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1. INTRODUCTION

Sleep is a pivotal biological process and has generally been accepted as a critical factor in human
health. Even though the whole function of sleep is not very well studied, it is associated with physical
and mental wellness (1, 2). The transient disruptions in regular sleep patterns known as acute sleep
deprivation impair cognitive skills. In contrast, long-term sleep abnormalities such as chronic sleep
deprivation are related to disease development (3, 4).

Poor sleep quality (5) (as outlined by National Sleep Foundation recommended parameters
sleep latency, wake after sleep onset, number of >5 minutes awakenings, and sleep efficiency)
has an association with a slew of major medical conditions ranging from obesity and diabetes to
neuropsychiatric disorders (6–8). Recent research findings also reveal the associations of poor sleep
quality with cardiometabolic risk (9), diabetes (7), weight gain (6), impaired appetite (10), cognitive
decline (11), mood changes (12), depression (13), immune function (14), and cancer (15). Global
sleep trends indicate that average sleep time is diminishing (16, 17). Besides, sleep-related disorders
are on the rise (18, 19). Considering these trends and the importance of sleep for health, a better
understanding of sleep characteristics is a public health goal (20, 21).

Polysomnography (PSG) is the gold standard for objective sleep physiology evaluation and
has proven to be the most helpful tool for diagnosing sleep-related breathing disorders such as
obstructive sleep apnoea, central apnoea, hypopnea, and other respiratory disorders, and also
for screening less common sleep disorders, including neurological disorders, such as narcolepsy,
parasomnias and seizure disorders, restless legs syndrome and periodic limb movement disorder,
depression with insomnia, and circadian rhythm sleep disorder in-clinic sleep assessment and
sleep disturbances treatment (22, 23). A PSG study records distinct physiological signals,
including electroencephalogram (EEG), electrooculogram (EOG), electromyography (EMG),
electrocardiogram (ECG), respiration, pulse oximetry, and other parameters (24). After acquiring
the PSG recordings, it is converted into 30-s epochs, and each epoch is mapped to a particular
sleep stage (such as N1, N2, SWS, W, REM) manually by a sleep expert or technician, termed
as sleep scoring (sleep staging/sleep stage classification). Traditionally more than one technician
is involved in this process to avoid biases in marking sleep stages. The accuracy of sleep scoring
depends on the expertise of the technicians (25). Although PSG use in clinical sleep medicine has
significant benefits, the high cost is a barrier to its accessibility to many populations. Moreover,
while undergoing an overnight PSG test, factors such as the unfamiliar sleeping environment
with limited privacy, skin irritation due to electrode adhesion, and the numerous leads attached
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to the person, could obstruct sleep, undermining the accuracy
of the recordings (26). Recent advancements in technology play
an indispensable role in developing reliable portable monitors
(PMs) that support the evaluation of sleep in-home and assist in
overcoming the limitations of in-clinic PSG assessment (27). In
general PMs are categorised as type 2 (at least seven channels),
type 3 (minimum of four channels) and type 4 (either one or two
channels) (28).

After considering the underpinning proof of a connection
between sleep and wellness, challenges in the traditional sleep
evaluation, the need for quality data for the sleep clinicians,
this article discusses the significant importance of single-channel
EEG in home-based sleep monitoring and analysis. Besides, to
further explore the opportunities behind single-channel EEG this
article highlights the need for in-home sleep monitoring and
its challenges and the role of AI in sleep monitoring. Finally,
the challenges in the presented technique and opportunities for
future research are presented.

2. IN-HOME SLEEP MONITORING

In-home sleep monitoring is gaining popularity because of
its convenience, non-invasive, and self-administrable. In-home
sleep monitoring usually uses type 4 sleep monitoring devices.
These devices are either picked up by the patients from the clinic
or delivered to their homes (29, 30).

2.1. Type 4 Sleep Monitoring
A wearable sleep monitoring system (type 4) is widely used in-
home sleep monitoring; these systems detect sleep stages based
on any one or two of the signals such as brain waves, heart rate,
pulse rate, respiration rate, movements, and other types of signals
(body temperature, snoring, etc.) Even though different signals
are used for sleep stage analysis, brain signals(EEG) provide
more accuracy in specific sleep stage detection and analysis (27).
For sleep professionals looking for a more trustworthy, long-
term documented total sleep time evaluation, single-channel EEG
could be a helpful tool (31). Affordable medical-grade EEG on
a large scale is conceived by reducing the electrodes, making it
more comfortable, miniaturised, and low-cost. Neurosky (single
channel system), Muse and Melon (3-4 electrodes), iBrain, Zeo,
and Ear-EEG are consumer-grade products available in the
market (32–34).

2.2. COVID and Sleep
Due to the COVID-19 pandemic, people are staying indoors;
sleep habits have changed. Sleep disorders are common during
the COVID-19 pandemic, affecting roughly 40% of the public
and healthcare population (35, 36). Furthermore, non-emergency
health services like sleep labs were shut to reduce the infection
rate (37). During the pandemic, there has been a significant
increase in the usage of PMs for sleep monitoring. Most
healthcare providers are expecting this trend to continue in the
future (38).

