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INTRODUCTION

In public health terms, “sanitation” refers to a public health implementation of hygienic standards
and practices meant to address transmissible diseases like Malaria and Cholera in industrial and
public settings like factories, schools, and resorts (1). We propose the management of air given the
current pandemic with an airborne pathogen (2). Sanitation has had a stable history as a primary
focus in the field of public health engineering, responsible for potable water, waste management,
and control of mosquito breeding-grounds (1, 3). Since addressed by a sanitation approach, the
effective handling of vector media has made outbreaks and epidemics like the cholera outbreak
of 1,911 in New York City unrepeated in the USA (1). However, rarely have pathogens been met
with mitigations and public health sanitation measures considering airborne transmission, save for
sanitariums and open-air schools for Tuberculosis and the “Fresh Air” movement during the 1918
Influenza Pandemic, which were both caused by pathogens spreading by aerosols (4–6). In such
a rare, but notable example in 1918, an open-air hospital in Boston was retrospectively found to
benefit the staff by reducing Influenza infection (7). Given our current pandemic, we believe such
ventilation measures should be readopted and the air should be sanitized.

As new evidence shows airborne pathogens such as SARS-Cov-2 spread via aerosols, we should
refine what is a nebulous attribution of responsibility inmitigating the spread of airborne pathogens
indoors and assign it under the purview of public health sanitation and engineering in order
to effectively manage indoor air (2). A building’s ventilation system is critical to maintaining a
healthy work environment (8). Humans breathe in many times more air than our food or water
intake—around 6 liters/minute (7). Therefore, we argue for the sanitation of air under the domain
of public health environmental engineering, and echo the calls for a necessary paradigm shift via
measures such as ventilation and filtration (8).

DISCUSSION

Generation of Respiratory Aerosols
Many viruses including SARS-CoV-2 have ample evidence of primarily airborne transmission (8).

Generation of respiratory aerosols is not limited to aerosols generating medical procedures and
is observed for many day-to-day activities like breathing, talking, shouting, coughing and sneezing,
and singing (9–12). Emissions increase with airflow velocity and speech volume (13, 14). The
expelled aerosols have a multimodal size distribution: 0.1, 0.2–0.8, 1.5–1.8, and 3.5–5.0 microns,
while coughing and talking also have modes at 123 microns and 145 microns, respectively, though
the large particles during both talking and coughing are still under 5 microns in size (2). Smaller
sized aerosols are generated deeper in the respiratory tract (2).
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Most exhaled aerosols are under 5 microns (15, 16). Normal
breathing produces hundreds to thousands of such particles
per liter of exhaled air (16–18). Due to such small size, these
particles can be respired (19). For every particle over 100
microns produced during speech, 100 to 1,000 particles under
100 microns in size (10). Blustery expulsions, like a sneeze or
a cough, can produce numerous aerosols in a short period,
but talking and breathing are continuous action and a cause
for greater concern (20), especially when an infectious person
does not display symptoms. A minute of loud conversation can
produce thousands of droplets every second, of which, about
a thousand particles could contain virus and these can remain
afloat for 8 mins or more (21).

While a historical 5 micron boundary has cropped up
to distinguish between aerosols and droplets, a 100 micron
boundary is supported by evidence (2, 22, 23). Stokes law for
small particles subject to laminar flow can provide a simple
approximation of their terminal velocity, thus providing an idea
of how long they may stay afloat:

up =

gρpd
2
p
C

18η
(1)

