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Alzheimer’s disease (AD) is a neurodegenerative disease that is difficult to be detected

using convenient and reliable methods. The language change in patients with AD is

an important signal of their cognitive status, which potentially helps in early diagnosis.

In this study, we developed a transfer learning model based on speech and natural

language processing (NLP) technology for the early diagnosis of AD. The lack of large

datasets limits the use of complex neural network models without feature engineering,

while transfer learning can effectively solve this problem. The transfer learning model

is firstly pre-trained on large text datasets to get the pre-trained language model, and

then, based on such a model, an AD classification model is performed on small training

sets. Concretely, a distilled bidirectional encoder representation (distilBert) embedding,

combined with a logistic regression classifier, is used to distinguish AD from normal

controls. The model experiment was evaluated on Alzheimer’s dementia recognition

through spontaneous speech datasets in 2020, including the balanced 78 healthy

controls (HC) and 78 patients with AD. The accuracy of the proposed model is 0.88,

which is almost equivalent to the champion score in the challenge and a considerable

improvement over the baseline of 75% established by organizers of the challenge. As a

result, the transfer learning method in this study improves AD prediction, which does not

only reduces the need for feature engineering but also addresses the lack of sufficiently

large datasets.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative and progressive
disease that cannot be cured effectively (1). Mild cognitive
impairment (MCI) is the early stage of AD. The study by the
Lancet Public Health in 2020 found that the prevalence of
dementia in people over 60 years old in China accounted for
6.04% of the population (approximately 1,507 ten thousand), and
the number was 15.54% (3,877 ten thousand) for MCI cases (2).
An epidemiological survey also found that a person’s cost with
AD in China was approximately $19,144.36 in 2015, while the
total cost of the world’s average level was $167,740 million, which
was composed of $54,530 million (32.51%) direct medical cost,
$26,200 million (15.62%) direct non-medical cost, and $87,010
billion (51.87%) indirect cost (3).

In the past 20 years, scholars have reported extensive studies
on the relationship between the pathogenesis of AD and language
fluency (4). They generally believed that mild word naming,
retelling, hearing, understanding, and writing disorders already
exist in the early stages of AD. One of the early signs of AD is an
obvious decline in linguistic comprehension and expression form
(5), and the linguistic manifestation of patients with AD usually
includes the following:

1) Patients with AD talk less than ever before and are often silent,
as they frequently forget the words they have just spoken,
and have difficulty continuing with the topic that has just
been discussed.

2) Sometimes, they are difficult to be understood with
incoherent and repeated utterances.

3) They often call something the wrong name, for example,
“watch” is regarded as “the clock on the wrist.”

New studies have found that before the onset of AD, the β-

amyloid has already gathered in the brain about 5 to 10 and even

20 years ago. If AD can be diagnosed at an early stage (6), a series

of behavioral therapies can be prescribed to slow the progress of
the disease. However, an AD diagnosis is challenging in clinical
medicine because of the subtle differences between patients with
AD and healthy individuals in terms of brain structure and
behavior. At present, some medical diagnosis methods, such as
pathological examination, MRI, PET, and reliable biomarkers
(e.g., amyloid ligand imaging and cerebrospinal fluid testing),
are usually used. However, these diagnosis methods cannot be
widely popularized because of their high cost and invasive nature.
Therefore, there is an urgent need to develop a convenient,
inexpensive, and non-invasive AD diagnostic approach by AI
technologies, such as speech processing and NLP. In contrast
to earlier studies with manual expert-wise feature extraction
in this field, this study used a reliable deep learning model
to automatically find suspicious AD symptom features from
speeches. Specifically, a pre-trained distilBert language model
(7) was used as a feature extractor to obtain the features of the
input sentence or document, and a simple logistic regression
classifier, which has a good effect on binary classification, was
used to classify AD from normal controls. Owing to its strong
deep semantic feature extraction competency and an accurate
binary classifier, this combination can effectively improve the

classification effect. In addition, a grid search strategy (8) was
used to tune the parameters to obtain the best parameters of
the model. The results show that this method worked better on
ADReSS datasets (9) in 2020, with an accuracy of 0.88, which was
significantly higher than the baseline and almost equivalent to the
best performance on the challenge (10).

The main contributions of this study are as follows:

1) A simple and effective model of AD diagnosis based on
transcripts without complicated expertise is designed and
implemented effectively.