2.3. Need for In-home Sleep Monitoring
Sleep must be tracked in a free-living setting and in an
unobtrusive manner to ensure that the sleep captured is as
representative of regular sleep as feasible in order to understand
the role of sleep in health and disease. Due to the limitations
of PSG, most people are only monitored for a single night.
Monitoring during one night, on the other hand, is insufficient
to ascertain the actual sleep condition. Long-term, at-home
monitoring is required to optimise effectiveness and obtain
proper follow-up (29). There are currently various options
available for sleep monitoring outside the laboratory using type
4 PM devices (39). Compared to the traditional PSG, the single-
channel scheme will save money (40) and make data collection
much more straightforward, and valuable in a situation like
the COVID-19 pandemic (41, 42). A comparison work done
by Lucey et al. (43) show that single-channel EEG can assess
REM, combined Stages N2 and N3 sleep, and a variety of
other indicators, including frontal slow-wave activity, in a way
that is equivalent to polysomnography. Therefore, single-channel
EEG based PMs can serve as a better alternative to traditional
sleep monitoring, and a better solution for in-home monitoring
(44). The significant advantage of in-home sleep monitoring is
convenience, level of comfort, and less expensive (45).

2.4. In-home Sleep Monitoring Challenges
A home sleep study records your breathing patterns while
you sleep in your own bed using small, portable monitoring
equipment (30). Even though in-home sleep study is convenient,
comfortable, easily accessible and less expensive, it is having a set
of challenges listed below.

2.4.1. End User Requirements and Acceptance
An excellent in-home sleep monitoring system design must
consider the way the sensor is connected to the body and
its attachment method. Users may not prefer the inconvenient
method (using adhesive) of connecting sensors to the body and
connecting too many sensors. Hence, striking a better balance
between user’s requirements and acceptance is necessary to
design an in-home sleep monitoring device (30, 46).

2.4.2. Long-Term Monitoring
The capacity to do prolonged monitoring is essential for an
effective sleep monitoring system. For reliable results and early
detection of aberrant sleep abnormalities, long-term monitoring
is required. In order to accomplish this, sleep monitoring devices
should be low-cost, simple-to-use, and easily accessible (46).
The capacity to do prolonged monitoring is essential for an
effective sleep monitoring system. For reliable results and early
detection of aberrant sleep abnormalities, long-term monitoring
is required. In order to accomplish this, sleep monitoring
devices should be low-cost, simple-to-use, and easily accessible.
To this end, a bed based sensor (47), ear-based EEG (48),
Wireless polysomnography system based on the Internet of
Things (49), and posture recognition based sleep monitoring
(50) proposed.
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2.4.3. Seamless Data Sharing With Healthcare

Providers
Sleep can be monitored using wearables for a wide range of
physical and mental disorders. The majority of the studies
relied on commercially accessible gadgets that are linked to
smartphones or tablets (34, 51). Wearables can be used to
track sleep data. Sleep data can be collected and sent over the
internet to a remote clinical on-premise server or cloud server for
further analysis, evaluation, decision-making, and treatment. In
the captured data, applying machine or deep learning to evolving
trends, and instantly alerting patients, nurses, and physicians is a
powerful ability (46). Sharing data from a remote location is still
a challenging task due to connectivity issues (52).

2.4.4. Data Privacy Issues
Long-term sleep data collection is more comprehensive and
diverse. There is an increased chance of user personal
information being leaked. Even though, informed consent is
used before data collection; given the great value and growing
popularity of big data apps, data sharing privacy is a big concern
(29). Blockchain technology has the potential to address the issue
of privacy and secure data sharing. Implementation of blockchain
in real-life applications are in the inception stage and more
understanding is needed (53).

3. ROLE OF AI IN SLEEP STAGE
CLASSIFICATION

Sleep technicians must verify each epoch manually to perform
the sleep scoring, and it has limitations such as labour-intensive
and time-consuming and inter-rater variability (25). Kappa (κ)
measures the manual sleep scoring performance to estimate
interrater reliability, representing an agreement between epoch-
to-epoch. The benchmark κ value against human-AI algorithm
agreement is 0.68–0.76 approximately (54). Analyzing hours of
patient sleep records is not easy due to the aforementioned
limitations. Therefore, researchers extensively use machine-
learning (ML) and deep-learning (DL) techniques to score the
sleep stages from the sleep data automatically (55).

ML models’ performance depends on the representative
features extracted from the EEG signals. The features are either
extracted from 30-s data (epoch) or sub-bands of decomposed
signals. Specific studies have extracted features from both the 30-s
epochs as well as sub-bands or only from the decomposed signals.
The commonly used EEG signal decomposition techniques used
in the literature include EMD (empirical-mode decomposition),
EEMD (ensemble-empirical-mode decomposition), wavelet-
based, FFT (fast Fourier-transform), and frequency such as alpha,
gamma, etc., based decomposition (56–58). Once the features are
extracted from the EEG signal, it is given as an input (training/test
data) to theMLmodel. Sleep scoring is a multi-class classification
problem (mapping five/six sleep stages based on input features).
Researchers have tested multiple ML models for automated
sleep scoring systems viz.: tree-based models (Random forest,
SVM, XGBoost, etc.), clustering (KNN), and an amalgamation of
distinct models known as ensemble learning (stacking, boosting,

bagging, and blending). These approaches achieved 74.5 to 91.9%
accuracy levels for a standard five-class classification (57, 59–63).

