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Purpose: In this study, we empirically investigate the impact of the COVID-19 pandemic

on China’s stock price volatility during and after its initial outbreak, using time-series daily

data covering the period from July to October, 2020 and 2021, respectively.

Design/Methodology/Approach: In the estimation, the ARDL bounds test approach

was employed to examine the existence of co-integration and the relationship of long-run

and short-run between the new infection rates and stock price volatility, as stable

and unstable variables are mixed. The inner-day and inter-day volatility, based on the

Shanghai (securities) composite index, are estimated in separate empirical models. In

addition, the Inter-bank overnight lending rate (IBOLR) is controlled in order to consider

the effect of liquidity and investment cost.

Findings and Implications: We find that in the initial year (2020) of the epidemic, the

new infection rate is negatively correlated to stock prices in the short-term, whereas

no significant evidence existed in the long-term, regardless of model specifications.

However, after the epidemic’s outbreak (2021), the result depicts that new infections

increased stock prices in the long-term, and depressed its inner-day volatility in the

short-term, which is inconsistent with most investigations. This phenomenon may be

due to the fact that investors were more concerned about the withdrawal of monetary

easing and fiscal stimulus, which were introduced to fight against the epidemic’s impact

on economy, than the epidemic itself. This study complements the limitations of most

existing studies, which just focus on the period of the epidemic’s outbreak, and provides

insight into macroeconomic policy making in the era of the post COVID-19 epidemic

such as the structural and ordered exit of the stimulating policies, intervention in IBOLR

and balance social and economic sustainability.

Keywords: COVID-19, ARDL bounds test, IBOLR, policy withdraw, stock volatility

INTRODUCTION

As the most influential health crisis of the recent decade, the COVID-19 pandemic
has triggered tremendous social and economic influences among countries in the past 2
years. There is a proliferation of papers investigating its sudden impact on the stock
market with most of their perspectives suggesting that the impact is devastating (1–3).
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Despite the increase or decrease in prices, the volatility itself is
also of great significance to the market (1, 4, 5). China’s stock
market is the world’s second largest, behind the US,1 and is
inextricably linked to economic development and social stability,
its yields have a global spillover effect (6). Moreover, due to
current mass vaccination, proficiency in countermeasures and
adaptation of investors’ psychology, it is possible to yield different
impacts on the stock market to the extensive literatures which
mainly focus on the period of its initial outbreak. Studying
the correlation of COVID-19 and China’s stock market, during
and after the outbreak, is helpful in detecting the pandemic’s
potential external shock on capital markets and shed light on
policy implications to promote a smooth transition and balanced
development in society and the economy to achieve sustainable
development goals (SDG) in the forthcoming years. The light
can even contribute to investors making risk management and
portfolio assets allocation in the stock market (7).

The aims of the study are to examine the long- and short-
term impacts of the COVID-19 pandemic on China’s stock
market volatility during and after its outbreak, detect the
differences in their influences and provide possible tailored policy
suggestions. The time range covers July to October (2020 and
2021, respectively) for the reason that in these periods, during
both of the 2 years the macroeconomic variables are relatively
stable, whereas in other periods the fiscal and monetary policies,
international supply chains, main trade partners’ epidemic and
commodity prices experienced drastic changes. ADRL modeling
has advantages in dealing with variables integrated with different
orders (8, 9) and small samples (10). Compared to other
techniques, the ARDL method can also provide long and short-
term coefficients simultaneously, with an error correction model.
In our study, we firstly make a unite root test to detect if
the variables’ are stationary or unstationary. Its result suggests
that the dependent variables and independent variables are
combined with I(0) and I(1). Therefore, we employ the ARDL
approach to investigate the existence of co-integration and both
the long and short-term effects of the epidemic on China’s
stock market. In the estimation, we consider three aspects of
volatility: the increase rate, the inner-day and inter-day volatility,
using separate empirical models. Confirmed cases and death
cases are usually used as influencing factors (3, 11, 12). Since
2021, the epidemic in China has been fading out with almost
no death cases, we only consider the data of confirmed cases
per million people as a unifying measurement. The inter-bank
overnight lending rate is considered in order to reflect on
the impact of market liquidity and investment cost on the
stock index.