where “g” is the acceleration due to gravity, “η” is the dynamic
viscosity of air, “ρp” is the density of the particle, “dp” is the
diameter of the particle, and C is the Cunnigham slip correction
factor (to account for slippage, leading to reduced air resistance,
relevant when particle size becomes of the order of the mean
free path of air molecules) (24). In still air, a 100 micron
particle released at a 1.5m height can stay in the air for ∼5 s,
while traversing ∼2m. Similarly, a 10 micron particle can stay
suspended for ∼17min, a 5 micron particle for ∼33min and
a 1 micron particle for over 12 h (2, 17, 25). A one micron
respiratory aerosols is about a thousand times larger than a single
virion. It can contain enough of the virus and stay afloat for
hours. Studies have found smaller aerosols to be enriched with
infectious pathogens (15, 19, 26, 27). Since room air is rarely still,
these particles can get further, especially while aided by violent
exhalation events like sneezing or coughing (28).Modeling shows
that large droplets over 100 micron are only likely to be the
dominant mode of infection within 0.2m (talking) or 0.5m
(coughing) of an infectious person (29). This makes sense when
you consider that the concentration of exhaled aerosols is highest
closest to the source, in this case, the infectious person. Risks
of infection from aerosols will be quite high close to the source
(2), highest when the infected and the exposed individuals are
positioned so close that breathing flows can approach each other’s
faces, with complex flow interactions, difficult to predict (20).

Summary of Evidence for Airborne Spread
of COVID-19
Greenhalgh et al. (30), succinctly summarized the evidence that
strongly indicates COVID-19 is airborne. The following are some
key points from their work.

• Long-range transmission of the disease and overdispersion of
the basic reproduction number (R0). These are consistent with

airborne transmission but cannot be adequately explained
depending on droplets and fomites (31).

• Transmission between people who were never in each other’s
physical presence, as evidenced from outbreaks in quarantine
hotels (32).

• Asymptomatic or presymptomatic transmission, where the
infectious person is not sneezing or coughing, accounts for 33
to 59% of transmissions worldwide, indicatingmostly airborne
transmission and not droplets (33).

• The disease transmits muchmore easily indoors than outdoors
(34), and transmission can be mitigated by good indoor
ventilation (35–38).

• Despite strict contract and droplet precautions and use
of relevant personal protective equipment (PPE) (against
droplets only), nosocomial infections have unfortunately
occurred (39).

• Viable SARS-CoV-2 has been detected in the air in laboratory
studies (40, 41) as well as in spaces with infected occupants,
without any so-called aerosol generating medical procedures
being undertaken (42, 43). Exhalation of infectious aerosols
have now been documented in both animal models (44) and
in humans (26).

• SARS-CoV-2 has been traced to locations in buildings
that could only be reached via aerosols, like air filters in
air handling units of hospitals and the air conditioning
vents/ducting (45)

• Animal models where transmission of SARS-CoV-2 occurred
between animals whose cages were connected by a ducting
network that can only be negotiated by aerosols and not
droplets (46). It has also been shown in animal models that
placing surgical masks around cages of infectious individuals
reduced transmission (47). Animal models also show the
aerosol exposure more likely leading to more severe disease
and efficient transmission (48, 49).

Several in-depth post-hoc analysis of outbreaks have shown
that transmission was most likely through aerosols, as opposed
to droplets or fomites, like, a department store in China
(50), a party traveling in buses (51), the Skagit Valley
Chorale (52), and the outbreak on the Diamond Princess
cruise ship (53).

Mitigation
Relative humidity of indoor air impacts the equilibrium size of
exhaled aerosols particles (and thus how long they are suspended
in air and the distance they can traverse), the viability of
viruses in the particles, and our immune defenses (mucociliary
clearance) (2). A relative humidity of 40–60% indoors could
reduce possibilities of transmission (54, 55).