2) A novel model architecture that combines deep learning with
machine learning is proposed, and the best performance on
the ADReSS dataset is obtained.

3) Our proposed approach has the advantages of reliability, low
cost, and convenience and can provide a feasible solution for
the screening of AD.

RELATED WORKS

Different technologies can be used to detect AD, such as
molecular biomarkers combined with deep learning on gene
expression datasets (11). However, we used transcripts combined
with deep learning on speech datasets instead. Two approaches
are mainly used in this field: machine learning with manual
feature extraction based on expert knowledge and deep learning.
Traditional machine learning algorithms have been widely
studied with handcrafted features to predict AD. However, they
have the disadvantage of lacking integrity, demanding good
expertise, low accuracy, and poor portability. Moreover, these
methods are generally applicable to a specific task scene. Once
the scene changes, these manually designed features, and prior
settings cannot be adapted to new scenes and need to be
redesigned again; therefore, the portability of the model is not
better overall. With the arrival of the deep learning paradigm, it
has already become possible to extract high-level abstract features
directly from transcripts that describe the distribution of datasets
in low-dimensional manifolds internally. The advantage is that
it can either extract input dataset patterns directly for both
regression tasks or combine handcrafted features to the feature
map of the input dataset without the certified professionals from
the data source. Because language functions play an important
role in the detection of cognitive deficits at different stages, the
combination of NLP technology and deep learning provides an
accurate and convenient solution for the detection of AD and
MCI (12). In this study, a distilBERT model, which is a multi-
layer perceptron with a self-attention mechanism, is used to
extract deep semantic features; they are then passed through
a strong binary classifier to recognize AD. The number of
hidden layers is larger than that of traditional machine learning
algorithms, thus, the model has a stronger semantic abstraction
ability and classification performance, and the scalability is
superior to traditional machine learning methods. Although
the deep learning method does not need to extract features
manually, it does not mean that we do not need to analyze
manual features anymore, and the single deep learning model
for diagnosing AD may perform better. Therefore, combining
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it with some conspicuous markers and a stronger classifier may
improve the classification results, which we will discuss in the
discussion section.

Several studies have investigated language and speech features
for AD diagnosis (13) and proposed many signal processing
and machine learning algorithms to detect AD and MCI (14).
However, in this field, there are still lacking benchmark datasets
against which different methods can be systematically compared.
The ADReSS Challenge (9), a subset of the DementiaBank dataset
(15), uses a balanced dataset of AD and healthy controls to
recognize the disease. Manual feature extraction methods have
a better interpretation for classification tasks, although there are
unremarkable results. As a basic study on the ADReSS dataset,
Luz et al. (9) used 34 linguistic features, such as total utterances,
a type-token ratio, percentages of parts of speech, duration,
MLU, and a word ratio, combined with linear discriminant
analysis, and obtained the best accuracy of 0.75 on the test
dataset. Acoustic features, such as emobase (16), the extended
Geneva minimalistic acoustic parameter set (eGeMAPS) (17),
minimal features (18), Computational Paralinguistics ChallengE
(ComParE), (19), and multi-resolution cochleagram (MRCG)
(20), only obtained an accuracy of approximately 0.5 on the
classifiers used frequently. Balagopalan et al. (21) used two
approaches for the binary classification of AD and normal
controls, i.e., acoustic and text-based feature extraction and the
bidirectional encoder representation (BERT) model. Finally, the
BERT model obtained the best accuracy of 0.8332, which was
better than that of the manual feature extraction method. Syed
et al. (22) and Yuan et al. (23) achieved accuracies of 85.45
and 89.6% using acoustic and linguistic features, respectively.
Syed et al. (22) used acoustic features, such as bag-of-acoustic-
words and INTERSPEECH 2010 Paralinguistic Challenge feature
sets [a low-dimensional version of ComParE (19)], and obtained
an accuracy of 76.85%. Luz et al. (24) used a combination of
phonetic and linguistic features without human intervention and
obtained an accuracy of 78.87%.Most of these earlier studies were
based on features designed by experts and were unable to learn
more informative and discriminative features, so a relatively poor
performance was obtained.