The remaining part of the paper is organized as
follows. Section Literature Review: presents the theoretical
background and related literature. Section Data and
Empirical Model: describes data descriptions, empirical
equations, and estimation methods. Section Empirical Results:
provides a series of empirical results. Section Conclusions

1The total market value of China is 11.92 trillions RMB in October, 2021, equals

75.19% of GDP in 2020.

and Policy Implications: contains some conclusions and
policy implications.

LITERATURE REVIEW

Public health emergencies have been suggested to hit global
economic growth, social stability and cause upheaval in financial
markets (5, 13–15), for instance, SARS in 2004 (16), H1N1 in
2009 (17), and EBOV in 2014 (18). Currently, the COVID-19
pandemic is also regarded as exerting significant influence on the
economy (12, 19, 20), even surpassing that of the previous health
crisis (21). Specifically, the epidemic is attributed as disrupting
production, distribution and the supply chain (22), in changing
personal consumption patterns (23, 24), investors’ behaviors (25),
and business confidence (23), therefore impacting the entire
economy and channels to the financial market. Besides downside
risks in financial or stock markets, it’s denoted to increase fear-
induced sentiment (26–28) and resulting economic uncertainty
(29). Economic uncertainty may also be a result of government
reaction triggered by the pandemic (30), such as prohibiting
human mobility and manufacturing lockout (12, 31). Kalyvas et
al. (29) and Sharif et al. (32) suggest that this uncertainty leads to
a financial crash risk and to stock markets tumbling. In addition,
risks are suggested to be touched off by a possible “domino”
effect. Some institutions’ or sectors’ problems may spill over to
endanger the entire market (33–37).

Numerous studies have specifically investigated the epidemic’s
assaults on the stock market. Based on the US, UK, Japan, and
other developed countries’ evidence, Bai et al. (2) and Rahman
et al. (3) argue a significant negative influence of COVID-19
on stock prices and a positive influence on stock volatility. The
adverse impacts of the epidemic on stock price or fluctuations are
also addressed in emerging markets (1, 4, 28). Particularly, some
of the investigations reveal that the reaction of the stock market
is in the short-term (38, 39). Additionally, the unpredictability
of the pandemic process is suggested to raise volatility (40).
To put it another way, less unpredictability in the epidemic
process tends to reduce stock volatility. It is consistent with risk
aversion in portfolio investment suggested by Modern Portfolio
Theory (MPT) and Capital Asset Pricing Model (CAPM), which
use the Standard Deviation (SD) as the volatility to detect the
relationship between expected return and investment risk. There
is even attempt to explore the cross-region spillovers between
countries’ stock markets hit by COVID-19 (15). Nevertheless,

few literatures focus on the influence of COVID-19 in the post-
epidemic period, let alone their comparison, whichmay currently

yield more practical significance.
Longstanding and extensive studies have suggested that there

is an important relationship between interest rates and stock
prices. Nozar and Philip’s (41) investigation reveals that the
immediate response of US stock prices is significant and dynamic,
similar conclusions can also be seen in studies such as Fama
(42), Rahman et al., (3) and Pal and Mittal (43). Specifically, in
Germany and the UK, the interest rate’s shock even accounts for
approximately half of stock price’s movement (44). However, the
direction of the interest rates impacts proposed by prior studies
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is still ambiguous. For example, Amado (45) denotes that the
effect of interest rates on stock prices is heterogeneous to industry
characteristics and conditionally on the direction of interest rate
change, whereas Hogan (46) and Alam and Uddin (47) address
it as positive and negative, respectively. Besides, interest rates
may affect a firm’s profits, nest present values of future cash flow,
and even stock transaction cost, in case a significant amount of
stock purchasing is by borrowed money, therefore affecting stock
value (48). In addition, although inflation and money supply are
regarded as impacting stock prices based on the money demand
theory and the dividend discount model (3, 49–54), they are
indicated to finally increase or decrease the interest rate (55).
Hence, in the investigation we employ the interest rate; here
inter-bank overnight lending rate, as the control variable in the
ARDL approach.

