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Background: Phthalates are non-persistent chemicals with endocrine-disrupting

abilities widely used in a variety of consumer products. Evidence for the effects of

phthalate exposure on liver function in adolescents is lacking.

Methods: Data were analyzed from the combined 2007–2016 National Health and

Nutrition Examination Survey (NHANES). Ultimately, a total of 1,650 adolescents aged

12–19 years were selected as the samples. Weighted linear regression was used to

investigate the effects of urinary phthalate metabolites on liver function indexes.

Results: Weighted Linear regression models showed that MCOP was negatively

associated with TBIL (β = −0.0435, PFDR = 0.007), ΣDEHP (β = −0.0453,

PFDR = 0.003) and MCOP (β = −0.0379, PFDR = 0.006) were negatively correlated

with ALB, while MCPP was positively correlated with ALB (β = 0.0339, PFDR = 0.024),

and MCOP was negatively correlated with TP (β = −0.0551; PFDR = 0.004).

Conclusions: Phthalate metabolites were significantly but weakly associated with

changes in liver function indicators among US adolescents. Future work should further

examine these relationships.
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BACKGROUND

Phthalates, known as plasticizers, are non-persistent chemicals with endocrine-disrupting abilities
widely used in a variety of consumer products (1). High molecular weight phthalates, including
di-(2-ethylhexyl) phthalate (DEHP) and di-isononyl phthalate (DiNP), are used primarily as
plasticizer for polyvinyl chloride, building and construction materials, and several categories of
toys (such as plastic books, ball, doll, and cartoon characters). Low molecular weight phthalates,
including di-butyl phthalate (DBP) and diethyl phthalate (DEP), are used primarily as fragrance
ingredients in cosmetics, home, and personal care products (2, 3). As phthalates are usually bound
to polymers by non-chemical bonds, they are often constantly released from plastic products into
the surrounding environment, resulting in food, water, or air pollution (4). Human are exposed to
large amounts of phthalates through dietary, inhalation and skin contact (4).

Liver diseases such as non-alcoholic liver disease, alcoholic liver disease and viral hepatitis
are major causes of illness and death worldwide. Approximately 2 million people die from it
every year in the world (5). Although vaccination and new drugs will reduce the burden of viral-
related liver disease, non-alcoholic liver disease continues to rise in general population adolescents
(6). In addition to alcohol, viruses, genetics, and unhealthy lifestyles, studies have found that
environmental chemicals may play a role in abnormal liver function in adolescents (7).
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Liver plays an important role in the detoxification of
phthalates (8). The hepatotoxicity of phthalates has been
demonstrated in animal models such as mice, zebrafish, and quail
(9–11). Phthalate concentrations have been adversely associated
with indicators of liver function in adulthood (12), but few
studies have examined associations between phthalate exposure
and liver function in youth. Changes in liver function are a long-
term process of liver injury, early prevention and intervention
can reduce the incidence of liver disease in adults.

Therefore, in the present study, we aimed to examine the
association between phthalate exposure and indicators of liver
function using a nationally representative sample of adolescents
aged 12–19 years in the United States.

METHODS

Study Population
National Health and Nutrition Examination Survey (NHANES)
is a cross-sectional, nationally representative survey in the
United States conducted annually by CDC’s National Center
for Health Statistics (CDC/NCHS). A detailed description of
the study design can be found elsewhere (13). The survey
uses a multistage stratified probability sample based on selected
counties, blocks, households, and persons within households.
Survey interviews were conducted in participants’ homes by well-
trained professionals, while extensive physical examinations,
including blood and urine collection, were conducted at mobile
exam centers.

The present analysis included five waves of the NHANES
from 2007 to 2016, which were publicly shared and downloaded
from the CDC official website and combined according to the
NHANES tutorials. The 6,598 participants were between the ages
of 12 and 19. A one-third subsample were tested for phthalates
(n= 2,076).We excluded subjects whowere serologically positive
for hepatitis B virus or hepatitis C virus and did not have
complete records, including liver function tests and covariates.
Finally, a total of 1,650 adolescents were selected as final samples.

