, the values

of non-point source pollution were set to 0 for all land use

types except for arable and rural lands. The nitrogen oxides

emission was used instead of non-point source pollution due

to the data availability. Based on the nitrogen oxides emission

per rural person in the manual and the effective use rates of

fertilizer in the yearbook, the distributions of temporal nitrogen

oxides emission data over the study period. The nitrogen oxides

emission data were used to obtain the land cover indicator (LCI)

for the subsequent calculation of the PNPI. All processing was

performed in ArcGIS and Matlab.

4.2.4. Summing the scores

The spatial distributions of LNI, RCI, and PEI in the Huaihe

River Basin were obtained by summing the above-attributed

values in ArcGIS 10.3 software (Figure 4), whereas the HDI

values were obtained using Eq. 1 (Figure 5).

4.3. Spatiotemporal analysis of the
human disturbances

4.3.1. Spatial centroid

The centroidal dynamics can reflect the spatial

transformation characteristics and trends of regional

elements (29). In this study, the centroid method was

used to analyze the spatiotemporal distribution of the

HDI values in the Huaihe River Basin according to the

following equations:

X =

∑n
i=1

∑m
j=1

(

xij ×HDIij
)

∑n
i=1

∑m
j=1HDIij

;

Y =

∑n
i=1

∑m
j=1

(

yij × HDIij
)

∑n
i=1

∑m
j=1HDIij

\n (2)

where X and Y denote the horizontal and vertical coordinates of

the centroid, respectively; n and m denote the numbers of rows

and columns of the raster map, respectively; xij and yij denote

the latitude and longitude coordinates of row i and column j,

respectively;HDIij denotes the value of HDI in row i and column

j of the grid.
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FIGURE 5

Spatiotemporal distribution of HDI in the Huaihe River Basin over the 1990–2018 period.

4.3.2. Spatial pattern analysis of HDI

In order to explore the spatial distribution of

HDI in the Huaihe River Basin, the global Moran’s

I index was used to determine whether the HDI

values are spatially clustered. In addition, the Getis-

Ord Gi∗ index was used to further describe spatial

distributions of human disturbances according to the

following equations:

I =

∑n
i=1

∑n
j=1Wij (xi − x)

(

xj − x
)

S2
∑n

i=1

∑n
j=1Wij

\n (3)

G∗ =

∑n
j=1Wij

(

d
)

xj
∑n

j=1 xj
\n (4)

where I denote the global Moran’s I; n denotes the number

of data; xi and xj denote the HDI values of the grid i and j,

respectively; Wij denotes the spatial weight matrix. In addition,

the Z test was performed on Gi∗ to assess the reliability

of the results. A positive Z (Gi∗) value indicates a higher

value around position i than the average value, suggesting a

high-value spatial concentration (hot spot area). A negative

Z (Gi∗) value indicates a low-value spatial concentration (hot

spot area).

5. Results

5.1. Spatiotemporal changes in LNI, RCI,
and PEI

The three types of human disturbances showed different

spatiotemporal changes in the Huaihe River Basin over the

1990–2018 period (Figure 4).

The areas with high naturalness were mainly located in the

southwestern and western parts of the midstream, as well as in

the Shandong Peninsula and northeastern parts of Yishusihe.

These areas are mainly dominated by forestland, grassland,

and water bodies. However, areas with high naturalness

exhibited a certain spatiotemporal reduction trend. Regions with

low naturalness values were observed in the midstream and

Yishusihe, where urban, rural, and arable lands are themain land

use types. Indeed, these areas tend to cluster gradually, resulting

in a large combined area.

Areas with high resource consumption were mainly

concentrated in the Jiangsu coastal zone and the northern part

of the Shandong Peninsula, where urban land is the main land

use type. In addition, relatively high resource consumption

was observed from 2005 in the midstream and Yishusihe,

while scattered point areas with high resource consumption

were observed in the study area. Areas with low resource

consumption were mainly found in forest land, grassland, and
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water bodies in the western and southwestern parts of the study

area, showing a gradually decreasing spatiotemporal trend.