DATA AND EMPIRICAL MODEL

The data sets utilized are daily new infection rate, stock price
volatility, and the inter-bank overnight lending rate in China.
We choose the data scope ranging from July to October
(2020 and 2021, respectively) because in this period of 2
years the macroeconomic policy and international economic
background are relatively stable. Hence, it is more suitable than
any other period to detect the impact of the epidemic on the
stock market and in order to make comparisons. Each day’s
COVID-19 new infection rate (henceforth CNIR) is measure
by new infections per million people in China. Because the
number of new infections is officially released every other day
at 9:00 a.m., the independent variable of CNIR refers to the
epidemic situation of the previous days. Likewise, the inter-
bank overnight lending rate (henceforth IBOLR) is controlled in
the estimation.

The stock price volatility consists of three aspects: the increase
rate, inner-day volatility, and inter-day volatility, which are
examined in separate models. Their calculating formulas are
as follows:

INCRt =
indexclose t − indexclose t−1

indexclose t−1
(1)

INEDVt =
indexclose t − indexopen t

indexopen t
(2)

INTDVt =
indexopen t − indexclose t−1

indexclose t−1
(3)

Here, INCR represents the increase rate, measured by the growth
rate of the closing index to the previous day’s; INEDV is the inner-
day volatility, which is the disparity rate of the closing index to the
opening index; INTDV is the inter-day volatility, calculated by
the change rate of the opening index to the previous day’s closing
index. Besides indexopen, indexclose denotes the opening index and
closing index of China’s stock market, using Shanghai Securities
Composite Index (SSCI). Subscript t in the variables signifies the

TABLE 1 | Summary statistics of main variables.

Mean Median Maximum Minimum Std. dev. Observations

CNIFa 0.05 0.02 0.16 0.01 0.04 50

INEDVa 0.53 0.52 1 0.09 0.22 50

INTDVa 0.64 0.64 1 0.18 0.13 50

INCRa 0.53 0.53 1 0.02 0.17 50

IBOLRa 1.87 1.94 2.40 0.68 0.35 50

CNIFb 0.036 0.03 0.09 0.01 0.02 47

INEDVb 0.59 0.59 1 0.10 0.18 47

INTDVb 0.67 0.67 1 0.37 0.09 47

INCRb 0.60 0.62 1 0.10 0.19 47

IBOLRb 2.07 2.12 2.35 1.57 0.20 47

1. CNIFa, INEDVa, INTDVa, INCRa, IBOLRa denote new infection rate, inner-day volatility

of stock index, inter-day volatility of the stock index, increase rate of the stock index, and

the inter-bank overnight lending rate in 2020, respectively; while CNIFa, INEDVa, INTDVa,

INCRa, IBOLRa denote the variables in 2021.

2. Variables of INEDVa, INTDVa, INCRa, INEDVb, INTDVb, INCRb are featured scaled.

day of the stock index, and Subscript (t-1) is the previous day of
t. The data of SSCI are drawn from the website of the Shanghai
Stock Exchange. In particular, the days that exist missing values
are gotten rid of in the estimation. In order to unify the scale and
make the value positive for further logarithm, the independent
variables are normalized before estimation, as is shown in the
following method:

fyt =
yt − int(ymin)

ymax − int(ymin)
(4)

Here, y denotes the independent variables in the estimation,
such as INCR, INEDV , and INTDV. ymin and ymaxis the
minimum value andmaximum value of y. int is integral function,
signifying the maximum integer that does not exceed the
value of ymin. The summary statistics of the variables is provided
in Table 1.