Data dimensionality is a notable concern in ML-based
systems when dealing with high data-dimension like PSG, which
overfit the ML model. Besides, ML-based sleep scoring systems
have distinct phases, such as feature extraction, selection, and
classification that run as separate tasks. Recent improvements
in ML facilitate ways to run discrete tasks together. DL models
provide encouraging results in sleep scoring using single-channel
EEG based systems (64). The literature’s proposed DL-based
sleep scoring systems generate features from the input sequence
or employ the manually extracted features. A few existing
works have used 90- and 60-s epochs instead of traditional
30-second epochs for classification in order to represent the
temporal relations between the sleep stages and enhance the
sleep scoring results (65). Authors have exploredmany individual
and cascaded DL models for automated sleep scoring systems.
Some of the recently proposed DL based works are: convolutional
neural network (CNN) (65, 66), IITNet, a CNN and Recurrent
Neural Networks (RNN) based network (67), SingleChannelNet
(SCNet), a CNN based model. The DL based approaches
achieved 83.9 to 92.9% for a standard five-class classification
(68), SleepStageNet (69), Long short-term memory (LSTM)-
RNN (70). The Figure 1 illustrates the overview of sleep data
extraction and analysis pipeline using cloud computing. The EEG
signals are extracted from the individuals suspected of sleep-
related issues. Then the signals are filtered to remove the noise
and converted into 30-s epochs for identifying the specific sleep
stages. Next, features are extracted manually using the methods
mentioned above or fed the signals to the DLmodel for automatic
feature extraction. The trainedmodel is used to detect sleep stages
automatically.

4. ROLE OF CLOUD IN SLEEP
MONITORING

Remote health monitoring is one of the key benefits of the
digital era; it allows for remote tracking and monitoring of
an individual’s health-related factors, as well as sharing with
healthcare specialists (71). Recent advancements in sensors,
microcontrollers, and communication systems have made
significant advances in remote healthcare, allowing for collecting
health data from individuals. The Internet of Things (IoT) has
pushed the healthcare industry to adopt completely digitised
e-health systems and will undoubtedly play a role in remote
healthcare (72). The application of wearable sensors to assess an
individual’s health or well-being status is most attractive in out-
of-hospital circumstances (73).
The IoT and Cloud integration is gaining traction in digital
healthcare and is used for digital sleep monitoring and
assessment. The modern digital sleep health applications
comprise data acquisition, fog, and cloud layers depicted in
Figure 1. The data acquisition layer uses wearable EEG devices
for EEG data acquisition. The fog layer brings the cloud to
the end-user devices to perform basic preprocessing of data
and initial assessment at the user end. Also, It supplies the
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FIGURE 1 | Overview of sleep data extraction and analysis using cloud computing.

homogeneous data to the sleep application running in the cloud
that simplifies the processing. The cloud layer provides the
compute and storage for the applications. The data acquired
by the wearable EEG devices needs to be accumulated and
kept safely for future reference, trend analysis and retraining
the deployed models. Cloud storage is the viable option
to store the sleep data since it offers cost-efficiency, secure
sharing, synchronisation and scalability. Healthcare providers
leverage ML or DL models using the EEG data stored in the
cloud to perform automated sleep stage analysis, resulting in
more accurate insightful findings, visualisation, and diagnosis.
Analysing EEG data and running sleep stage predictive models
support real-time decision making. Despite the merits of the
cloud, there are specific challenges when connecting EEG devices
in real-time and storing data to the cloud. In the fog layer,
EEG data may miss due to improper wearing of the device or
malfunction of the sensor. Cloud layer stores and shares EEG
data among applications; however, there is growing concern
concerning privacy, security and data access (74–76).

5. DISCUSSION

In a technology-driven world, sleep is usually the first thing
individuals compromise when they feel pressed against time.

Chronic sleep deficiency is associated with cognitive skills,
as well as health consequences, such as obesity, diabetes,
neuropsychiatric disorders, cardiometabolic risk, impaired
appetite, mood changes, depression, immune function, and
cancer (6–10, 13–15). COVID-19 pandemic phenomenon
increased the sleep-related issues and inaccessibility to sleep
clinics. Despite continuous sleep monitoring having its benefits,
COVID-19 highlighted its importance (35, 36). Contemporary
advancements in sensing techniques, data analytics, and AI
systems allow sleep monitoring ubiquitously and unobtrusively
(38, 54, 65). Sleep monitoring research using single-channel EEG
gains an excess of attraction and momentum since it supports
continuous monitoring non-obstructive, aids detecting specific
sleep stages accurately and is easy to employ at home (44, 45).

Many ML and DL-based models proposed in the literature
achieved better accuracy and kappa (κ) values. Although ASSC
systems produce better results, a set of specific challenges exist,
such as database variability, channel mismatch, class imbalance,
inter-class distinction, computational complexity, and scoring
issues (63, 65). Most of the ML and DL-based models proposed
in the literature used distinct datasets; these data had been
collected from different individuals. Hence, this creates a bias
during the comparison of results, and there is a need to
investigate the robustness of the model (65). There has been
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a considerable interest among researchers to design sound
in-home single-channel EEG-based sleep monitoring systems.
Channel mismatch is another significant factor that hampers the
performance of portable ASSC systems (65).

Effectively managing class imbalance (among stages of sleep)
is an obligation of an ASSC system. All PSG recordings
from healthy persons are generally imbalanced due to the less
representation of the S1 stage. Consequently, both ML and DL
models render limited performance in classifying the N1 stage
(65). To handle this issue, researchers took different approaches.
Zhou et al. (62) proposed a method that adjusts the class weights
to achieve class balancing, and it has significantly improved the
N1 stage recognition to 72.52%. Another author Jiang et al. (58)
balanced only the training dataset to make all the classes equal.
This approach improved the S1 stage detection from 0.44 to
0.58 (recall score). Moreover, this approach slightly improved the
overall detection of less represented classes. In Sors et al. (66) class
balancing is done using cost-sensitive learning. That improves N1
and N3 stage results significantly.

