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Introduction: COVID-19 (Coronavirus Disease 19) has rapidly spread all around the

world. Vaccination represents one of the most promising counter-pandemic measures.

There is still little specific evidence in literature on how to safely and effectively program

access and flow through specific healthcare settings to avoid overcrowding in order

to prevent SARS-CoV-2 transmission. Literature regarding appointment scheduling in

healthcare is vast. Unpunctuality however, especially when targeting healthcare workers

during working hours, is always possible. Therefore, when determining how many

subjects to book, using a linear method assuming perfect adhesion to scheduled time

could lead to organizational problems.

Methods: This study proposes a “Queuing theory” based approach. A COVID-19

vaccination site targeting healthcare workers based in a teaching hospital in Rome was

studied to determine real-life arrival rate variability. Three simulations using Queueing

theory were performed.

Results: Queueing theory application reduced subjects queueing over maximum safety

requirements by 112 in a real-life based vaccination setting, by 483 in a double-sized

setting and by 750 in a mass vaccination model compared with a linear approach. In the

3 settings, respectively, the percentage of station’s time utilization was 98.6, 99.4 and

99.8%, while the average waiting time was 27.2, 33.84, and 33.84 min.

Conclusions: Queueing theory has already been applied in healthcare. This study, in

line with recent literature developments, proposes the adoption of a Queueing theory

base approach to vaccination sites modeling, during the COVID-19 pandemic, as this

tool enables to quantify ahead of time the outcome of organizational choices on both

safety and performance of vaccination sites.
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INTRODUCTION

Since the report of a first suspected case on December
8, 2019 in Wuhan, Coronavirus disease 2019 (COVID-19)
has rapidly spread all around the world (1). Induction
of herd immunity by mass vaccination has been a very
successful strategy for preventing the spread of many infectious
diseases, hence protecting the most vulnerable population
groups unable to develop immunity, for example individuals
with immunodeficiencies or a weakened immune system due
to underlying medical or debilitating conditions. Therefore,
vaccination represents one of the most promising counter-
pandemic measures to COVID-19 (2). Finding safe and effective
vaccination models has, therefore, become a global priority.

However, there is still little specific evidence in literature on
how to safely and effectively program access and flow through
specific healthcare settings to avoid overcrowding in order to
prevent SARS-CoV-2 transmission (2).

A systematic review commissioned by the World Health
Organization attempted to analyse physical distancing measures
in relation to coronavirus transmission (3). Physical distancing
of <1m (meter) was reported to result in a transmission risk
of 12.8%, compared with 2.6% at distances ≥1m, supporting
physical distancing rules of 1m or more (4). It is vital, therefore,
to program access to facilities and services so that adequate
physical distancing is guaranteed, and overcrowding is avoided,
especially in the context of massive vaccination campaigns.

The problem of overcrowding in healthcare setting has mostly
been faced in literature in the past with regards to Emergency
Departments (5, 6). Literature regarding appointment scheduling
in healthcare is vast (7–13). However, due to the inherent
characteristics of medical services, it is difficult to predict exactly
when a patient will arrive and how much time will be taken for
the service (14). Even in the case of highly standardized practices
such as vaccination, variability due to unpunctuality is always
possible (15). This is especially true when targeting people during
working hours, with some of them conducting busy and often
unpredictable daily activities.

One of the approaches that could help solve this problem is
“Queueing theory” (5, 6, 16). Queueing theory is a branch of
applied mathematics that is used to predict the behavior of lines
(also known as queues). A process is made up of a sequence of
activities with various points of delay and stoppages. Flow units
enter the process (arrivals), wait to be processed (queue), are
processed (service), and then move to the next step in the process
or exit it. The time spent in line or queue is a function of the
configuration and discipline rate at which the flow units enter the
system, the rate at which they are processed or served, the queue,
and the population of flow units (5). To give some definitions:
Server, s: the main unit providing service; Average Arrival Rate,
λ: the average number of arrivals per unit of time; Average
Service Rate, µ: the average number of units served or processed
per unit of time. The Kendall notation is a well-established
classification scheme. Three letters are used, M, G, and D, to
designate the probability distributions of arrivals or service:
M = Poisson distribution for rates or exponential distribution
for times (the “M” stands for Markovian and/or “memoryless”);

G = General/any distribution with a known mean and variance;
D= Deterministic or constant.