Liver Function Measure Outcomes
Fasting blood samples were collected in NHANES participants
aged 12 years and older at a mobile examination center.
The samples were refrigerated and transported to the central

Abbreviations: DEHP, di-(2-ethylhexyl) phthalate; DiNP, di-isononyl phthalate;

DBP, di-butyl phthalate; DEP, diethyl phthalate; NHANES, National Health

and Nutrition Examination Survey; CDC, Centers for Disease Control; NCHS,

National Center for Health Statistics; ALT, Alanine aminotransferase; AST,

Apartate aminotransferase; ALB, Albumin; TP, Total protein; ALP, Alkaline

phosphotase; GGT, Gamma glutamyl transferase; TBIL, total bilirubin; HPLC-

ESI-MS/MS, high performance liquid chromatography-electrospray ionization-

tandem mass spectrometry; LLOD, Lower limit of detection; MCNP, mono-

(carboxyisononyl) phthalate; MCOP, mono-(carboxyisoctyl) phthalate; MECPP,

mono-2-ethyl-5-carboxypentyl phthalate; MnBP, mono-n-butyl phthalate; MCPP,

mono-(3-carboxypropyl) phthalate; MEP, mono-ethyl phthalate; MEHHP, mono-

(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono-(2-ethylhexyl phthalate; MiBP,

mono-isobutyl phthalate; MEOHP, mono-(2-ethyl-5-oxohexyl) phthalate; MBzP,

mono-benzyl phthalate; BMI, Body mass index; PIR, Ratio of family income to

poverty; FDR, Benjamini-Hochberg false discovery rate.

TABLE 1 | Demographic characteristics for adolescents aged 12–19 years old in

NHANES 2007–2016 (N = 1,650).

Basic characteristics N %

Age (years)

12–14 631 38.2

15–17 618 37.5

18–19 401 24.3

Gender

Male 883 53.5

Female 767 46.5

Race

Non-Hispanic White 485 29.4

Non-Hispanic Black 408 24.7

Mexican American 376 22.8

Other Hispanic 190 11.5

Other/Mixed 191 11.6

Education

Less than high school 1,393 84.4

High School graduate or GED 131 7.9

More than High 126 7.6

PIR

≤1 540 32.7

>1 1,110 67.3

BMI groups

Normal/Underweight (<25) 1,042 63.2

Overweight (25 to <30) 342 20.7

Obese (≥30) 266 16.1

Physical activity

No 365 22.1

Yes 1,285 77.9

laboratory for analysis of serum liver function indicators using
the Beckman Coulter DxC800 Synchron clinical system (14).

The liver is rich in alanine aminotransferase (ALT) and
aspartate aminotransferase (AST). Serum levels of these two
enzymes rise when hepatocytes necrosis or liver cell membrane
damage (15). AST/ALT ratio is used for differential diagnosis of
acute and chronic liver diseases. The liver is the only place where
albumin (ALB) is synthesized. When liver function is impaired,
serum albumin (ALB), and total protein (TP) levels decrease (16).
Alkaline phosphotase (ALP) and Gamma glutamyl transferase
(GGT) are markers of cholestasis (17). The liver has the functions
of uptake, combination, and excretion of bilirubin metabolism.
The disorder of one or more functions can lead to the increase of
total bilirubin (TBIL) (18).

Measurement of Phthalate
Phthalate metabolites were measured in spot urine samples
from a third of study subjects randomly selected from
participants 6 years of age and older. The collected samples
were frozen at −20◦C and then shipped to the CDC’s
National Center for Environmental Health for analysis.
Urine specimens were processed using high performance
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TABLE 2 | Distribution of urinary phthalate metabolites and indicators of liver

function for adolescents aged 12–19 years old in NHANES 2007–2016

(N = 1,650).