Sleep is referred to as a continuous event, and there is no clear-
cut boundary between sleep stages. Therefore, different sleep
stages, particularly transitioning stages, are tough to distinguish
due to subtle inter-class distinctions (65). The sleep stages N1and
N2 have similar features. Similarly, N1 and REM also have similar
features. This similarity confuses the classifier and even human
experts. Moreover, the S1 stage is the transitional stage between
W and REM. Hence, among the tested classifiers in literature,
N1 stage detection is still challenging (58). Some studies have
combined the N1 and N2 stages as light sleep (LS), improving
detection accuracy. This limitation can be further improved by
incorporating EMG or EOG signals (69). The study by Michielli
et al. (70) used a multi-class (N1 and REM combined) and binary
class (N1 and REM) approach, this approach improving the
N1 stage detection considerably. The performance of the ASSC
systems depends on the ML/DL model’s complexity. Hence, it
is necessary to strike a balance between model complexity and
performance (65). Training neural networks like RNN on GPU
have tight memory size. This limitation is managed using lesser
training sequences.

An in-home ASSC system based on single-channel EEG
is required to alleviate the problems in manual scoring and
enable the development of a convenient, comfortable, and less
expensive in-home sleep monitoring system (63). Single-channel
systems have excellent scope in terms of convenience and cost-
effectiveness. When comparing the results of recent studies,
single-channel EEG shows significant performance. However,
there are fewer number studies that validate the results against
PSG. Conducting more validation studies among the diverse
group (including normal and person with a sleep disorder) using
single-channel EEG and validating against PSG would improve
the reliability and validity of the ASSC systems. A cloud-based
trained and tested framework is necessary to provide accurate
multi-model sleep scoring and analysis, seamless data sharing,
and facilitate connecting health providers. The importance of
continuous monitoring is evident in the literature. Continuous
monitoring accumulates more data, detects sleep anomalies,
and predicts health-related consequences. Cloud providers offer
HIPPA compliance cloud storage that supports securely storing
and sharing data. All the services offered by the cloud providers
may not be HIPPA compliant. Therefore, before adopting a
cloud service, it is essential to verify its HIPPA compliance.
Convenience and accuracy is the prime objective of single-
channel EEG systems. The missing data issue in the fog
layer can be addressed by various methods such as tensor
factorization (77). Some studies suggested that adding EMG
or EOG sensors may improve the discrepancies in detecting
accuracy among N1, N2, and REM stages. However, it causes
inconvenience and obstructs regular sleep. Therefore, future
research could incorporate heart rate and bodymovement signals
(smartwatches or wearables) with single-channel EEG to improve
sleep scoring.

AUTHOR CONTRIBUTIONS

BR, EK, IJ, AS, and JP contributed to the study conception
and design, literature review, interpretation, and manuscript
preparation. All authors contributed to the article and approved
the submitted version.

REFERENCES

1. Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic

science and clinical implications. Curr Neuropharmacol. (2008) 6:367–78.

doi: 10.2174/157015908787386050

2. Clement-Carbonell V, Portilla-Tamarit I, Rubio-Aparicio M, Madrid-Valero

JJ. Sleep quality, mental and physical health: a differential relationship. Int J

Environ Res Publ Health. (2021) 18:460. doi: 10.3390/ijerph18020460

3. Dawson D, Reid K. Fatigue, alcohol and performance impairment. Nature.

(1997) 388:235.

4. Bertisch SM, Pollock BD, Mittleman MA, Buysse DJ, Bazzano LA, Gottlieb

DJ, et al. Insomnia with objective short sleep duration and risk of incident

cardiovascular disease and all-cause mortality: sleep heart health study. Sleep.

(2018) 41:zsy047. doi: 10.1093/sleep/zsy047

5. OhayonM,Wickwire EM, HirshkowitzM, Albert SM, Avidan A, Daly FJ, et al.

National Sleep Foundation’s sleep quality recommendations: first report. Sleep

Health. (2017) 3:6–19. doi: 10.1016/j.sleh.2016.11.006

6. Kim HO, Kang I, Choe W, Yoon KS. Sleep duration and risk of obesity:

a genome and epidemiological study. World Acad Sci J. (2021) 3:1.

doi: 10.3892/wasj.2021.91

7. Lu H, Yang Q, Tian F, Lyu Y, He H, Xin X, et al. A meta-analysis

of a cohort study on the association between sleep duration and type 2

diabetes mellitus. J Diabetes Res. (2021) 2021, 8861038. doi: 10.1155/2021/

8861038

8. Kammerer MK, Mehl S, Ludwig L, Lincoln TM. Sleep and circadian

rhythm disruption predict persecutory symptom severity in day-to-day life:

a combined actigraphy and experience sampling study. J Abnormal Psychol.

(2021) 130:78. doi: 10.1037/abn0000645

9. Nagai M, Hoshide S, Kario K. Sleep duration as a risk factor for cardiovascular

disease-a review of the recent literature. Curr Cardiol Rev. (2010) 6:54–61.

doi: 10.2174/157340310790231635

10. Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic

consequences of sleep deprivation. Sleep Med Rev. (2007) 11:163–78.

doi: 10.1016/j.smrv.2007.01.002

Frontiers in Public Health | www.frontiersin.org 5 April 2022 | Volume 10 | Article 839838

https://doi.org/10.2174/157015908787386050
https://doi.org/10.3390/ijerph18020460
https://doi.org/10.1093/sleep/zsy047
https://doi.org/10.1016/j.sleh.2016.11.006
https://doi.org/10.3892/wasj.2021.91
https://doi.org/10.1155/2021/8861038
https://doi.org/10.1037/abn0000645
https://doi.org/10.2174/157340310790231635
https://doi.org/10.1016/j.smrv.2007.01.002
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Radhakrishnan et al. Efficacy of Single-Channel EEG

11. Spira AP, Chen-Edinboro LP, Wu MN, Yaffe K. Impact of sleep on the

risk of cognitive decline and dementia. Curr Opin Psychiatry. (2014) 27:478.

doi: 10.1097/YCO.0000000000000106

12. Selvi Y, Gulec M, Agargun MY, Besiroglu L. Mood changes after sleep

deprivation in morningness–eveningness chronotypes in healthy individuals.