“Queueing theory” has been mostly applied in healthcare (16)
to enhance the performance of operating rooms (17), outpatients
settings waiting times (8) and hospital bed management (18). It
is starting to be applied to vaccination campaigns as well (2).
A recent study of Safdar et al. (19) presents a novel application
of DEA (Data Envelopment Analysis) for assessing the queuing
process at an outpatients’ department of a large public hospital
in a developing country where appointment systems do not
exist. DEA has been mostly applied to the efficiency comparison
of hospitals (20–25). In this study the patient flow pathway
considered consisted of two stages: consultation with a doctor
and pharmacy. The DEA results indicated that waiting times
and other related queuing variables included need considerable
minimization at both stages. This is an important result of a study
from a context in which appointment systems do not exist.

Our paper proposes the use of Queuing theory to provide a
model for quantifying in advance how many healthcare workers
to be booked daily for a vaccination site, taking into account
the possible variations due to healthcare workers not being
able to perfectly adhere to their scheduled arrival time, and to
provide indicators of safety, with regards to physical distancing
during the COVID-19 pandemic, and performance, with regards
to utilization time of each unit and to the subjects’ average
waiting time.

METHODS

The main way to approach the subject of booking units to
input in a healthcare service consists in appointment scheduling
techniques. This is proved to be very efficient, however there
is scarce literature and techniques to use in many real contexts
such as ours in which reliance on subjects respecting their
scheduled times would be unwise. In relation to this topic,
scientific literature provides many tools such as Monte Carlo
simulation (26), Discrete Event Simulation (DES) (27), agent-
based simulation (28) and Data Envelopment Analysis (DEA)
(19). We found queueing theory to be easy to be understood
and applied by professionals from all healthcare sectors as it does
not require high-demanding computing or technical skills, it is
well supported by literature (8, 16–18) and it has already been
successfully applied to vaccination settings (2).

A vaccination site for COVID-19 vaccination targeting
healthcare workers based in a teaching hospital in Rome was
studied. The Queuing theory model used is G/D/s/k/∞/FIFO.
The characteristics of each parameter and the reason for making
such choices regarding the type of queue model used are
the following:

- G stands for a distribution with a known mean and variance.
In order to derive a realistic coefficient of variation (CV) of arrival
rate we therefore studied the recorded distribution of arriving
subjects throughout the 3 days of major affluence, from 8th to
10th January 2021. These days were also the most homogenous
with regards to number of subjects served and hours of activity
(Table 1) and represented a situation of maximum stress for the
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system. Five-minute time slots for each of the three stations were
available for booking. No more than 1 booking for time slot
was possible;

- D this stands for service time. It was assumed to be constant
(meaning a coefficient of variation equal to zero) and equal
to 5min, based on the average time needed for vaccination
gained in our experience. This parameter was therefore used
to determine the entity of each time slot;

- s stands for the number of stations, i.e., the total number
of working stations. All vaccination sites were considered to
have three stations, each one composed by: one public health
medical doctor explaining the procedure, interviewing the
healthcare worker and excluding any contraindication to the
procedure (i.e., allergic to substances contained in the vaccine)
and one nurse taking care of preparing and administering the
vaccine shot;

- k stands for a maximum fixed length of the queue (or Lq). The
maximum allowed length of the queue in all vaccination sites
(determined in relation to the real-life setting waiting room
space) was considered to be 20;

- ∞ stands for the entity of the population set. It was assumed
to be infinite so as to give maximum possible variability to
arrival rate throughout the simulations in order to find the
most appropriate value for it;

- FIFO stands for the Queue discipline. The “first in–first out”
order (“FIFO”, otherwise known as “FCFS” or first come–
first served) was chosen, meaning that no subject could
access the server before the end of the previous vaccination
process; no system of priority other than arrival time was in
fact considered;

The time unit was assumed to be 6 h for the first simulation,
as this was the amount of time dedicated to vaccination in our
original hospital-based setting. It was assumed to be 12 h for the
second and third simulation, in order to have a double amount
of time for vaccination but without making the staff exceed 12
consecutive working hours.

Therefore, Queueing theory indicators to study the model
were used.

For the safety analysis, to make sure adequate physical
distancing was kept, we used average Length of queue (Lq);

For the performance analysis we used: ρ = percentage of
the total time each station was in use, with 100 – ρ being a
measure of resources underutilization; AWT = average subject’s
waiting time;

We therefore performed three simulations to study the activity
using the aforementioned indicators in:

- a hypothetical setting modeled on the original;
- a hypothetical double-sized original setting;
- a hypothetical mass vaccination site.

The result of the simulations in each setting was confronted
with a linear model booking system as the starting point and
the value of the arrival rate was lowered unit by unit for
each simulation.