≥LOD% P25 P50 P75

Urinary phthalate metabolites (µg/mmol Cr)

MECPP 99.90 6.77 7.34 7.99

MEHHP 99.60 6.26 6.82 7.50

MEHP 71.90 4.39 5.03 5.73

MEOHP 99.70 5.82 6.41 7.03

MCNP 98.00 4.95 5.42 6.01

MCOP 99.60 6.27 7.09 8.04

MnBP 98.80 6.74 7.29 7.79

MCPP 93.10 4.74 5.39 6.06

MEP 99.90 7.66 8.47 9.35

MiBP 99.40 6.33 6.84 7.31

MBzP 99.00 5.98 6.59 7.27

Liver function

ALT (IU/L) 100.00 14.00 17.00 21.00

AST (IU/L) 100.00 19.00 22.00 26.00

GGT(U/L) 100.00 11.00 13.00 18.00

ALP (IU/L) 100.00 69.00 96.00 170.00

TBIL (mg/dL) 100.00 0.50 0.60 0.80

ALB (g/dL) 100.00 4.30 4.50 4.70

TP (g/dL) 100.00 7.00 7.20 7.50

AST/ALT 100.00 1.09 1.33 1.57

liquid chromatography-electrospray ionization-tandem mass
spectrometry (HPLC-ESI-MS/MS) for the quantitative detection
of phthalate metabolites (14).

We selected 12 metabolites tested in all five rounds and
excluded phthalate metabolites whose measured values were
more than 40% below the detection limit (LOD). The remaining
11 urinary phthalate metabolites used in our study were mono-
(carboxyisononyl) phthalate (MCNP), mono-(carboxyisoctyl)
phthalate (MCOP), mono-2-ethyl-5-carboxypentyl phthalate
(MECPP), mono-n-butyl phthalate (MnBP), mono-(3-
carboxypropyl) phthalate (MCPP), mono-ethyl phthalate (MEP),
mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-
ethylhexyl phthalate (MEHP), mono-isobutyl phthalate (MiBP),
mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-
benzyl phthalate (MBzP). Phthalate metabolites concentrations
below LODs were replaced with LOD divided by the square root
of two.

Concentrations of MECPP, MEHHP, MEHP, and MEOHP
were divided by their respective molar weight (MW) to obtain
the molar equivalent. We summed the molar equivalents of
these metabolites and multiplied by the molar weight of MEHP
(MW= 278) to obtain ΣDEHP metabolites (19).

Measurements of Covariates
Covariates were selected as potential confounders by referencing
to previous publications (20, 21). Covariates were age, gender,
race, education, ratio of family income to poverty (PIR),
physical activity, body mass index (BMI), and total daily

TABLE 3 | Association between log-transformed phthalate metabolites and

indicators of liver function for adolescents aged 12–19 years old in NHANES

2007–2016 (N = 1,650).