J Sleep Res. (2007) 16:241–4. doi: 10.1111/j.1365-2869.2007.00596.x

13. Becker NB, de Jesus SN, Viseu JN, Stobäus CD, Guerreiro M, Domingues RB.

Depression and quality of life in older adults: Mediation effect of sleep quality.

Int J Clin Health Psychol. (2018) 18:8–17. doi: 10.1016/j.ijchp.2017.10.002

14. Tan HL, Kheirandish-Gozal L, Gozal D. Sleep, sleep disorders, and immune

function. In: Allergy and Sleep. Cham: Springer (2019). p. 3–15.

15. Lu Y, Tian N, Yin J, Shi Y, Huang Z. Association between sleep duration and

cancer risk: a meta-analysis of prospective cohort studies. PloS ONE. (2013)

8:e74723. doi: 10.1371/journal.pone.0074723

16. Bonnet MH, Arand DL. We are chronically sleep deprived. Sleep. (1995)

18:908–911.

17. Fry C. Sleep deprived but socially connected: balancing the risks and benefits

of adolescent screen time during COVID-19. J Children Media. (2021) 15:37–

40. doi: 10.1080/17482798.2020.1858907

18. K Pavlova M, Latreille V. Sleep Disorders. Elsevier. (2019).

doi: 10.1016/j.amjmed.2018.09.021

19. Zitting KM, Lammers-van der Holst HM, Yuan RK,WangW, Quan SF, Duffy

JF. Google Trends reveals increases in internet searches for insomnia during

the 2019 coronavirus disease (COVID-19) global pandemic. J Clin Sleep Med.

(2021) 17:177–84. doi: 10.5664/jcsm.8810

20. Stranges S, Tigbe W, Gómez-Olivé FX, Thorogood M, Kandala NB. Sleep

problems: an emerging global epidemic? Findings from the INDEPTHWHO-

SAGE study among more than 40,000 older adults from 8 countries across

Africa and Asia. Sleep. (2012) 35:1173–81. doi: 10.5665/sleep.2012

21. Hafner M, Stepanek M, Taylor J, Troxel W, Stolk C. Why Sleep

Matters – the Economic Costs of Insufficient Sleep: A Cross-Country

Comparative Analysis. vol. 6. RAND Corporation. (2016). Available online

at: https://circadiansleepcoaching.com/wp-content/uploads/sites/1753/2022/

01/RAND-REPORT-2016.pdf

22. Thorpy M. International classification of sleep disorders. In: Sleep Disorders

Medicine. Springer. (2017). p. 475–84. doi: 10.1007/978-1-4939-6578-6_27

23. Sharma M, Goyal D, Achuth P, Acharya UR. An accurate sleep stages

classification system using a new class of optimally time-frequency localized

three-band wavelet filter bank. Comput Biol Med. (2018) 98:58–75.

doi: 10.1016/j.compbiomed.2018.04.025

24. Berthomier C, Drouot X, Herman-Stoïca M, Berthomier P, Prado J, Bokar-

Thire D, et al. Automatic analysis of single-channel sleep EEG: validation in

healthy individuals. Sleep. (2007) 30:1587–95. doi: 10.1093/sleep/30.11.1587

25. Cesari M, Stefani A, Penzel T, Ibrahim A, Hackner H, Heidbreder A, et al.

Interrater sleep stage scoring reliability between manual scoring from two

European sleep centers and automatic scoring performed by the artificial

intelligence–based Stanford-STAGES algorithm. J Clin Sleep Med. (2021)

17:1237–47. doi: 10.5664/jcsm.9174

26. Zhang J, Tang Z, Gao J, Lin L, Liu Z, Wu H, et al. Automatic detection of

obstructive sleep apnea events using a deep CNN-LSTMmodel.Comput. Intell

Neurosci. (2021) 2021:5594733. doi: 10.1155/2021/5594733

27. Kwon S, Kim H, Yeo WH. Recent advances in wearable sensors and

portable electronics for sleep monitoring. Iscience. (2021) 24:102461.

doi: 10.1016/j.isci.2021.102461

28. Krishnaswamy U, Aneja A, Kumar RM, Kumar TP. Utility of portable

monitoring in the diagnosis of obstructive sleep apnea. J Postgraduate Med.