For all graphs and analysis Microsoft Excel for Mac (Version
16.16.27-201012) was used. Example of formulas for Excel-based

queueing model building are open access and freely available
(for instance at https://www.csus.edu/indiv/b/blakeh/mgmt/
documents/opm101supplc.pdf). As a G/D/k model tailored
to the specific requirements of our study requires complex
computational capacity, safety and performance indicators were
obtained using an online calculator (29). The parameters of
interest used in each simulation were defined in the Results
section. Other parameters available were not modified from the
default calculator mode and assigned as such: arrival batch size
= 1; batch size (service process) = 1; coefficient of variation of
service process (given service rate was a fixed parameter)= 0. The
last 3 parameters, regarding failure behavior of the model, were
assigned as: availability = 1; average down time = 0; coefficient
of variation= 1.

The obtained values for queue length with decimal digits
were rounded to the integer value. The obtained value for AWT
was converted by multiplying it by the established time unit in
minutes for each simulation.

Figures 1–3 illustrate the following findings.
Figure 4 shows a flow chart demonstrating how each step has

been undertaken.

RESULTS

Determining Arrival Distribution
Table 1 shows data regarding the activity during the three
sampled vaccination days.

A mean CV of 0.69 across the 3 days was observed
and therefore used for the simulations to determine arrival
distribution. In fact, the percentage of time slots withmore than 3
arriving subjects, which should amount to zero in an ideal setting
with perfect adherence of subjects to the scheduling, were found
to be, respectively, 10.90, 18.99 and 17.24% across the 3 days.

Original Setting
For the first simulation we considered a service rate (the rate of
served subjects per total working session) of 72 subjects served by
each station, 3 stations (each station composed by a doctor-nurse
unit) working in parallel, 5min were designated as the time slot
needed for each vaccination, the maximum number of subjects
that could stay in the queue in compliance with the COVID-19
safety requirements in relation to the real-life space at disposal
was 20, the total working time of the site was 6 h and 0.69 was
the coefficient of variation of the arrival rate as determined in
paragraph 3.1. A linear booking model was used as a starting
point, multiplying the service rate by the number of working
stations and obtaining 216 as the number of subjects (λ, arrival
rate) to be booked for the day.

We therefore proceeded with a more complex approach
based on Queueing theory, varying the arrival rate simulation
by simulation starting with 216 and performing a safety and
performance analysis on each simulation‘s outcome via the
indicators mentioned in the Method section.

The safety analysis showed that, an arrival rate λ of 214, we
would have 25 subjects in the queue (Lq), exceeding the safe
queue limit by 5.We therefore performed another simulation and
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TABLE 1 | Details of the activity regarding the three sampled vaccination days.

Vaccination

day

No. of subjects Working hours

(time slots)

Mean vaccinated per

time slot (std. dev.)

Coefficient of

variation (CV)

8th January 174 6.66 (80) 2.18 (1.47) 0.67

9th January 179 6.25 (75) 2.39 (1.72) 0.72

10th January 174 6.00 (72) 2.41 (1.66) 0.69

FIGURE 1 | Number of queueing subjects (Lq) by one-unit increases in arrival rates (λ) in original setting. Maximum queue length evidenced in red line.

found 213 as the threshold arrival rate value for safety by which
the queue amounts to 20 subjects.

The performance analysis showed that, with 213 as arrival rate
we found 98.6% as the percentage of time each station was in
use (ρ), which implies underuse of 1.4% of each station’s time.
27.72min were determined as the average time each subjects had
to wait in line (AWT or average waiting time).

A difference of 3 subjects in determining the appropriate
arrival rate was therefore found between a linear approach by
simple multiplication (assuming a coefficient of variation of
arrival rate equal to zero) and a more complex Queueing theory
approach (assuming a coefficient of variation of arrival rate
derived from a real-life setting observation).

However little could seem this difference, as shown in
Figure 1, letting in a few more units could cause an exponential
growth of Lq, with a difference of 3 more booked subjects (from
213 to 216) causing an increase of 112 subjects over the safe
limit of the waiting queue (from 17 queueing subjects with an
arrival rate of 213 to 128 queueing subjects with an arrival rate
of 216).

Figure 1 shows the number of queueing subjects by one-unit
increases in arrival rates in original setting, maximum queue
length is evidenced in red line.

Double-Sized Setting
For the second setting we considered a service rate (the rate of
served subjects per total working session) of 144 subjects served
by each station, 6 stations (each station composed by a doctor-
nurse unit) working in parallel, 5min were designated as the
time slot needed for each vaccination, the maximum number
of subjects that could stay in the queue in compliance with the
COVID-19 safety requirements in relation to the real-life space
at disposal was 40, the total working time of the site was 12 h
and 0.69 was the coefficient of variation of the arrival rate as
determined in paragraph 3.1. A linear booking model was used
as a starting point, multiplying the service rate by the number of
working stations and obtaining 864 as the number of subjects (λ,
arrival rate) to be booked for the day.