Pollutant emissions showed a downward trend over

the study period. Before 2005, areas with high pollutant

emissions are mainly concentrated in the arable land of

the midstream, Shandong Peninsula, and Yishusihe, showing

a slightly decreasing spatiotemporal trend. Areas with low

pollutant emissions were mainly concentrated in the Jiangsu

coastal zone, the southwestern, western, and southeastern parts

of the midstream, and the northeastern part of the Shandong

Peninsula, while no substantial spatiotemporal differences in the

pollutant emissions were observed. It should be noted that there

were increases in pollutant emissions in some parts of the study

area from 2010, showing scattered areas.

5.2. Spatiotemporal changes in human
disturbances

The spatial distributions of human disturbances and

classification results in the study area are shown in Figures 5,

6, respectively. The results showed substantial spatiotemporal

differences in human disturbance levels over the 1990–2018

period. These changes in human disturbances can be divided

into two distinct phases, namely 1990–2005 and 2010–2018.

The 1990–2005 period corresponded to the expansion period

of high-level human disturbances. The levels of HDI in the

coastal zones of Jiangsu and the northern part of the Shandong

Peninsula were considerably higher than those in other regions.

The spatial range of areas with levels V and VI expanded

substantially to the central part of the midstream and Yishusihe,

showing the highest areas with level VI in 2005. On the other

hand, areas with low-level human disturbances began to expand

in the 2010–2018 period. Indeed, an obvious reduction in areas

with levels VI was observed in the midstream, while areas with

level V gradually decreased, increasing areas with the HDI IV

level. In addition, other areas with level V of the HDI were

almost completely replaced by those with level IV of the HDI,

while only some areas with levels V-IX of the HDI were observed

mainly around the city areas in the study area.

The percentages of grids for different HDI levels in the

study area were obtained from 1990 to 2018 (Table 4). According

to the obtained results, levels IV and V of HDI exhibited the

highest percentages of grids in the Huaihe River Basin over the

study period. Areas with levels II to IV decreased first and then

increased over the 1990–2018 period, while areas with levels V

to VIII showed the opposite change. The highest intensity of

human disturbances was observed in 2005. In addition, areas

with levels II to IV and V to VIII accounted for 52.52 and 48.41%

of the total surface of the study area, respectively, whereas the

lowest intensity of human disturbances was observed in 2018. In

this year, areas with levels II, III, and IV accounted for 89.76%

of the total surface of the study area, while areas with levels V to

VIII accounted for only 9.72% of the total surface of the study

area. The obtained results showed an increasing-decreasing

temporal trend in the intensity of human disturbances in the

study area.

Areas with level V accounted for high proportions in the

midstream and Yishusihe over the entire study period, while

level IV was observed mainly in the upstream, downstream, and

Shandong Peninsula. Overall, decreasing-increasing trends in

levels II, III, and IV were observed in the five secondary basins

of the study area, exhibiting the lowest areas in 2005 and 2010

and the highest in 2018. Levels II, III, and IV were observed

mainly in the upstream, downstream, and Shandong peninsula,

accounting for more than 60% of the total surface of the study

area, as well as in the Yishusihe and Midstream, covering 40%

of the total surface of the study area, while the areas above

levels V were the opposite. These results indicated that the

intensities of human disturbances in the upstream, downstream,

and Shandong Peninsula were lower than those observed in the

midstream and Yishusihe.

The spatial centroid variations of human disturbances in

the Huaihe River Basin from 1990 to 2018 were determined

using ArcGIS 10.3 based on the spatial centroidmigrationmodel

(Figure 6). During the study period, the centroids of human

disturbances were distributed in the junction of the midstream

and Yishusihe, showing spatiotemporal migration direction. The

centroid migration showed a 45◦ shift trend from southwest

to northeast, with fluctuations in the speed of the centroid

migration. The lowest speed of centroid migration was observed

from 2010 to 2015. The space centroid shifted 602.80m to the

southwest, with an offset speed of 120.56 m/year. Whereas the

highest speed of centroid was observed from 2015 to 2018.

In this period, the space centroid shifted 3692.56m to the

northeast, with an offset speed of 738.51 m/year.