(2015) 61:223. doi: 10.4103/0022-3859.166509

29. Pan Q, Brulin D, Campo E. Current Status and Future Challenges of Sleep

Monitoring Systems: Systematic Review. JMIR Biomed Eng. (2020) 5, e20921.

doi: 10.2196/20921

30. Shustak S, Inzelberg L, Steinberg S, Rand D, Pur MD, Hillel I, et al.

Home monitoring of sleep with a temporary-tattoo EEG, EOG and

EMG electrode array: a feasibility study. J Neural Eng. (2019) 16:026024.

doi: 10.1088/1741-2552/aafa05

31. Hof zum Berge A, Ferrauti A, Meyer T, Pfeiffer M, Kellmann M. Portable

polysomnography for sleep monitoring in elite youth rowing: An athlete’s

gain or the sleep’s thief? Transl Sports Med. (2021) 4:289–96. doi: 10.1002/

tsm2.205

32. NeuroSky. EEG Sensors - EEG Headsets | NeuroSky. (2020). Available Online

at: http://neurosky.com/biosensors/eeg-sensor/biosensors/

33. Muse. MuseTM - Meditation Made Easy With the Muse Headband. (2021).

Available Online at: https://choosemuse.com/

34. Looney D, Goverdovsky V, Rosenzweig I, Morrell MJ, Mandic DP.

Wearable in-ear encephalography sensor for monitoring sleep. preliminary

observations from nap studies. Ann Am Thoracic Soc. (2016) 13:2229–33.

doi: 10.1513/AnnalsATS.201605-342BC

35. Jahrami H, BaHammam AS, Bragazzi NL, Saif Z, Faris M, Vitiello

MV. Sleep problems during the COVID-19 pandemic by population: a

systematic review and meta-analysis. J Clin Sleep Med. (2021) 17 :299–313.

doi: 10.5664/jcsm.8930

36. Radhakrishnan B, Kirubakaran E, Belfin R, Selvam S, Sagayam KM, Elngar

AA. Mental health issues and sleep quality of Indian employees and higher

education students during COVID-19 lockdown. Int J Intell Eng Inf. (2021)

9:193–210. doi: 10.1504/IJIEI.2021.10040086

37. Lee M, You M. Avoidance of healthcare utilization in south korea during

the coronavirus disease 2019 (COVID-19) pandemic. Int J Environ Res Publ

Health. (2021) 18:4363. doi: 10.3390/ijerph18084363

38. Johnson KG, Sullivan SS, Nti A, Rastegar V, Gurubhagavatula I. The impact of

the COVID-19 pandemic on sleepmedicine practices. J Clin SleepMed. (2021)

17:79–87. doi: 10.5664/jcsm.8830

39. Baltrušaitis T, Ahuja C, Morency LP. Multimodal machine learning: a survey

and taxonomy. IEEE Trans Pattern Anal Mach Intell. (2018) 41:423–43.

doi: 10.1109/TPAMI.2018.2798607

40. Supratak A, Dong H, Wu C, Guo Y. DeepSleepNet: a model for automatic

sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst

Rehabil Eng. (2017) 25:1998–2008. doi: 10.1109/TNSRE.2017.2721116

41. Toedebusch CD, McLeland JS, Schaibley CM, Banks IR, Boyd J, Morris JC,

et al. Multi-modal home sleep monitoring in older adults. J. Visual. Exp. JoVE.

(2019) 143: 10.3791/58823. doi: 10.3791/58823

42. Faezipour M, Faezipour M. Efficacy of smart EEG monitoring

amidst the COVID-19 pandemic. Electronics. (2021) 10:1001.

doi: 10.3390/electronics10091001

43. Lucey BP,Mcleland JS, Toedebusch CD, Boyd J,Morris JC, Landsness EC, et al.

Comparison of a single-channel EEG sleep study to polysomnography. J Sleep

Res. (2016) 25:625–35. doi: 10.1111/jsr.12417

44. Hussain Z, Sheng QZ, Zhang WE, Ortiz J, Pouriyeh S. A review of the non-

invasive techniques for monitoring different aspects of sleep. arXiv preprint

arXiv:210412964. (2021).

45. Kundel V, Shah N. Impact of portable sleep testing. Sleep Med Clin. (2017)

12:137. doi: 10.1016/j.jsmc.2016.10.006

46. Guillodo E, Lemey C, Simonnet M, Walter M, Baca-García E, Masetti

V, et al. Clinical applications of mobile health wearable–based sleep

monitoring: systematic review. JMIR mHealth uHealth. (2020) 8:e10733.

doi: 10.2196/10733

47. Shin J, Chee Y, Park K. Long-term sleep monitoring system and long-term

sleep parameters using unconstrained method. In: Proceedings of Intl Special

Topic Conf on Info Tech in BME. New York, NY (2006).

48. Nakamura T, Goverdovsky V, Morrell MJ, Mandic DP. Automatic sleep

monitoring using ear-EEG. IEEE J Transl Eng Health Med. (2017) 5:1–8.

doi: 10.1109/JTEHM.2017.2702558

49. Lin CT, Prasad M, Chung CH, Puthal D, El-Sayed H, Sankar S, et al. IoT-

based wireless polysomnography intelligent system for sleepmonitoring. IEEE

Access. (2017) 6:405–14. doi: 10.1109/ACCESS.2017.2765702

50. Matar G, Lina JM, Carrier J, Riley A, Kaddoum G. Internet of Things in

sleep monitoring: an application for posture recognition using supervised

learning. In: 2016 IEEE 18th International Conference on e-Health Networking,

Applications and Services (Healthcom).Munich: IEEE. (2016). p. 1–6.

51. Koydemir HC, Ozcan A. Wearable and implantable sensors for

biomedical applications. Ann Rev Anal Chem. (2018) 11:127–46.

doi: 10.1146/annurev-anchem-061417-125956

52. Radhakrishnan B, Kirubakaran E, Ebenezer V, Belfin R, Ting DI, et al. Remote

sleep monitoring and 5G. In:Secure Communication for 5G and IoT Networks.