We therefore proceededwith the approach based onQueueing
theory, varying the arrival rate simulation by simulation starting
with 864 and, as for the first setting, performing a safety and
performance analysis on each simulation‘s outcome.

The safety analysis showed that, already at an arrival rate λ of
860, 51 subjects are found in the queue (Lq), exceeding the safe
queue limit of 40 by 11 units. We therefore performed another
simulation and found 859 as the safe arrival rate value by which
the queue amounts to 40 subjects.
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FIGURE 2 | Number of queueing subjects (Lq) by one-unit increases in arrival rates (λ) in double-sized setting. Maximum queue length evidenced in red line.

FIGURE 3 | Number of queueing subjects (Lq) by one-unit increases in arrival rates (λ) in mass vaccination site. Maximum queue length evidenced in red line.

The performance analysis showed that, with 859 as arrival rate,
we found 99.4% as the percentage of time each station was in use
(ρ), which implies underuse of 0.6% of each station’s time, and an
average waiting time of 33.84 min.

A difference of 5 subjects in determining the appropriate
arrival rate was therefore found between a linear approach by

simple multiplication (assuming a coefficient of variation of
arrival rate equal to zero) and a more complex Queueing theory
approach (assuming a coefficient of variation of arrival rate
derived from the observation a real-life setting).

However little could seem this difference, as shown in
Figure 1, letting in a few more units could cause an exponential
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FIGURE 4 | Flow chart illustrating the study process step-by-step.

growth of Lq, with a difference of 5 more booked subjects (from
859 to 864) causing an increase of subjects over the safe limit of
the waiting queue of 483 subjects (from 40 queueing subjects with
an arrival rate of 859 to 523 queueing subjects with an arrival rate
of 864).

Figure 2 shows the number of queueing subjects by one-unit
increases in arrival rates in original setting, maximum queue
length is evidenced in red line.

Mass Vaccination Site
For the third setting we considered a service rate (the rate
of served subjects per total working session) of 144 subjects

served by each station, 30 stations (each station composed by
a doctor-nurse unit) working in parallel, 5min were designated
as the time slot needed for each vaccination, the maximum
number of subjects that could stay in the queue in compliance
with the COVID-19 safety requirements in relation to the real-
life space at disposal was 40, the total working time of the
site was 12 h and 0.69 was the coefficient of variation of the
arrival rate as determined in paragraph 3.1. A linear booking
model was used as a starting point, multiplying the service
rate by the number of working stations and obtaining 4,320
as the number of subjects (λ, arrival rate) to be booked for
the day.
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We therefore proceededwith the approach based onQueueing
theory, varying the arrival rate simulation by simulation starting
with 4,320 and, as for the first setting, performing a safety and
performance analysis on each simulation‘s outcome.

The safety analysis showed that, already at an arrival rate λ

of 4,315, 204 subjects are found in the queue (Lq), exceeding the
safe queue limit of 40 by 4 units. We therefore performed another
simulation and found 4,314 as the safe arrival rate value by which
the queue amounts to 170 subjects.

The performance analysis showed that, with 4,314 as arrival
rate, we found 99.8% as the percentage of time each station was
in use (ρ), which implies underuse of 0.2% of each station’s time,
and an average waiting time of 33.84 min.

A difference of 6 subjects in determining the appropriate
arrival rate was therefore found between a linear approach by
simple multiplication (assuming a coefficient of variation of
arrival rate equal to zero) and a more complex Queueing theory
approach (assuming a coefficient of variation of arrival rate
derived from the observation a real-life setting).

However little could seem this difference, as shown in
Figure 1, letting in a few more units could cause an exponential
growth of Lq, with a difference of 6 more booked subjects (from
4,314 to 4320) causing an increase of 750 subjects over the safe
limit of the waiting queue (from 170 queueing subjects with an
arrival rate of 4,314 to 855 queueing subjects with an arrival rate
of 4,320).

Figure 3 shows the number of queueing subjects by one-unit
increases in arrival rates in original setting, maximum queue
length is evidenced in red line.

DISCUSSION

As anticipated in the Results section, the percentage of time slots
with more than 3 arriving subjects, which should amount to
0.00% in an ideal setting with perfect adherence of subjects to
the scheduling, were found to be, respectively, 10.90, 18.99 and
17.24% across the 3 days. This proves that unquestioned reliance
on subjects respecting their scheduled times would be unwise.