5.3. Cold and hot spots changes of
human disturbances

To quantitatively analyze the spatiotemporal changes in

human disturbances in the Huaihe River Basin over the 1990–

2018 period, the global Moran’s I index was calculated in

this study using the spatial autocorrelation model in ArcGIS

10.3 (Table 5). The results showed significant and positive

spatial autocorrelation (p < 0.01) in human disturbances in

the Huaihe River Basin. Therefore, the Getis-Ord Gi∗ index

can be used to further investigate the evolution characteristics

of the local spatial concentration of human disturbances in

the study area (Figure 7). Overall, the cold and hot spots of

human disturbances in the study area exhibited similar patterns

during the study period. Most of the hot spots were observed

in the midstream, Yishusihe Peninsula, and central part of
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TABLE 4 Di�erent levels of HDI in the Huaihe River Basin over the 1990–2018 period (%).

Study area Year I II III IV V VI VII VIII

The Huaihe River Basin 1990 0.59 11.11 13.98 45.59 27.43 1.18 0.10 0.01

1995 0.48 11.45 8.46 45.39 31.46 2.51 0.22 0.02

2000 0.42 9.74 8.44 43.70 34.19 3.23 0.23 0.05

2005 0.42 9.72 7.93 33.44 41.62 6.45 0.34 0.07

2010 0.57 10.27 7.33 32.92 45.47 2.89 0.47 0.07

2015 0.68 10.84 9.50 57.22 19.73 1.60 0.39 0.04

2018 0.50 10.60 14.59 64.57 8.28 0.93 0.45 0.06

The Upstream 1990 0.03 18.41 22.80 38.26 20.39 0.12 0.01 0.00

1995 0.02 20.28 9.31 44.97 24.85 0.50 0.07 0.00

2000 0.02 17.07 9.86 46.36 26.27 0.37 0.05 0.00

2005 0.04 16.79 7.66 40.71 33.14 1.54 0.11 0.01

2010 0.13 17.49 5.91 43.52 32.14 0.71 0.10 0.02

2015 0.13 17.03 12.24 58.50 11.43 0.54 0.12 0.02

2018 0.07 18.99 20.86 55.71 3.73 0.39 0.22 0.03

Midstream 1990 0.85 11.17 9.58 34.70 42.12 1.50 0.07 0.01

1995 0.79 11.11 5.58 34.83 43.19 4.27 0.21 0.03

2000 0.59 10.43 4.77 32.33 45.64 5.92 0.23 0.07

2005 0.68 10.28 4.80 25.15 46.10 12.54 0.37 0.08

2010 0.81 10.63 4.63 25.48 53.83 4.19 0.36 0.06

2015 1.03 10.74 6.69 49.05 30.88 1.18 0.37 0.05

2018 0.95 10.73 9.97 65.16 12.05 0.70 0.36 0.08

Downstream 1990 1.60 5.86 18.24 69.81 3.57 0.88 0.04 0.00

1995 1.17 6.96 6.98 76.60 7.30 0.83 0.16 0.00

2000 1.38 5.85 8.33 73.64 9.57 1.15 0.09 0.00

2005 1.28 5.62 7.49 60.55 23.38 1.58 0.10 0.00

2010 1.88 5.56 6.57 58.03 25.98 1.66 0.25 0.07

2015 1.95 6.12 11.80 74.82 3.77 1.27 0.23 0.04

2018 0.73 7.05 20.96 67.80 2.94 0.41 0.10 0.01

Yishusihe 1990 0.10 6.63 11.53 49.91 30.61 1.06 0.14 0.02

1995 0.01 6.79 11.38 41.44 38.44 1.69 0.22 0.02

2000 0.10 4.98 11.03 41.10 40.70 1.77 0.26 0.05

2005 0.02 4.91 11.16 25.88 54.34 3.23 0.38 0.08

2010 0.18 5.96 10.75 26.40 54.02 2.05 0.56 0.09

2015 0.19 7.27 10.99 60.16 19.17 1.83 0.38 0.01

2018 0.10 6.49 12.61 71.21 7.96 1.21 0.37 0.05

Shandong Peninsula 1990 0.43 15.17 19.72 55.26 7.83 1.39 0.18 0.01

1995 0.33 15.60 11.29 57.66 13.03 1.73 0.33 0.04

2000 0.17 12.40 12.27 54.72 18.16 1.90 0.34 0.05

2005 0.15 12.91 10.69 43.40 29.67 2.64 0.47 0.07

2010 0.14 13.52 9.75 39.08 33.56 2.95 0.88 0.11

2015 0.18 14.62 11.08 61.31 9.16 2.91 0.68 0.04

2018 0.18 12.58 20.70 57.92 5.86 1.63 1.07 0.05
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FIGURE 6

Spatiotemporal distribution of di�erent levels of the HDI in the Huaihe River Basin over the 1990–2018 period.