Springer. (2022). p. 173–95. doi: 10.1007/978-3-030-79766-9_11

53. Yaeger K, Martini M, Rasouli J, Costa A. Emerging blockchain technology

solutions for modern healthcare infrastructure. J Sci Innov Med. (2019) 2:1.

doi: 10.29024/jsim.7

Frontiers in Public Health | www.frontiersin.org 6 April 2022 | Volume 10 | Article 839838

https://doi.org/10.1097/YCO.0000000000000106
https://doi.org/10.1111/j.1365-2869.2007.00596.x
https://doi.org/10.1016/j.ijchp.2017.10.002
https://doi.org/10.1371/journal.pone.0074723
https://doi.org/10.1080/17482798.2020.1858907
https://doi.org/10.1016/j.amjmed.2018.09.021
https://doi.org/10.5664/jcsm.8810
https://doi.org/10.5665/sleep.2012
https://circadiansleepcoaching.com/wp-content/uploads/sites/1753/2022/01/RAND-REPORT-2016.pdf
https://circadiansleepcoaching.com/wp-content/uploads/sites/1753/2022/01/RAND-REPORT-2016.pdf
https://doi.org/10.1007/978-1-4939-6578-6_27
https://doi.org/10.1016/j.compbiomed.2018.04.025
https://doi.org/10.1093/sleep/30.11.1587
https://doi.org/10.5664/jcsm.9174
https://doi.org/10.1155/2021/5594733
https://doi.org/10.1016/j.isci.2021.102461
https://doi.org/10.4103/0022-3859.166509
https://doi.org/10.2196/20921
https://doi.org/10.1088/1741-2552/aafa05
https://doi.org/10.1002/tsm2.205
http://neurosky.com/biosensors/eeg-sensor/biosensors/
https://choosemuse.com/
https://doi.org/10.1513/AnnalsATS.201605-342BC
https://doi.org/10.5664/jcsm.8930
https://doi.org/10.1504/IJIEI.2021.10040086
https://doi.org/10.3390/ijerph18084363
https://doi.org/10.5664/jcsm.8830
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1109/TNSRE.2017.2721116
https://doi.org/10.3791/58823
https://doi.org/10.3390/electronics10091001
https://doi.org/10.1111/jsr.12417
https://doi.org/10.1016/j.jsmc.2016.10.006
https://doi.org/10.2196/10733
https://doi.org/10.1109/JTEHM.2017.2702558
https://doi.org/10.1109/ACCESS.2017.2765702
https://doi.org/10.1146/annurev-anchem-061417-125956
https://doi.org/10.1007/978-3-030-79766-9_11
https://doi.org/10.29024/jsim.7
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Radhakrishnan et al. Efficacy of Single-Channel EEG

54. Danker-hopfe H, Anderer P, Zeitlhofer J, Boeck M, Dorn H, Gruber G,

et al. Interrater reliability for sleep scoring according to the Rechtschaffen

& Kales and the new AASM standard. J Sleep Res. (2009) 18:74–84.

doi: 10.1111/j.1365-2869.2008.00700.x

55. Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore HE,

et al. Neural network analysis of sleep stages enables efficient diagnosis of

narcolepsy. Nat Commun. (2018) 9:1–15. doi: 10.1038/s41467-018-07229-3

56. Boostani R, Karimzadeh F, Nami M. A comparative review on sleep stage

classification methods in patients and healthy individuals. Comput Methods

Programs Biomed. (2017) 140:77–91. doi: 10.1016/j.cmpb.2016.12.004

57. Memar P, Faradji F. A novel multi-class EEG-based sleep stage

classification system. IEEE Trans Neural Syst Rehabil Eng. (2017) 26:84–95.

doi: 10.1109/TNSRE.2017.2776149

58. Jiang D, Lu Yn, Yu M, Yuanyuan W. Robust sleep stage classification

with single-channel EEG signals using multimodal decomposition

and HMM-based refinement. Exp Syst Appl. (2019) 121:188–203.

doi: 10.1016/j.eswa.2018.12.023

59. Hassan AR, Bhuiyan MIH. Automatic sleep scoring using statistical features

in the EMD domain and ensemble methods. Biocybern Biomed Eng. (2016)

36:248–55. doi: 10.1016/j.bbe.2015.11.001

60. Hassan AR, Bhuiyan MIH. Computer-aided sleep staging using complete

ensemble empirical mode decomposition with adaptive noise and

bootstrap aggregating. Biomed Signal Process Control. (2016) 24:1–10.

doi: 10.1016/j.bspc.2015.09.002

61. Seifpour S, Niknazar H, Mikaeili M, Nasrabadi AM. A new automatic

sleep staging system based on statistical behavior of local extrema

using single channel EEG signal. Exp Syst Appl. (2018) 104:277–93.

doi: 10.1016/j.eswa.2018.03.020

62. Zhou J, Wang G, Liu J, Wu D, Xu W, Wang Z, et al. Automatic

sleep stage classification with single channel EEG signal based on

two-layer stacked ensemble model. IEEE Access. (2020) 8:57283–97.

doi: 10.1109/ACCESS.2020.2982434

63. Liu C, Tan B, Fu M, Li J, Wang J, Hou F, et al. Automatic sleep staging with a

single-channel EEG based on ensemble empirical mode decomposition. Phys

A Stat Mech Appl. (2021) 567:125685. doi: 10.1016/j.physa.2020.125685

64. Loh HW, Ooi CP, Vicnesh J, Oh SL, Faust O, Gertych A, et al.

Automated detection of sleep stages using deep learning techniques: a

systematic review of the last decade (2010–2020). Appl Sci. (2020) 10:8963.

doi: 10.3390/app10248963

65. Li F, Yan R, Mahini R, Wei L, Wang Z, Mathiak K, et al. End-to-end

sleep staging using convolutional neural network in raw single-channel EEG.