β (95% CI) P-value PFDR

ALT
∑

DEHPa −0.3339 (−0.7630 0.0952) 0.437 0.863

MCNP 0.2414 (0.3108, 0.7936) 0.662 0.887

MCOP −0.2438 (−0.8074, 0.3198) 0.665 0.887

MnBP −0.5485 (−1.2658, 0.1688) 0.445 0.863

MCPP −0.1163 (−0.5285, 0.2959) 0.778 0.916

MEP 0.1591 (−0.1512, 0.4694) 0.608 0.887

MiBP 0.0998 (−0.7522, 0.9518) 0.907 0.936

MBzP 0.5276 (−0.1920, 1.2472) 0.464 0.873

AST
∑

DEHPa 0.0460 (−0.2511, 0.3431) 0.877 0.920

MCNP 0.0793 (−0.3238, 0.4842) 0.844 0.916

MCOP −0.4631 (−0.8743, −0.0519) 0.260 0.693

MnBP −0.6381 (−1.6631, 0.3869) 0.534 0.877

MCPP 0.1178 (−0.2362, 0.4718) 0.739 0.916

MEP 0.2225 (0.0047, 0.4403) 0.307 0.728

MiBP 1.7819 (−0.0886, 3.6524) 0.341 0.753

MBzP −0.3969 (−1.3026, 0.5088) 0.661 0.877

GGT
∑

DEHPa −0.2084 (−0.5071, 0.0903) 0.485 0.887

MCNP 0.1705 (−0.1851, 0.5261) 0.632 0.887

MCOP 0.1373 (−0.2632, 0.5378) 0.732 0.916

MnBP 1.1198 (0.5187, 1.7209) 0.063 0.310

MCPP −0.5597 (−0.8166, −0.3028) 0.030 0.192

MEP −0.1097 (−0.3595, 0.1401) 0.661 0.887

MiBP −0.7511 (−1.1897, −0.3125) 0.087 0.352

MBzP −0.0995 (−0.3384, 0.5374) 0.820 0.916

ALP
∑

DEHPa 1.2759 (−0.8193, 3.3711) 0.543 0.887

MCNP 4.6037 (1.4705, 7.7369) 0.142 0.488

MCOP −1.4999 (−3.7503, −0.7505) 0.508 0.887

MnBP −0.8977 (−4.6925, 2.8971) 0.813 0.816

MCPP −0.7931 (−3.6079, 2.0217) 0.778 0.816

MEP −0.2738 (−1.8363, 1.2887) 0.861 0.918

MiBP 6.3493 (3.1975, 9.5013) 0.044 0.256

MBzP 3.1292 (0.5445, 5.7139) 0.226 0.629

TBIL
∑

DEHPa −0.0197 (−0.0330, −0.0064) 0.140 0.488

MCNP 0.0153 (0.0005, 0.0301) 0.301 0.728

MCOP −0.0435 (−0.0557, −0.0313) <0.001 0.007

MnBP 0.0273 (0.0086 0.0460) 0.145 0.488

MCPP 0.0466 (0.0300, 0.0632) 0.005 0.053

MEP 0.0159 (0.0075, 0.0243) 0.058 0.309

MiBP −0.0381(−0.0537, −0.0225) 0.015 0.120

MBzP 0.0075 (−0.0050, 0.0200) 0.549 0.887

ALB
∑

DEHPa −0.0453 (−0.0564, −0.0342) <0.001 0.003

MCNP −0.0026 (−0.0145, 0.0093) 0.827 0.916

MCOP −0.0379 (−0.0483, −0.0275) <0.001 0.006

(Continued)
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TABLE 3 | Continued

β (95% CI) P-value PFDR

MnBP −0.0151 (−0.0294, −0.0008) 0.298 0.728

MCPP 0.0339 (0.0230, 0.0448) 0.0019 0.024

MEP −0.0183 (−0.0262, −0.0114) 0.0082 0.075

MiBP 0.0006 (−0.0140, 0.0128) 0.966 0.966

MBzP −0.0149 (−0.0269, −0.0029) 0.215 0.625

TP
∑

DEHPa −0.0202 (−0.0351, −0.0053) 0.176 0.536

MCNP 0.0017 (−0.0162, 0.0196) 0.925 0.940

MCOP −0.0551 (−0.0694, −0.0408) <0.001 0.004

MnBP −0.0472 (−0.0682, −0.0262) 0.025 0.178

MCPP 0.0036 (−0.0144, 0.0216) 0.839 0.916

MEP 0.0121 (−0.0004, 0.0246) 0.335 0.753

MiBP 0.0108 (−0.0091, 0.0307) 0.588 0.887

MBzP −0.0120 (−0.0273, 0.0033) 0.432 0.863

AST/ALT
∑

DEHPa 0.0026 (0.0017, 0.0035) 0.774 0.916

MCNP −0.0184 (−0.0290, −0.0078) 0.084 0.352

MCOP −0.0050 (−0.0143, 0.0043) 0.595 0.887

MnBP 0.0070 (−0.0075, 0.0215) 0.630 0.887

MCPP 0.0098 (−0.0014, 0.0210) 0.383 0.817

MEP 0.0022 (−0.0043, 0.0087) 0.731 0.916

MiBP 0.0195 (0.0058, 0.0332) 0.154 0.493

MBzP −0.0182 (−0.0289, −0.0075) 0.088 0.352

a
ΣDEHP indicates the creatinine corrected molar sum of DEHP metabolites including:

MECPP, MEHHP, MEHP, and MEOHP (expressed as MEHP, molecular weight

278). PFDR is the P-value adjusted by the method of Benjamini-Hochberg false

discovery rate (FDR) correction to adjust for multiple testing. All models were

adjusted for PIR(≤1/>1), BMI (<25/25–30/≥30), age (12–14/15–17/18–19 years),

gender (male/female), race/ethnicity (Mexican American/Other Hispanic/Non-Hispanic

White/Non-Hispanic Black/Other Race), education (Less than high school/ High School

graduate or GED/ More than High), physical activity (Yes/No), and total daily protein intake.