The latest deep-learning methods, such as convolutional
neural networks (CNN), recurrent neural networks (RNN),
and BERT, can achieve good performances by automatically
extracting high-level features. Mahajan et al. (25) used part-of-
speech (POS) tags and word embeddings (GloVe) as inputs on a
CNN-long short-termmemory (LSTM) model (26) and obtained
the best accuracy of 0.6875. Then, they replaced unidirectional
LSTM with bidirectional LSTM layers (27) and obtained the
best accuracy of 0.7292. Orimaye et al. (28) used a deep neural
network to predict MCI in speech. Different from our datasets,
they used part of the Pitt corpus of the DementiaBank dataset,
comprising 19 controls and 19 MCI transcripts. Fritsch et
al. (29) enhanced n-gram language models to create neural
network models with LSTM cells, and an accuracy of 85.6%
was obtained to classify HCs and AD on the Pitt dataset.
Pan et al. (30) used a glove word embedding sequence as
the input, combined with gated recurrent unit layers and a
stacked bidirectional LSTM to diagnose AD on the Pitt dataset.

These models differ from our model because we used deep
learning and machine learning classifiers instead. Similar to our
method, the study (31) demonstrated that the combination of
BERTLarge and logistic regression had the best performance in the
classification problem. Different from our study, they used the
Pitt DementiaBank dataset and data augmentation technology to
enhance the classification performance and obtained a state-of-
the-art (SOTA) accuracy of 88.08%.

Other tasks, except for the picture description task, can
also be used to recognize AD. For example, Clarke et al. (32)
used five different tasks to recognize AD, namely, conversation,
procedural recall, picture description, narrative recall, and novel
narrative retelling and obtained the best accuracy of 90% for
AD vs. HC with linguistic features, combined with the support
vector machine (SVM) model. In addition, many studies have
used multimodal datasets to detect AD and MCI, and more
accurate and differentiated information may be obtained from
different models. Looze et al. (33) combined conversational
features, neuropsychological testing, and structural MRI to
explore temporal features, and a linear mixed model was used to
diagnose AD, which differs from our corpus. They also found that
slow turn-taking and slow speech are two useful factors for the
early detection of cognitive decline. Martinc et al. (34) also used
a multimodal approach to detect AD on the ADReSS dataset,
using an active data representation approach (13), combining
linguistic, acoustic, and temporal features and obtaining an
accuracy of 93.75%. Jonell et al. (35) recorded participants’
language, speech, motor signs, pupil dilation, thermal emission,
facial gestures, gaze, and heart rate variability of 25 patients
with AD and found that multi-modality improved clinical
discrimination. Recently, the transfer learning model has been
widely used to diagnose AD. For example, Laguarta et al. (36)
presented an approach with multiple biomarkers, including
sentiment, lung and respiratory tract, and vocal cords. They
used the transfer learning model to learn the features from
audio datasets and obtained an accuracy of 93% on the ADReSS
datasets. Zhu et al. (37) used the transfer learning on the
BERT model to detect AD with speech and text, achieving an
accuracy of 89.58%. They also found that the text model was
more discriminative than the speech model. Overall, strong
representation learning ability and discriminative classifiers,
multimodal information, and transfer learning are all effective
factors in the accurate diagnosis of AD and MCI.

METHODS

Transfer Learning
One of the challenges in AD prediction research is the lack of
training data, which is important for a better understanding
of language models with semantic and syntactic structures
when they are implemented. Transferring knowledge from one
model to another is called transfer learning, which is learning
information from pre-trained datasets and then converting it
into weights to transfer to another neural network. Therefore, we
need not to train a neural network from scratch. It eliminates
the need for target-specific large datasets using a model that
learns a probable distribution for classification. The general flow
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FIGURE 1 | The logical architecture of the model.

FIGURE 2 | A picture of a Boston Cookie-Theft description task.

of using a pre-trained model for classification consists of the
following steps:

(1) Training a general language model on a large dataset.
(2) Fine-tuning a pre-trained language model on the

target dataset.
(3) Using a target-specific pre-trained language model

for classification.

In this paper, we argue that the attention mechanism allows
the model to focus on some parts of the transcripts for decision-
making, which is suitable for AD diagnosis because it can capture
specific markers related to AD. We used a pre-trained BERT
model for text embedding, which converts original sentences or

transcripts to 768-dimensional vectors. In the next part, we will
describe the architecture of our model.