TABLE 5 Spatial autocorrelation indices of the HDI in the Huaihe River Basin.

1990 1995 2000 2005 2010 2015 2018

Moran’s I 0.25 0.23 0.27 0.33 0.25 0.26 0.21

Z 46.92 53.89 62.37 75.86 71.67 67.31 53.87

P-level 0.00 0.00 0.00 0.00 0.00 0.00 0.00

the Shandong Peninsula, where urban, rural, and arable lands

are dominant. In addition, areas with hot spots of human

disturbances showed a decreasing temporal trend. Most cold

spot areas were found in the upstream, western, southwestern,

and southeastern of the midstream, as well as in the western

and northeastern parts of the Shandong Peninsula. These areas

are dominated by forest land, grassland, and water bodies. The

distribution of cold spot areas was relatively stable without

significant changes.

6. Discussion

6.1. Benefits of the HDI

Human disturbances have caused serious environmental

problems, threatening sustainable human development (4,

16). Human disturbances affect ecosystems mainly through

direct anthropogenic activities, such as the conversion of

natural land into artificial land for economic development and

urbanization, resulting in substantial consumption of resources

and, consequently, serious pollution and climate change (2,

3, 58). The investigation of these human disturbances is an

essential step for environmental protection and restoration.

The HDI method can be used to classify the possible

disturbances into three main types, namely land use naturalness

transformation, resource consumption, and pollutant emissions.

These three human disturbance types can be effectively

quantified based on the literature (2, 3, 44, 47). Indeed,

the required RS, GIS-related, multisource data in the HDI

method are easily accessible, making it possible to investigate

temporal changes in the HDI in several study areas with

the data. Moreover, the HDI method can be applied at

different scales by selecting appropriate data according to

the specific characteristics of the study area, demonstrating

stronger universal applicability than that of other traditional

methods (e.g., biological indicators and pollution discharges).

The results of the HDI calculation can support the analysis of

the spatiotemporal changes in the regional human disturbances

by considering the ecological and physical-geographic processes,

thereby providing further insights into the relationships between

humans and land, as well as the interactions between human

activities and ecosystems. Therefore, the HDI method is of

great importance for policy development and implementation
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FIGURE 7

(A, B) Spatial distributions of cold and hot spots of the human

disturbances in the study area.

of protective measures in the region. For areas with serious

human disturbances, it is crucial to identify first the dominant

human disturbances source types, then formulate corresponding

policies to mitigate and control them, thereby reducing

the cost, time, and difficulty of environmental protection

and restoration.