On account of these time-series data’s possible stationary
or unstationary nature, first, we apply a unit root test. In the
unit root test, both the Augmented Dickey-Fuller (ADF)test and
the Phillips-perron (PP) test are examined to mutually confirm
the results. Specifically, we employ the Schwarz Information
Citeria (SIC) and check all the possible cases including “constant
term”, “constant + trend”, and “none” to judge the variables’
optimal lags. The testing results are contained in Table 2. INCRa,
INEDVa, INTDVa, CNIRa, and IBOLRa signify the increase
rate of the stock index, the inner-day volatility of the stock
index, the inter-day of the stock index, the new infected rate
per million people and inter-bank overnight lending rate in
2020, while INCRb, INEDVb, INTDVb, CNIRb, and IBOLRb are
the corresponding variables in 2021. The unit root test results
that all the dependent variables such as INCRa and INCRb,
INEDVa, and INEDVb, INTDVa, and INTDVb are integrated
at level, denoted as I(0), while both the independent variables
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TABLE 2 | Results of unite root tests.

Variable Type ADF PP

Level 1st dif. Level 1st dif.

Year 2020

LnCNIRa Intercept −0.94 [0.77] −7.15*** [0.00] −1.28 [0.63] −10.66 [0.00]

Trend and intercept −1.50 [0.82] −5.49*** [0.00] −3.02 [0.14] −10.50 [0.00]

None 0.79 [0.88] −7.07*** [0.00] 0.58 [0.84] −10.51 [0.00]

LnINCRa Intercept −6.92*** [0.00] −11.31*** [0.00] −6.94*** [0.00] −49.90*** [0.00]

Trend and intercept −6.98*** [0.00] −11.18*** [0.00] −7.01*** [0.00] −45.09*** [0.00]

None −2.04** [0.04] −11.43*** [0.00] −3.06*** [0.00] −48.84*** [0.00]

LnINEDVa Intercept −4.99*** [0.00] −8.61*** [0.00] −4.94*** [0.00] −17.58*** [0.00]

Trend and intercept −4.95*** [0.00] −8.52*** [0.00] −4.90*** [0.00] −17.35*** [0.00]

None −1.98** [0.05] −8.70*** [0.00] −2.36** [0.05] −17.94*** [0.00]

LnINTDVa Intercept −8.21*** [0.00] −8.24*** [0.00] −8.23*** [0.00] −40.22*** [0.00]

Trend and intercept −8.23***[0.00] −8.17*** [0.00] −8.27*** [0.00] −40.05*** [0.00]

None −1.40*** [0.15] −8.33*** [0.00] −2.18*** [0.03] −40.17*** [0.00]

LnIBOLRa Intercept −4.29*** [0.00] −6.63*** [0.00] −3.92*** [0.00] −10.93*** [0.00]

Trend and intercept −4.26*** [0.00] −6.56*** [0.00] −3.81** [0.02] −10.68*** [0.00]

None −1.00 [0.28] −6.70*** [0.00] −0.56 [0.47] −11.15*** [0.00]

Year 2021

LnCNIRb Intercept −2.25 [0.19] −9.54*** [0.00] −2.20 [0.21] −9.54*** [0.00]

Trend and intercept −2.86 [0.18] −9.46*** [0.00] −2.88 [0.18] −9.46*** [0.00]

None −1.25 [0.19] −9.63*** [0.00] −1.10 [0.24] −9.62*** [0.00]

LnINCRb Intercept −6.26*** [0.00] −10.94*** [0.00] −6.27*** [0.00] −26.71*** [0.00]

Trend and intercept −6.39*** [0.00] −5.91*** [0.00] −6.38*** [0.00] −26.16*** [0.00]

None −1.14 [0.23] −11.07*** [0.00] −1.54 [0.11] −26.94*** [0.00]

LnINEDVb Intercept −5.53*** [0.00] −9.50*** [0.00] −5.51*** [0.00] −20.74*** [0.00]

Trend and intercept −5.51*** [0.00] −9.40*** [0.00] −5.46*** [0.00] −20.94*** [0.00]

None −2.49** [0.01] −9.61*** [0.00] −2.28** [0.02] −21.00*** [0.00]

LnINTDVb Intercept −7.95*** [0.00] −12.94*** [0.00] −8.16*** [0.00] −46.55*** [0.00]