With regards to safety analysis, comparing the results obtained
by three simulations we can see that the number of subjects
prevented from overcrowding the vaccination site increases
exponentially with the increase in size and in the chosen
parameters of the site.

With regards to performance analysis, we can see the highest
performance in terms of percentage of stations’ time in use
and average waiting time is found in the mass vaccination
site, followed by the double-sized setting and the original
setting simulation.

We see how Queueing theory, allowing for performance and
safety analysis, shows its greatest potential with mass vaccination
sites, though proving useful in smaller setting as well.

We observed that the most effective model had, respectively, 5
and 10 times the number of servers, 5 and 10 times the number of
places for queueing and twice and the same number of working
hours of the second and first simulated models.

The opportunity of applying Queueing theory is supported by
recent literature.

A study by Hanly et al. (2) makes an important use
of this theory in modeling the entirety of vaccination sites.
The experimenters conclude by reporting that “[..] queueing
models can be used to simulate vaccination queues, estimate
daily throughput based on given staff availability and inform
service delivery”.

To conclude, our choice of the parameters in building different
models for simulation was demonstrational. Future use of the
model could therefore consist in studying, for instance, how
many more subjects can be vaccinated, while ensuring maximum
performance and safety of the site, by differentially increasing
one parameter at a time to find the most suitable configuration
in relation to the specific organizational requirements of the user.

Study Limitations
This study has some limitations.

First, even though a distribution of variability of service rate
could have proven useful in improve adherence to real-life setting
(some subjects take more or <5min to be vaccinated according,
for instance, to the complexity of the health status assessment),
such data were unfortunately not recorded. Service rate CV was
therefore assumed equal to zero for the sake of our simulations.
A “D” (deterministic) instead of a “G” distribution was adopted.
Based on our experience, however, we reckon that much of the
variability in the process is attributable to arrival rate rather than
service rate. We nonetheless acknowledge this limitation and
propose to account for it in future studies.

Second, many vaccination sites include a second waiting room
for a brief (15min) medical observation of vaccinated subjects.
This element could be implemented into the system, as well as, for
instance, considering doctor’s room and nurses’ room as separate
units and studying queues forming up to each of them, with
the use conjoint probability. We refer to the topic of Markovian
network processes (30) for further study on this matter.

Third, there is plenty of literature that implements Queueing
theory and other techniques to reduce appointment scheduling
variability (7–13). However, these techniques have not yet been
diffusely adopted in common vaccination practice worldwide
and, therefore, our use of Queueing theory directly on
determination of a proper arrival rate might prove all the more
useful or, at least, represent a starting point for new techniques’
implementation. As anticipated, Hanly et al. make ample use of it
in modeling the entirety of vaccination sites (2). We furthermore
stress the utility of this technique in giving specific indicators by
which both safety and performance analysis can be performed
on vaccination sites already in use, without the need for
recording every activity’s parameter, giving thus the chance for
optimization. For instance, without the need for recording our
waiting queue length throughout the activity, we retrospectively
acknowledge that we might have at times exceeded maximum
safety length, while also being able to quantify a potential
resources underuse of 1.4% with only the electronically recorded
distribution of arrival rate as a starting point.
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CONCLUSIONS

“Queueing theory” has been mostly applied in healthcare (18) to
enhance the performance of operating rooms (16), outpatients
settings waiting times (9) and hospital bed management (31). It
is starting to be applied to vaccination campaigns as well (2, 32).

We propose the adoption of this tool by public health figures
involved in vaccination practices as it enables to quantify ahead
of time, using specific indicators, the outcome of organizational
choices on both safety and performance of vaccination sites.

This tool can be used to develop the policy framework for
improving the operations throughout healthcare and vaccination
programs by catering to the requirements of specific stakeholders
such as managers, professionals, and patients. Its application
would in fact increase the efficiency of healthcare operations
enabling managers to control costs but also adding value for
both healthcare workers, who perceive the better management of
their working time andmodalities, and patients, who perceive the
better quality of the service provided. Promoting a tool such as
this one could help contribute to some of the strategies indicated
by the Global Alliance for vaccines and Immunization (GAVI), as
reformulated by Kamara et al. (33), such as vaccine logistics and
stock management and training, improving service delivery and
reducing vaccine wastage.

Further work applying Queueing theory model in
vaccination as well as other healthcare settings, considering
the urgency deriving from the current pandemic, is
much needed. For instance, more complex evaluations
connecting the outcome of organizational choices informed
by queueing theory-based models on human and economic
resources would be of great interest and use for the
scientific literature.
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