6.2. Dynamics of human disturbances

Agriculture and industry were consistently the main types

of human activities in the Huaihe River Basin over the 1995–

2018 period because of the differences in levels of economic

development and regional development policies. The results of

this study showed spatiotemporal variations in the intensities

of human disturbances in the secondary basins of the Huaihe

River Basin as a result of the different levels of regional

economic and policy development. The HDI results suggested

two distinct periods during which considerable changes in the

intensities of human disturbances in the Huaihe River Basin

were observed, namely 1990–2005 and 2010–2020. The overall

human disturbances in the study area showed an increasing

trend over the 1990–2005 period due to the increasing economic

development that marked this period. Indeed, a large area

of arable land was converted to urban land, resulting in a

substantial reduction of the land use naturalness in many

areas (Figure 4). Moreover, considerable pollutant emissions

and resource consumption were observed during the 1990–

2005 period. In terms of spatial distributions, areas with high

levels of HDI were mainly found in the arable and industrial

lands (Figures 2, 6), providing evidence of the greater impacts

of agricultural and industrial activities on the ecosystem than

those of other human activities (33). On the other hand, positive

effects of the environmental policies (e.g., Returning Farmland

to Forest Program, Energy Saving and Emission Reduction,

and Interim Regulations on the Prevention and Control of

Water Pollution in the Huaihe River Basin) on reducing human

disturbances were observed in the 2010–2018 period (15, 59). In

addition, agricultural and industrial activities have changed from

extensive to refined management, improving pesticide, fertilizer,

and energy use efficiencies, while the consumption of resources

and energy per unit area has been significantly reduced (28,

60). However, the increase in the urbanization level and urban

population resulted in structural changes in human activities

(61). In general, the levels of human disturbances in agricultural

and industrial areas decreased to a certain extent, while those in

urban areas of the inland plain increased substantially (Figure 6).

The intensity of human disturbances decreased in the Huaihe

river Basin (Figure 8), which might be due to the overall

influences of improved management efficiency and pollution

control capacity in the study area (12, 17). The intensities and

spatial distributions of human disturbances are closely related to

the urbanization process, as well as to the intensity of resource

exploitation and utilization in the Huaihe river Basin. Therefore,

government strategies and programs play a crucial role in the

spatiotemporal changes of human disturbances (10, 62, 63).

6.3. Future research

The results of the present study demonstrated the

effectiveness of the HDI method in investigating human

disturbances in the Huaihe River Basin. However, due to

our limited understanding of the complexity of human

disturbances, all the types of human activities were not

considered in the HDI method, while the combined effects

of human disturbances were not demonstrated in the present

study. Besides analyzing human disturbances gradients,

policymakers and scholars can also combine the natural

environmental characteristics, natural resource endowment,

and the regional political and economic context to determine

the thresholds of human disturbances that the study area

can tolerate (58, 64). These suggestions may contribute to

formulating and optimizing policies to effectively reduce the

intensities of human disturbances and maintain the sustainable

development of human society. In the future, dynamic modules,

such as the conversion process of land use, consumption of

natural resources and energy, and migration and transformation

processes of pollutants, need to be considered in the HDI
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FIGURE 8

Migration of centroids of human disturbances over the 1990–2018 period.

method, with the support of big data, to more accurately

quantify and monitor human disturbances, thereby providing

some degree of prediction capability for the future change of

human disturbances.

7. Conclusions

In this study, three components of human disturbances

were quantified, namely land use naturalness transformation,

natural resource consumption, and pollutant emissions, using

the land use naturalness index (LNI), resource consumption

index (RCI), and pollution emission index (PEI). The intensities

of human disturbances were calculated using the HDI method

by combining RS, GIS, and multisource data. The HDI

method is based on the spatiotemporal variabilities of input

parameters, achieving more convenient and comprehensive

dynamic monitoring and evaluation of human disturbances.

Moreover, this method is applicable to research areas of different

scales. The results of this demonstrated the effectiveness

and applicability of the HDI method to quantify human

disturbances in the Huaihe River Basin, showing good results.

The results of this study showed gradual increases and decreases

in human disturbances in the Huaihe River Basin in the

1990–2005 and 2010–2018 periods, respectively. The intensity

and spatial distribution of human disturbances were closely

related to the urbanization process and intensities of resource

exploitation and utilization, which are mainly determined

through government strategies and economic development.

In the early period (1990–2005), agricultural and industrial

activities were the main causes of the higher intensity of

regional human disturbances in the midstream and Yishusihe

and Shandong Peninsula than that in other areas. Whereas

the results showed decreases in the intensity of human

disturbances in arable and industrial lands in the 2010–2018

period as a result of the implementation of several regional

programs, such as Returning Farmland to Forest and Energy

Saving and Emission Reduction programs. However, rapid

population growth and accelerated urbanization resulted in

changes in the structure of human activities, substantially

increasing the intensity of human disturbances in urban areas.

In general, the intensity of regional human disturbances can

be effectively reduced by improving the energy structure

and utilization, as well as minimizing pollutant emissions.

In addition, maintaining grassland, forest land, and water

body areas plays an important role in sustaining ecosystem

naturalness and reducing the intensity of regional human

disturbances. The results of the present study provide a scientific

basis for ensuring effective environmental protection of the

Huaihe River Basin, as well as a novel method for quantifying

human disturbances.
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