Biomed Signal Process Control. (2021) 63:102203. doi: 10.1016/j.bspc.2020.

102203

66. Sors A, Bonnet S, Mirek S, Vercueil L, Payen JF. A convolutional

neural network for sleep stage scoring from raw single-channel EEG.

Biomed Signal Process Control. (2018) 42:107–14. doi: 10.1016/j.bspc.2017.

12.001

67. Seo H, Back S, Lee S, Park D, Kim T, Lee K. Intra-and inter-

epoch temporal context network (IITNet) using sub-epoch features

for automatic sleep scoring on raw single-channel EEG. Biomed

Signal Process Control. (2020) 61:102037. doi: 10.1016/j.bspc.2020.

102037

68. Zhou D, Hu G, Zhang J, Wang J, Yan R, Li F, et al. SingleChannelNet: a model

for automatic sleep stage classification with raw single-channel EEG. bioRxiv.

(2021) p. 2020–09.

69. Chen K, Zhang C, Ma J, Wang G, Zhang J. Sleep staging from single-channel

EEG with multi-scale feature and contextual information. Sleep Breath. (2019)

23:1159–67. doi: 10.1007/s11325-019-01789-4

70. Michielli N, Acharya UR, Molinari F. Cascaded LSTM recurrent

neural network for automated sleep stage classification using

single-channel EEG signals. Comput Biol Med. (2019) 106:71–81.

doi: 10.1016/j.compbiomed.2019.01.013

71. Albahri OS, Albahri AS, Mohammed K, Zaidan A, Zaidan B, Hashim

M, et al. Systematic review of real-time remote health monitoring

system in triage and priority-based sensor technology: taxonomy, open

challenges, motivation and recommendations. J Med Syst. (2018) 42:1–27.

doi: 10.1007/s10916-018-0943-4

72. Ray PP, Dash D, Kumar N. Sensors for internet of medical things: State-of-

the-art, security and privacy issues, challenges and future directions. Comput

Commun. (2020) 160:111–31. doi: 10.1016/j.comcom.2020.05.029

73. Korhonen I, Parkka J, Van Gils M. Health monitoring in the

home of the future. IEEE Eng Med Biol Mag. (2003) 22:66–73.

doi: 10.1109/MEMB.2003.1213628

74. AazamM, Huh EN. Fog computing and smart gateway based communication

for cloud of things. In: 2014 International Conference on Future Internet of

Things and Cloud. Barcelona: IEEE (2014). p. 464–70.

75. Sangat P, Indrawan-Santiago M, Taniar D. Sensor data management in the

cloud: data storage, data ingestion, and data retrieval. Concurr Comput Pract

Exp. (2018) 30:e4354. doi: 10.1002/cpe.4354

76. Yacchirema DC, Sarabia-Jácome D, Palau CE, Esteve M. A smart system for

sleep monitoring by integrating IoT with big data analytics. IEEE Access.

(2018) 6:35988–6001. doi: 10.1109/ACCESS.2018.2849822

77. Akmal M, Zubair S, Alquhayz H. Classification analysis of tensor-

based recovered missing EEG data. IEEE Access. (2021) 9:41745–56.

doi: 10.1109/ACCESS.2021.3063382

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Radhakrishnan, Kirubakaran, Jebadurai, Selvakumar and Peter.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Public Health | www.frontiersin.org 7 April 2022 | Volume 10 | Article 839838

https://doi.org/10.1111/j.1365-2869.2008.00700.x
https://doi.org/10.1038/s41467-018-07229-3
https://doi.org/10.1016/j.cmpb.2016.12.004
https://doi.org/10.1109/TNSRE.2017.2776149
https://doi.org/10.1016/j.eswa.2018.12.023
https://doi.org/10.1016/j.bbe.2015.11.001
https://doi.org/10.1016/j.bspc.2015.09.002
https://doi.org/10.1016/j.eswa.2018.03.020
https://doi.org/10.1109/ACCESS.2020.2982434
https://doi.org/10.1016/j.physa.2020.125685
https://doi.org/10.3390/app10248963
https://doi.org/10.1016/j.bspc.2020.102203
https://doi.org/10.1016/j.bspc.2017.12.001
https://doi.org/10.1016/j.bspc.2020.102037
https://doi.org/10.1007/s11325-019-01789-4
https://doi.org/10.1016/j.compbiomed.2019.01.013
https://doi.org/10.1007/s10916-018-0943-4
https://doi.org/10.1016/j.comcom.2020.05.029
https://doi.org/10.1109/MEMB.2003.1213628
https://doi.org/10.1002/cpe.4354
https://doi.org/10.1109/ACCESS.2018.2849822
https://doi.org/10.1109/ACCESS.2021.3063382
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Efficacy of Single-Channel EEG: A Propitious Approach for In-home Sleep Monitoring
	1. Introduction
	2. In-home Sleep Monitoring
	2.1. Type 4 Sleep Monitoring
	2.2. COVID and Sleep
	2.3. Need for In-home Sleep Monitoring
	2.4. In-home Sleep Monitoring Challenges
	2.4.1. End User Requirements and Acceptance
	2.4.2. Long-Term Monitoring
	2.4.3. Seamless Data Sharing With Healthcare Providers
	2.4.4. Data Privacy Issues


	3. Role of AI in Sleep Stage Classification
	4. Role of Cloud in Sleep Monitoring
	5. Discussion
	Author Contributions
	References