Values in bold are statistically significant (PFDR < 0.05).

protein intake. Physical activity was a dichotomous variable,
with yes representing moderate or vigorous intensity sports,
fitness, or recreational activities in a typical week. BMI was
calculated as weight (kg) /height2 (m2) measured in the physical
examination and categorized into three levels: <25 kg/m2

(Normal/Underweight), 25 to <30 kg/m2 (overweight) and ≥30
kg/m2 (obese) (22). Data on total daily protein intake were
measured through a 24-h food recall interview.

Statistical Analysis
Demographic characteristics were reported as percentages.
Phthalate metabolite concentrations and liver function levels
were described in quartile range. We used urine creatinine to
adjust the concentrations of phthalate metabolites in all statistical
analyses (23, 24). Creatinine-adjusted phthalate metabolites
concentrations and indicators of liver function were natural log-
transformed to make them normally distributed. Spearman’s
coefficients were used to test the pairwise correlations of
phthalate metabolite concentrations (Supplementary Table 2).
We performed survey-weighted linear regression to assess the

associations of the urinary phthalate metabolites with indicators
of liver function. Benjamini-Hochberg false discovery rate
(FDR) correction was used to adjust P-values to adjust for
multiple testing.

All models were adjusted for PIR, BMI, age, gender, race,
education, physical activity, and total daily protein intake. All
analyses were performed using phthalate-specific subsample
weight to account for the complex sampling design and non-
response of NHANES. Weights for combined NHANES survey
cycles were calculated according to NHANES guidelines. All
statistical analyses were performed using R 3.5.3. All test values
were 2-sided and P < 0.05 was considered significant.

RESULTS

Study Population
Characteristics of the study subjects are shown in Table 1. Of the
1,650 participants, the average age was 15.49 ± 2.266 years, with
female subjects accounting for 46.5%. Most of the participants
are Non-HispanicWhite, 84.4% of the participants had education
less than high school, 67.3% had a ratio of family income to
poverty >1, 16.1% were obese, and 77.9% were physically active.

Levels of Urinary Phthalate Metabolites
and Liver Function Indicators
Descriptive statistics for phthalate metabolites and liver function
indicators are presented in Table 2. The detection rates for the 11
phthalate metabolites ranged from 71.90 to 99.90%. The median
concentrations of MECPP, MEHHP, MEHP, MEOHP, MCNP,
MCOP, MnBP, MCPP, MEP, MiBP, and MBzP were 7.34, 6.82,
5.03, 6.41, 5.42, 7.09, 7.29, 5.39, 8.47, 6.84, and 6.59 µg/mmol Cr,
respectively. Spearman correlation analysis showed that except
for MCOP and MEP, all of them were significantly correlated
(Supplementary Table 2).

Survey-Weighted Liner Regression
Analyses
The results of survey-weighted linear regression are shown
in Table 3. MCOP was negatively associated with TBIL
(β = −0.0435, PFDR = 0.007). ΣDEHP (β = −0.0453,
PFDR = 0.003) and MCOP (β = −0.0379, PFDR = 0.006) were
negatively correlated with ALB, while MCPP was positively
correlated with ALB (β = 0.0339, PFDR = 0.024). MCOP was
negatively correlated with TP (β = −0.0551, PFDR = 0.004).No
significant linear relationships were found between ALT, AST,
GGT, ALP, and ALT/AST with phthalate metabolites.