Overall Classification Framework
The entire model architecture in this study mainly consists of
two sections: the distilBert model (7) and the logistic regression
classifier. The features transferred between the two models
are 768-dimensional vectors, which are also embeddings for
sentence classification.

Although BERT has become popular recently because of

its excellent performance, the running speed with a hundred
million parameters is a huge challenge for our computer system.

Accordingly, we chose distilBert (7) developed by the team of
Hugging Face, as an embedding feature extractor. It distills

the BERT base from 12 layers to 6 layers and removes token-

type embeddings and poolers. It can reach 60% of the faster

speed and 40% smaller architecture but retains 97% language

understanding capability of the BERT model (7). In this study,
the distilBert model is used to extract deep semantic features,

which are then passed to a logistic regression model to classify

sentences. Specifically, the pretrained distilBert model is used as

the feature extractor, the output layer of which is replaced by a

logistic regression classifier for binary classification. The logical

architecture of the model is shown in Figure 1. The embedding
layer is a sentence or an entire transcript with a high-dimensional
representation vector, and the classifier layer predicts the label of
every embedded input. The main processes are as follows: Firstly,
the words are divided into tokens using the distilBert tokenizer,
and some special words are added to the text [i.e., (CLS) before
the sentence and (SEP) at the end]. Then, the vocabulary table is
searched from the pre-trained model to replace the tokens with
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Algorithm 1 | The process of our algorithm description.

1: Input: Dataset D = {(xi , yi )}
N
i=1; xi is the input sentence; yi is the

corresponding label.

2: The load pre-trained model tokenizes a sentence by splitting the

sentence into words or subwords and then pads all lists to the same size.

3: Use the distilBert model to train the dataset to obtain the

embedding vector.

4: Put the embedding vector into the logistic regression model to classify

the dataset.

5: Model evaluation.

the corresponding numbers taken into the DistilBert model and
a 768-dimensional output vector is obtained. Finally, this vector
is inputted into a logistic regression classifier, and the final binary
classification result is obtained. The algorithm description of the
entire process is presented below.

DistilBert can capture long-distance dependencies by learning
the global semantic message of input text thoroughly because it
has some mechanisms, such as a multi-head self-attention and
location code. It has excellent competence in feature extraction
and semantic abstraction. The process is repeated six times and
a 768-dimensional semantic feature vector is obtained, which
is then input into a logistic regression model to get the final
classification result. The transcripts in this study are a section of
the description on a picture, the maximum length of which is no
more than 500, so the length of word embedding is set as 500,
considering speed and semantic completion.

Grid Search
Grid search is a simple and widely used hyperparametric search
algorithm fit for small datasets and can obtain the optimal
value by searching all the points in the range. In this study,
the GridSearchCV function in the scikit-learn tool, including
grid search and cross-validation, is used to search for the best
parameters of the logistic regression model. The grid search
adjusts the parameters in sequence within a specified parameter
range and then trains the model by using the adjusted parameters
with the best performance in the validation set. The last score
is the average of the k-fold cross-verification scores in the test
set. Considering speed and accuracy, the search scope of the
GridSearchCV function ranges from 0.0001 to 100, and the step
is set as 20.

EXPERIMENTS

ADReSS Datasets
The study is a picture description task from the Diagnostic
Aphasia Examination (38), and participants are asked to describe
a picture (Figure 2) as detailed as possible. The datasets (9),
including full-wave audio and corresponding transcripts with 78
AD and 78 normal controls, are divided into 108 training sets
and 48 test sets by challenge, which has a balanced distribution
for classes, gender, and age. An example of a transcript from the
dataset is shown below.

A boy and a girl are in a kitchen with their mothers. The little
boy is getting a cookie for the little girl, but he is on a stool and
is about to fall. The mother is washing dishes. She is obviously
thinking of something else because the water pours out over the
sink. She finished with some dishes. It seems to be summer because
there are bushes. The window is open. There seems to be some kind
of breeze because the curtains on the sill there blow. It must be fairly
hot. The mother is in a sleeveless dress. The children are in short
sleeve tops and have sandals. The little boy has tennis shoes. The
mother obviously is unaware of what the children are doing. She
will be aware of this shortly. How much more do you want to do?

The age distribution of the two groups at different intervals is
presented in Table 1. The average values and standard deviations
of age and mini-mental state examination (MMSE) scores are
shown in Table 2.