Trend and intercept −7.87*** [0.00] −12.80*** [0.00] −8.19*** [0.00] −46.54*** [0.00]

None −1.33 [0.17] −13.09*** [0.00] −1.98** [0.05] −45.70*** [0.00]

LnIBOLRb Intercept −4.42*** [0.00] −9.39*** [0.00] −4.42*** [0.00] −12.64*** [0.00]

Trend and intercept −4.35*** [0.00] −9.31*** [0.00] −4.35*** [0.00] −12.61*** [0.00]

None −0.78 [0.37] −9.47*** [0.00] −0.78 [0.37] −12.77*** [0.00]

1. CNIFa, INEDVa, INTDVa, INCRa, IBOLRa denote new infection rate, inner-day volatility of the stock index, inter-day volatility of the stock index, increase rate of the stock index, and

the inter-bank overnight lending rate in 2020, respectively; while CNIFa, INEDVa, INTDVa, INCRa, IBOLRa denote the variables in 2021. 2. p-values are provided in brackets. 3. (***), (**),

(*) significant at 1, 5, 10% levels, respectively.

of CNIRA and CNIRB are integrated in order 1, denoted
as I(1).

Since both of the ADF and PP tests suggest that the orders of
the variables between the dependent variables and independent
variables are mixed of I(0) and I(1), then we employ The
ARDL approach in the estimation because the ARDL approach
has advantages in dealing with co-integration, regardless of
the integration orders and samples scale. It also considers the
classification of dependent and independent variables and results
in showing the relationships in both long and short-terms.
Specifically, we follow the Pesaran et al. (36) approach, which
examines the co-integration by estimating an unrestricted error
correction model (UECM) based on an equation. UECM for
ARDL bounds testing with two independent variables is as the
following formulas:

1LnYt = α0 +

n∑

i=1

α1i1LnYt−i +

n∑

i=0

α2i1LnCNIRt−i

+

n∑

i=0

α3i1LnIBOLRt−i + α4Ln Yt−1 + α5Ln CNIRt−1

+ α6Ln IBOLRt−1 + et (a)

Where, Y is stock price volatility, INCR, INEDV, INTDV are
respectively estimated inModel A1,Model A2,Model A3 of 2020,
and Model B1, Model B2, and Model B3 of 2021. α0 is constant
coefficient, α4, α5, and α6 are long-run coefficients, α1i, α2i, and
α3i are short-run coefficients. et is an error term of white noise.
Then the null hypothesis and the alternative are set based on the
above equations, as is shown as follows:
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H0 : α4 = α5 = α6 = 0

H1 : α4 6= α5 6= α6 6= 0

Where, H0 denotes that no relationship existed in the long run,
otherwise H1 implies the existence of long-term association. In
the ARDL bounds test, TheWald test is used to check the possible
co-integration. If the resulting F-statistics is smaller than the
corresponding lower critical bound, there is no co-integration.
If the value of F-statistics is bigger than the corresponding upper
critical bound, there exists co-integration. If the value is between
the two, it is equivocality whether these series are co-integrated
or not.

As long as a relationship of co-integration between
independent variables and dependent variables are checked, the
ARDL model of long-run and short-run relationship can be
developed with equations as follows:

Long-term equation:

LnYt = β0 +

n∑

i=1

β1iLnYt−i +

a∑

i=1

β2iLnCNIRt−i

+

b∑

i=1

β3iLnIBOLRt−i + et (b)

Short-term equation:

1LnYt = λ0 +

m∑

i=1

λ1i1LnYt−i +

c∑

i=1

λ2i1LnCNIRt−i

+

d∑

i=1

λ3i1LnIBOLRt−i + λ4(ECT)t−1 + et (c)

Where, n is the number of variables, m is the maximum of lags’
number. a, b, c, and d are the lag lengths of the variables. In
particular, the determinants of the lag length are based on the
resulting value of Akaike information criteria (AIC) and Schwarz
information criteria (SIC). ECT is the error correction term of the
long-run equation. Thus, the ARDL approach based on Pesaran
et al. (36) is established to estimate the long-run and short-run
relationship between the variables.