DISCUSSION

In this cross-sectional, population-based analysis of US
adolescents aged 12–19, we found significantly but weakly
associations between several phthalate metabolites and TBIL,
ALB, and TP. We observed null associations between phthalate
metabolites and ALT, AST, GGT, ALP, and ALT/AST. To our
knowledge, this is the first study examined the association
between urine phthalate metabolites with liver function indexes
in the adolescents population.
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ALT was mainly distributed in liver. AST was mainly
distributed in myocardium, followed by liver. Serum ALT can
be sharply increased before the onset of clinical symptoms
in patients with acute liver injury, while AST is significantly
increased in cases of chronic hepatitis, cirrhosis, and liver cancer
(15). ALP and GGT are also abundant in liver cells. Serum ALP
and GGT are significantly increased when cholestasis caused by
cirrhosis, cholelithiasis, and tumor (17). Yu et al. (12) reported
that ΣDEHP was positively correlated with ALT, GGT, and
ALP, and MBP was positively correlated with AST. Wang et al.
(25) reported that ALT, AST, GGT were significantly raised as
compared to the controls with increasing plasma DEHP residues.
Our study found phthalate exposure was not significantly
associated with ALT, AST, GGT, and ALP. There could be several
reasons for these differences. First, it may be because our study
only included participants aged from 12 to 19 years old, and
the other two studies were based on adults. Previous studies on
animal reported that the liver toxicity of phthalates was related to
dose and time-dependent (8). Second, we used urine creatinine
to adjust the concentrations of phthalate metabolites. Although
it is an acceptable urine dilution adjustment when measuring
non-persistent chemicals, more precise methods for calculating
biomarkers should be considered. Finally, we used single-point
urine samples instead of 24-h urine samples to measure phthalate
exposure, which may also increase the measurement error.
Further studies are needed to replicate these findings.

Bilirubin usually increases with excess bilirubin production
(such as hemolysis), hepatocyte injury (such as hepatitis,
cirrhosis, and fatty liver), or obstructed bile drainage (such
as bile duct stones, pancreatic cancer, and bile duct cancer)
(18). Previous studies have reported that phthalate exposure is
associated with cholestasis (26, 27). However, our study found
that MCOP was negatively correlated with TBIL. This negative
correlation may be related to the fact that phthalates are thought
to be involved in inducing oxidative stress and inflammation,
while TBIL is thought to have potent antioxidant properties (28).

Hepatocytes are the main site of protein synthesis. The
decrease of serum albumin and total protein levels indicates the
gradual decrease of normal hepatocytes and the poor function
of hepatocyte protein synthesis (16). Our study found that
ΣDEHP and MCOP were negatively correlated with ALB, as
well as MCOP and TP. This finding is consistent with previous
studies that showed exposure to phthalates can lead to hepatocyte
apoptosis and accelerate liver damage (29–31). Our results also
showed that MCPP was positively correlated with ALB. We
lack the detailed knowledge to explain this positive correlation,
additional studies will be required to clarify the mechanistic link
between phthalate exposure and ALB.

The main strength of this study is that we included a
representative sample of US adolescents andwe used the data that
had been consolidated for 10 years. To our knowledge, this is the
first study that summarized the urine phthalate levels and seven
liver function indicators in adolescents. The study provides more
evidence for further studies to demonstrate a correlation between
phthalate exposures with liver dysfunction.

Our study has several limitations. First, the NHANES
data were cross-sectional, which did not allow us to make
causal inferences. Therefore, all relationships are related and

further prospective research should be done to overcome
this methodological limitation. Regardless, this study provides
important information regarding how phthalate levels change in
association with subclinical changes in liver function indicators
in the US adolescents which have not been previously reported.
Second, because we had no information about the subjects’
alcohol consumption and smoking, we did not control for these
underlying variables and only adjusted for covariates such as age,
BMI, and sex. Finally, we measured phthalate exposure using
a single-spot urine sample from each subject, possibly without
taking into account changes in the human body over time.
This may prevent us from obtaining a more precise exposure
assessment to reduce exposure misclassification.

CONCLUSIONS

Phthalate metabolites were significantly but weakly associated
with changes in liver function indicators among US adolescents.
Future work should further examine these relationships.
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