Experiment Results
The experiment in this study was performed using the Windows
10 operating system. The computer was equipped with an Intel
(R) Core I i5-6500 CPU @3.20 GHz, 3.19 GHz CPU, and 44. GB
RAM. Library scikit learn was used to visit logistic regression,
NumPy, and Pandas’ libraries, and Python 3.6.13 was used as the
programming language.

The experiment used the accuracy, precision, recall, and F1-
score as indices to evaluate the performance of themodel.Table 3
lists the relationship between the predicted and true classes. TP is
a sample predicted to be positive. TN is a negative sample that is
predicted to be negative. FP is a negative sample that is predicted
to be positive. FN is a positive sample that is predicted to be
negative. The formula for the metric index is as follows:

Accuracy =
TN + TP

TN + FP + FN + TP
(1)

Precision =
TN

TN + FP
(2)

Recall =
TP

TP + FN
(3)

F1− Score =
2TP

2TP + FP + FN
(4)

The parameters of the distilBert model are presented in
Table 4. The champion of the ADReSS challenge obtained
an accuracy of 0.896 by combining the Enhanced Language
Representation with Informative Entities (ERNIE) model (39)
and pause information in speech using acoustic align technology
(10). We achieved 88% accuracy on the test set, which is
almost equivalent to the SOTA result, and a 13% improvement
over the baseline of 75%, established by the organizers of
ADReSS (9). The champion used two models, acoustic and
text, and combined the ERNIE model with discriminated
markers to improve representation learning. We modified the
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TABLE 1 | The basic composition of the participants in every group.

AD (N = 78) Non-AD (N = 78)

Age interval Male Female Male Female

50,55 2 0 2 0

55,60 7 6 7 6

60,65 4 9 4 9

65,70 9 14 9 14

70,75 9 11 9 11

75,80 4 3 4 3

Total 35 43 35 43

TABLE 2 | The average and SD of age and MMSE.

Non-AD (N = 78) AD (N = 78)

Measure AVG SD AVG SD

Age 66.56 6.60 66.79 6.83

MMSE 29.01 1.16 17.79 5.48

TABLE 3 | Relationship between predicted class and true class.

True class

Predicted class Positive Negative

Positive True positive(TP) False positive (FP)

Negative False negative(FN) True negative (TN)

TABLE 4 | Parameters of the distilBert model.

Parameters Value

Epoch 1

DistilBatch_size 156

Pad_size 500

Pre-trained model distilBert-base-uncased

Hidden_size 768

model architecture of the distilBert model to achieve a strong
classification performance using only text.

We used the popular models of BERT and ERNIE (39)
for comparison. To check the influence of different classifiers
with the DistilBert model, the CNN, random forest, SVM,
and AdaBoost classifiers were also used for comparison with
our logistic regression (LR) classifier. Table 5 shows that the
LR classifier obtains the best performance. The LR is one
of the simplest classifiers with a good performance in binary
classification and has become a prior selection classifier in
clinical diagnosis. For example, a study (31) demonstrated the
superiority of the combination of BERT and LR models in the
classification problem.

TABLE 5 | The performance of different models.

Model Accuracy Precision Recall F1-score

Linear discriminant analysis (9) 0.625 0.60 0.75 0.67

DistilBert 0.48 0.51 0.48 0.48

ERNIE (39) 0.42 0.46 0.42 0.30

DistilBert +CNN 0.58 0.34 0.58 0.43

DistilBert+RF 0.79 0.79 0.79 0.79

DistilBert+SVM 0.625 0.629 0.625 0.622

DistilBert+Ada 0.73 0.73 0.73 0.73

ERNIE+Pause (10)* 0.896 0.952 0.833 0.889

DistilBert+ LR 0.88 0.88 0.88 0.87

*ERNIE+Pause (10) is the model of a champion, distilBert +LR is our method, RF and

Ada are the abbreviations of random forest and adaboost classifier, respectively.

The best performance in a column of measure.