Both the volume of ventilation and air flow patterns in an
occupied space have an impact on airborne transmission of
viruses (2, 20). Good ventilation can improve indoor air quality
and benefit health, comfort, and office work performance, while
also reducing occurrences of allergic and asthmatic incidents
(56, 57). It is important to assure that, like food or waterborne
diseases, we can reduce risks of airborne diseases through
appropriate engineering measures (8).
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Standards recommend minimum ventilation rates for
buildings based on either needs for maintaining acceptable
indoor air quality (58) or needs for infection prevention
(59). The ventilation in a specific building depends on the
intended use of the space, like a school, vs. office buildings,
vs. residences, vs. hospital wards, due to differences in
occupancy density, layouts, hours of occupancy, and infection
prevention needs. Type of ventilation system also affects the
chances of infection transmission. In an ideal world, when
we can be sure of who is infectious, personalized extraction
ventilation for infectious persons can dramatically reduce
infection transmission risks (20). However, when a virus
can be transmitted by persons exhibiting no symptoms,
we would have to provide personalized ventilation and
personalized extraction to every occupant, which can quickly
become prohibitively costly. An increase in ventilation
volume need not always correspond with a reduction in
risks (60), implying ventilation volume alone should not
be used as an indicator for ventilation performance in
actual buildings (20).

Improved ventilation has also been related to reduction
in SBS (sick building syndrome) symptoms and relative risks
of respiratory illness (61), particularly for the elderly (62),
improved comfort and lowering sick absence (schools and
offices) (63), and improved productivity (even offsetting
any additional energy costs) (64, 65). Models of infectious
disease transmission show that improved ventilation can
mitigate outbreaks of influenza (66), seasonal variations
in ventilation (less ventilation during winter) can increase
risks of airborne disease transmission in classrooms (67),
improved air quality reduces transmission risks of several
airborne pathogens in clinics (68), and can also reduce
disease transmission risks at a city level (69). A disease
that is airborne and has epidemic proportions around the
world, is tuberculosis and there are several studies linking
improvement in ventilation with reduction in risks of
tuberculosis infection (70, 71).

Measuring room carbon dioxide levels, while not a proxy
for infection risks, is a cost-effective tool for identifying poorly
ventilated spaces and spaces that have frequent overcrowding,
thus indicating places where transmission is likely to occur (58,
72, 73). Poor indoor air quality, measured with carbon dioxide
(CO2) as a proxy, has been shown to increase lower respiratory
tract infections in children (74), more frequent incidences of
common cold (75), and even a pneumococcal outbreak in a
correctional facility (76).

Filtration for Indoor Spaces
While introducing outdoor air and increasing ventilation is a
preferred option, it also carries energy and hence economic
implications. In such a situation, assuming the existing heating
ventilation and air conditioning (HVAC) system can handle
better grade filters, choosing high-efficiency filters can mitigate
risks of infection while requiring less operational costs than

FIGURE 1 | Clean indoor air: dilution, ventilation, and filtration based

strategies.

increasing the outdoor air ventilation levels (77). The added cost
due to improved filtration can far outweigh the cost of infections.

But changing mechanical ventilation in a building can be
expensive and time taking. For such situations and also for
buildings without mechanical ventilation, use of portable air
cleaners (PACs) can be a quick and affordable option. PACs were
already in the market since late 70s, early 80s and their use
in homes has been increasing, due to a concern with outdoor
air quality (78–80). They are part of design recommendations
for setting up temporary, negative pressure isolation units (81,
82) and also a part of the WHO Roadmap for ventilation
in face of the COVID-19 pandemic (57). Multiple studies
during the past months have focused on PACs, due to the
ongoing pandemic, and have used approaches CFD modeling
(83), experiments in actual spaces (84–88), and study involving
actual COVID-19 patients (89) to validate that PACs are an
effective mitigation measure. The studies using PACs, to date,
have mostly focused on particulate matter pollution (80). Recent
studies, cited above, looking at infection mitigation potential
have certain limitations in terms of use of different kinds of
equipment in different sized spaces, introduction of PACs as
part of several other mitigation measures, and few studies that
can offer clinical evidence (85, 86, 88, 89). This is an aspect
that is gradually starting to gain attention with better designed
studies and controlled trials in clinical settings. In the coming
years, the noted shortcomings regarding effectiveness of PACs are
likely to be comprehensively addressed. The schema in Figure 1

summarizes the mitigation strategies we discuss, centred around
improving indoor air quality, through dilution, ventilation, and
filtration.
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