EMPIRICAL RESULTS

The empirical results of the ARDL approach contain two
sequences: Model A and Model B, which are the estimations of
COVID-19 pandemic’s impact on stock prices in 2020 and 2021,
respectively. The results of optimal length adopted in The ARDL
bounds test, recommended by AIC and SIC, is shown in Table 3.
We develop six UECM models, Model A1, A2, and A3, INCRa,
INEDVa, and INTDVa are employed as dependent variables,
respectively, to detect possible impacts in 2020, while Model B1,
B2, and B3, INCRb, INEDVb, and INTDVb are employed as
dependent variables to detect possible impacts in 2021. In the
models, IBOLRa and IBOLRb are introduced, respectively, as

TABLE 3 | Optimal lags of models.

Model AIC SIC

Year 2020

A1 0.96 (2) 1.77 (1)

A2 1.67 (3) 2.37 (1)

A3 2.57 (2) 1.23 (1)

Year 2021

B1 −7.13 (1) −6.63 (1)

B2 −6.55 (1) −6.10 (1)

B3 −7.86 (1) −7.36 (1)

The optimal number of lags is provided in parentheses.

TABLE 4 | Results of ARDL bounds test.

Model AIC SIC

Year 2020

A1 22.53*** 22.08***

A2 13.72*** 13.72***

A3 25.06*** 25.06***

Year 2021

B1 14.20*** 14.20***

B2 12.69*** 12.69***

B3 19.54*** 19.54***

ARDL bounds test, critical value

Significant Critical value Critical value

level of upper bound of lower bound

1% 6.36 5.15

5% 4.85 3.79

10% 4.14 3.17

(***) is significant at 1% significance level.

control variables. The optimal lags of each model recommended
by Table 3 are used in the estimation of ARDL model’s long-run
and short-run equations. In models A1, the optimal lag length is
recommended of 2 AIC and 1 SIC, we take the length lag of 1
by AIC. Similarly the optimal lag length in Model A2 and A3 is
taken of 3 and 2 by SIC. In the sequences of 2021 data, in Model
A1, A2, and A3 all of the optimal lag lengths are recommended
of 1 by AIC and SIC.

Adopting the recommended lag length by AIC and SIC above,
we employ the Wald test to check the possible integration. The
results (contained in Table 4) show that the F-statistics in all the
models are larger than corresponding upper bound values at a
1% significance level. It signifies that the null hypothesis of no
co-integration in all the models is rejected. Hence, the ARDL
approach is tailored to investigate the relationship of long-run
and short-run, adopting the optimal lag length recommend in
Table 3.

The estimating results of long-run coefficients and short-run
coefficients are demonstrated in Table 5. In the year of 2020,
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TABLE 5 | Empirical results in long run and short run.

Variables Model A1 Model A2 Model A3

Year 2020

Long-run coefficient

C −0.68*** (−3.13) −0.72*** (−2.66) −0.36*** (−3.00)

CNIF 0.57 (0.35) 1.85 (0.92) 0.01 (0.01)

IBOLR −0.17 (−0.55) −0.23 (−0.60) −0.22 (−0.13)

Short-run coefficient

c −0.01 (−0.23) −0.00 (−0.08) −0.03 (−1.14)

1 CNIF −5.17* (−1.64) −3.67 (−1.06) −0.18 (−0.10)

1 IBOLR −0.49** (−2.32) −0.50** (−2.22) −0.18 (−1.57)

Variables Model B1 Model B2 Model B3

Year 2021

Long-run coefficient

C −0.68** (−2.06) −0.27 (−0.48) −1.03*** (−3.58)

CNIF 1.78* (1.86) 2.68 (1.60) 0.39 (0.58)

IBOLR −0.10 (−0.23) −0.83 (−1.11) 0.73* (1.92)

Short-run coefficient

c 0.00 (0.02) −0.01 0.00 (0.09)

1 CNIF 1.24 (0.62) −7.57** (−2.59) −2.33 (−1.43)

1 IBOLR 0.01 (0.04) −1.19** (−2.60) 0.71*** (2.85)

1. CNIFa, INEDVa, INTDVa, INCRa, IBOLRa denote new infection rates, inner-day volatility

of the stock index, inter-day volatility of the stock index, increase rate of the stock index,

and the inter-bank overnight lending rate in 2020, respectively; while CNIFa, INEDVa,

INTDVa, INCRa, IBOLRa denote variables in 2021.