DISCUSSION

Pre-trained models are considered important and effective
nowadays because they attempt to learn the features and
structure of the language from large datasets and regulate
the model effectively to perform best on new datasets by
only updating a few parameters. Accordingly, our model
was highly trained with the best initial parameters. The best
performance indicates that our model has learned useful features
for classification, which not only reduces the need for expert-
defined linguistic features but also makes it possible for accurate,
complex, and comprehensive features to be extracted from the
dataset. The advantage of sentence embedding is that it considers
the entire transcript and does not have any out-of-context
word embedding layer, which converts every word into a vector
representation, considering its context. The ADReSS challenge
also includes MMSE evaluation, a detailed interactive exam to
evaluate cognitive skills, including memory, language, delayed
recall, and visuospatial. However, whether our model is suitable
for the evaluation of MMSE scores needs to be further verified.
In addition, the transcripts were annotated in CHAT format (40),
which is convenient formanual feature extraction.We performed
the experiment with and without annotation and found that the
performance did not differ. Using automatic speech recognition
(ASR)-generated transcripts directly without the need for further
annotation, our method has more advantages than the manual
feature extraction method.

Many studies have demonstrated that manual features,
combined with the deep learning model, can improve the
performance of the model, and manual features also provide a
better interpretation, which is important for clinical diagnosis.
For example, Looze CD et al. (33) found that the temporal
characteristics of speechmay reflect underlying cognitive deficits.
Nasreen et al. (32) used linguistic features, such as pauses,
overlaps, and dysfluencies, to detect AD on the ADReSS dataset.
They obtained 90% accuracy and demonstrated the importance
of dysfluency and pauses in detecting AD. The champion of
the ADReSS challenge (10) combined deep learning with pauses
and obtained SOTA accuracy of 89.6%, proving that pauses
are important for AD diagnosis. Sadeghian et al. (41) extracted
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acoustic features, including pauses more than 5 s in duration, and
obtained the best accuracy of 95.8%. Features, such as pauses,
are important features that deep learning cannot learn effectively
(i.e., cannot give enough weight for pauses), so the combination
of both can improve the performance of AD detection. In clinical
medicine, patients with AD often pause and cannot continue
treatment. This is not only a memory decline problem but may
also be related to some language function obstacles caused by
brain damage. A successful computer model can guide doctors
to focus more on the early clinical symptoms of patients with
AD, such as pauses and dysfluency. The largest limitation of
our study is the difficulty to interpret the performance of a
model with so many parameters (42). That is, our model cannot
understand the reason for a wrong verdict, but we can identify
the words that the network has paid more attention to in the
case of a correct prediction. This function is particularly useful
because such an interpretation can reveal the important linguistic
attributes of patients with AD, which can help in speech therapy
and communication with patients with AD.

The practice of pre-trained and fine-tuning paradigms has
achieved excellent performance in many downstream tasks. In
recent years, research in academia and industry has indicated
that the pre-trained model is developing in a larger and deeper
direction. However, there are still some problems that need to be
solved in large models, such as the dataset quality, huge training
energy consumption, carbon emission problems, and a lack of
common sense and reasoning ability. These problems should be
addressed in future studies.

FUTURE WORKS

In the future, we will focus on the following two directions for
AD diagnosis.

Implicit sentiment analysis is an expression that does not
contain any polarity markers but can still convey a clear human
awareness sentiment polarity in the context; it exists widely in
the recognition of aspect-based sentiments (43). For example, the
comment “The waiter poured water on my clothes and walked
away” contains no opinion words but can be interpreted as
clearly negative toward “the waiter”; some sentences, such as
“the service of the hotel is great,” “the food of the restaurant
is delicious,” contain obvious sentimental words that neural
network can give enough weights for the words of “great,”
“delicious,” but the non-sentiment-related aspects of such words
are often ignored by the model. The transcripts used for the AD
diagnosis of spontaneous speech contain no polarity markers;

however, most previous studies in this field generally pay little

attention to implicit sentiment expressions. The study (44) used
supervised contrastive learning to capture implicit sentiment
using an advancedmethod. That is, the expressions with the same
sentiment polarity were pulled together, and those with different
sentiment orientations were pushed apart. In the future, we will
focus on implicit sentiment analysis for AD diagnosis using a
contrastive learning method.

One of the most popular language models is the multilingual
one. With a proper multilingual model, the problem of lacking
large datasets can be addressed by transferring the knowledge of
AD prediction from another language in which a large dataset is
available, which is similar to the approaches proposed by Fraser
et al. (45). Only in this manner can the need for a target task
be addressed for expert-defined linguistic features. In the future,
we will commit to improving multilingual AD recognition using
cross-lingual transfer learning, including the multilingual BERT
and transformer models.
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