2. t-values are provided in parentheses.

3. (***), (**), (*) significant at 1, 5, 10% levels, respectively.

it shows that the coefficients of CNIRa are negative to INCRa
in the short-run at 5% significance level, whereas no significant
coefficient in the long-term is detected at a conventional
significance level, regardless of model specifications. It implies
that the COVID-19 epidemic negatively impacted China’s stock
market index only during a short time period. However, in
the year 2021, the coefficient of CNIRb is significant at the
conventional significance level and positively correlated to
INCRb in the long-term, while in the short-term it is statistically
insignificant. It means that, in the epilog of the COVID-19
breakout, the epidemic may have contributed to the increase of
China’s stock index. In addition, in Model B2, it shows a negative
impact of CNIRb on INEDVb in the short-run, denoting that the
epidemic reduced the stock’s inner-day volatility and the impact
lasted not very long. Likewise, IBOLR indicates a negative impact
on stock index and inner-day volatility in model A1 and A2, and
inner-day volatility in model B2. It implies that an increase in the
inter-bank overnight lending rate reduced SSCI and mitigated
inner-day volatility in 2020, whereas just significantly reduced
inner-day volatility in 2021.

The results revealed by Model B1 and B2 are different from
the previous investigations and even economic common sense,
in which the direct impacts of the epidemic on stock are negative
(2, 3, 38, 39) or increase its fluctuation (4, 5, 28). However,
considering the epidemic’s influence on government and central

bank policies tailoring, this phenomenon can be interpreted.
Responses to policies intervention in the stock market have been
suggested by a growing number of literature [e.g., (56–59)]. As
for fiscal policy, most of the papers find positive influences of
government expenditure and negative influences of taxes on
stock prices [e.g., (60, 61)]. Even the government budget balance
is acknowledged to be one of the main factors impacting the
economic growth and stability that affect stock market returns
(62) and thereby its price. As for monetary policy, studies on
conventional monetary intervention (such as a change in policy
interest rates) and unconventional monetary intervention (such
as a change in monetary easing and liquidity support) have
established its relationship with regard to stock price and its
volatility (56, 58, 62–65). Specifically, as highlighted by Rogalski
and Vinso (66), money supply has a lagged positive impact on
stock return. With a similar suggestion about the direct impact
of liquidity injection on the stock market, Cecioni et al. (67)
further denotes that funding conditions of the policies may also
influence prices through mitigating the friction of the finance
system. He also addressed that the “portfolio channel” is one of
two transmission channels by which monetary policy influences
the economy. Moreover, the effects of monetary policy on stock
prices can also be impacted by factors such as investors’ trust
(68) and expectations (67). In particular, some investigations
provide evidences that the effect of policy information (65) and
policy announcements (63) on stocks are significant. In the initial
year of the COVID-19 outbreak, China’s government and central
bank had implemented unprecedented strong expansionary
fiscal2 and monetary3 policies to counter the epidemic’s shock
on the economy. Under the logic that these stimulation
policies may gradually fade out and return to “normal” as the
epidemic slows down, the phenomenon may be due to the
fact that in the post COVID-19 epidemic era, stock investors
are more concerned about the impact of policies’ withdraws
implemented during the outbreak of the epidemic, than the
epidemic itself.

CONCLUSIONS AND POLICY
IMPLICATIONS

The main objective of the study is to explore the long-run
and short-run impact of the COVID-19 epidemic on China’s
daily stock price volatility during and after its outbreak. As I(0)
and I(1) variables are mixed, the ARDL bounds test approach
is employed to examine the existence of co-integration and
the relationships of the long-run and short-run between daily
new COVID-19 infections and China’s market volatility. It was
found that the COVID-19 epidemic decreased China’s stock

2In 2020, China expanded its government budget deficit by 1 trillion RMB, special

bonds by 1.6 trillion RMB, and increased public expenditure by 0.81 trillion RMB,

reduced taxes by 2.5 trillion RMB (Collected from government website of the

People Republic of China: https://www.gov.cn/).
3In 2020, China’s center bank has reduced the deposit reserve ratio to 9.4% which

is the lowest in 5 years, lowered the benchmark interest rate twice to 2.95%, and

put in a total of 1.75 trillion RMB base money to provide long-term liquidity to the

market (Collected from the central bank website of the People’s Republic of China:

http://www.pbc.gov.cn/).
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index and rise exacerbate its volatility during the period of
COVID-19’s outbreak (2020), as is suggested in Baiget al.
(69), Bai et al. (2), Rahman et al. (3), and Dai et al. (27),
although the impact was in the short-term. However, in the
period of post COVID-19’s outbreak (2021), the epidemic
has a positive long-run impact on the stock prices and a
negative short-run impact on its inner-day volatility. A plausible
explanation is that in the post-epidemic era, the infections
stabilize investors’ expectations for the maintenance of the
existing stimulating policies, which were introduced to fight
against the epidemic’s negative impact on the economy, thereby
increasing the stock price and mitigating the inner-day volatility,
rather than decreasing its price and exacerbating its fluctuation
in the pandemic’s initial year. This study extends the existing
literature of COVID-19’s impact on stock price volatility, which
mainly focuses on the price itself and the period of the epidemic’s
outbreak. It also provides empirical evidence with regard to
the epidemic’s different impacts on China’s stock market in the
period when the pandemic was roughly controlled and gradually
slowed down.

From a policy perspective, the study’s outcome to a certain
extent helps to respond to the causation of the complicated
volatility of stock prices during different periods of the COVID-
19 epidemic and provide insights on effective policy intervention
in the forthcoming period. First, the government and central
bank should prepare a policy cupboard such as liquidity injection
and interest rate adjustment to counter possible fluctuations in
the stock market. Second, the exits of the stimulus fiscal and
monetary policies countering the pandemic’s shock ought to take
the influence factors of the stock market into consideration. A
gradual and orderly way out of the stimulus policies can stabilize
investors’ expectations and trust, reduce the objectionable
influence of the policies’ transition and the risk of debt shock.
In particular, it is imperative to provide a special grace period
for the most severely affected sectors during the pandemic (e.g.,
travel, hotel, and restaurant sectors), and small and medium
enterprises (SME) of which recovery is slower and more sensitive
to debt risk, with policies such as preferential interest rates,
targeted crediting, and easing. Moreover, the negative association
between IBOLR and inner-day volatility unveiled by the research
provides a news possible tool of intervention in stock price’s

inner-day fluctuations. That is, the monetary policy makers can
manipulate the inter-bank overnight lending rate to reduce the
epidemic’s impact on the inner-day volatility of stock prices,
instead of the traditional interest rate intervention as addressed in
the most previous studies [e.g., (3, 41, 43, 45)], which may bring
about significant and complicated influences on other economic
variables (70) except stock prices. In addition, since the impact
of COVID-19 on the stock market is no longer negative, an
integrated policy is imperious to balancing social and economic
sustainability, such as trade opening, fostering a favorable
business environment, and supporting S&M enterprises, more
than just focusing on public health, to achieve SDG.

Several issues remain for future study. First, it is possible to
detect the impact discrepancy on stock prices and the volatility of
different industry sectors and provide more precise and tailored
policy implications. Second, investigate the possible asymmetric
effect of the epidemic by employing an asymmetric estimation
approach. Third, try to explore mediating or moderating
variables to help find empirical evidence of the transmission
mechanism from epidemic’s impact to stock volatility which is the
limitation of this study. Fourth, it is possible to explore whether
other developing or emerging countries’ stock markets have
experienced similar phenomenon in the post-epidemic period.
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