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COVID-19 contact-tracing applications (CTAs) offer enormous potential to mitigate the

surge of positive coronavirus cases, thus helping stakeholders to monitor high-risk areas.

The Kingdom of Saudi Arabia (KSA) is among the countries that have developed a CTA

known as the Tawakkalna application, to manage the spread of COVID-19. Thus, this

study aimed to examine and predict the factors affecting the adoption of Tawakkalna

CTA. An integrated model which comprises the technology acceptance model (TAM),

privacy calculus theory (PCT), and task-technology fit (TTF) model was hypothesized.

The model is used to understand better behavioral intention toward using the Tawakkalna

mobile CTA. This study performed structural equation modeling (SEM) analysis as well as

artificial neural network (ANN) analysis to validate the model, using survey data from 309

users of CTAs in the Kingdom of Saudi Arabia. The findings revealed that perceived ease

of use and usefulness has positively and significantly impacted the behavioral intention of

Tawakkalna mobile CTA. Similarly, task features and mobility positively and significantly

influence task-technology fit, and significantly affect the behavioral intention of the CTA.

However, the privacy risk, social concerns, and perceived benefits of social interaction are

not significant factors. The findings provide adequate knowledge of the relative impact

of key predictors of the behavioral intention of the Tawakkalna contact-tracing app.

Keywords: COVID-19, contact-tracing app, health, privacy, behavioral intention (BI), technology adoption

1. INTRODUCTION

The usage of mobile contact-tracing apps (CTAs) has developed exponentially due to the severe
impact of COVID-19. One major reason behind this development is as a result of the effort
made to contain the spread of the coronavirus (1–3). Stakeholders are concerned about easing
movement control and physical distancing (4) and the weaknesses of manual contact tracing (5).
These circumstances have presented a compelling reason for stakeholders to depend on digital
monitoring, enabling more effective, engaging, and nearly instant tracing of cases than is the case
with traditional manual tracing methods (6, 7). The mobile contact-tracing apps are technology-
based solutions used to help increase the conventional contact-tracing process. The apps operate
by identifying contacts at risk of COVID-19 automatically (2). Hence, the contact-tracing apps
exchange information of personal phones within close range, which informs people of infected
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individuals. Also, the apps serve as an anchor point to inform
citizens and provide suggestions on whether they should go to
isolation or not.

Many contact-tracing solutions have been introduced by
various countries and technology companies (8, 9). Recent
advancements by Google and Apple in these efforts are providing
crisis managers with many features, such as personalized
messages, depending on the mobile user’s current geographic
location (9). Additionally, mobile phones, due to their ease
of use, are influencing citizens, with actual usage statistics
demonstrating a consistent rise in adoption (10), indicating
that many countries are shifting to technology-based platforms.
As a result, several studies have investigated these applications
that monitor infected individuals and their surroundings (10,
11). One of the primary issues is the personal information
provided by users (2, 12). The use of mobile devices enables data
capture that can be shared with third-party developers, analytics,
and decision-makers (13). This may raise concerns about the
user’s privacy, which are even greater when the authorities or
other public entities hold such sensitive information (14–16).
Furthermore, the many regulations used to protect users’ privacy
have increased the importance of this issue (17, 18). Hence, all
organizations and stakeholders must contribute to knowledge
and enhanced understanding of the rights, perceptions, and
behaviors of users of CTAs.

Some studies have reported that privacy is the primary
concern for users of COVID-19 tracing apps (2, 10). This concern
negatively influences the individual’s intention to share or
disclose personal information, therefore blocking the adoption of
the app. Others have indicated that the potential benefits of these
apps may outweigh the risks of being exposed to the coronavirus
(19). However, contrary opinions have indicated that this is not
simply the case of a pandemic, such as COVID-19, as individual
social activities are threatened (4). Hence, essential elements
influencing the acceptance of CTAs, especially the risk of losing
social involvement, have not been well-examined. Moreover,
in practice, the apps’ effectiveness is frequently promoted as
enabling immediate benefits to be obtained by users through
factors such as the apps’ usefulness. Still, most people hold some
concerns about the apps’ appropriateness and ease of use: as
emphasized in the literature, although appealing, the apps are
fraught with issues (10, 20).

Although, Kaspar (21) highlighted that most users are
interested and eager to use these types of app, however, it is still
vehemently clear that the factors that encourage users’ intention
to use and adopt these apps need to be researched. Accordingly,
the Kingdom of Saudi Arabia (KSA), one of the many countries
that have introduced a CTA (known as Tawakkalna), is using
the app to manage the spread of COVID-19. Therefore, this
study primary focus is to investigate the factors influencing users’
willingness to utilize an app, which has the ability to provide
users with information concerning potential association with
individual’s who may have contracted the virus. To achieve its
aim, the study is guided by the following research question:

• RQ: To what extent does existing technology adoption factors
influences the behavioral intention of Tawakkalna?

By applying the task-technology fit (TTF) model, the technology
acceptance model (TAM), and privacy calculus theory (PCT),
this study examines the impact of factors, such as perceived
privacy risk, perceived social risk, and social interaction, as
well as perceived ease of use (PEoU), perceived usefulness
(PU), and TTF on behavioral intention of Tawakkalna. Also,
this study investigate the predictive relevance of the key
indicators via machine learning (ML) technique that has
received little attention in the current literature (22, 23),
particularly the application of artificial neural network
(ANN). Moreover, this study is among the first to test the
predictors of behavioral intention of CTA using an integrated
model and a dual-stage SEM–ANN approach. Therefore,
the following section summarizes the rationale and existing
literature on the TTF model, the TAM, and PCT and presents
a conceptual model of Tawakkalna acceptance, along with
interrelated hypotheses. The research approach is then
discussed. Next, the results section contains information
on the hypotheses testing conducted. Finally, additional
discussion and implications are offered to substantiate
the conclusions, limitations, and recommendations for
further research.

2. LITERATURE REVIEW

2.1. Background and Motivation
The speed at which COVID-19 cases are increasing and
fear of overburdening health services has made numerous
countries implemented measures such as lockdowns to restrict
the virus spread (8). As a result, new technology-based
strategies for identifying contacts have been suggested, mainly
when case detection is aggressive (6, 7). The digital contact-
tracing mobile apps have been developed by government
and health authorities as a response to track association of
individual and automatically provide instructions concerning
self-isolation measures to potentially infected people. Also,
Apple and Google have introduced a third-party apps on iOS
and Android devices to facilitate the development of CTAs
by the public health agencies worldwide (8, 9, 20). Although,
Apple and Google assert that user privacy and security are
central to the design, privacy concerns have been raised (20,
24).

The privacy concerns have caused difficulties with trust
around users’ consent and participation in downloading and
using such apps. This is particularly true in liberal countries
that support socially progressive opinions. Moreover, in those
countries, the usage of such apps is optional, effectively negating
their purpose. According to (25) as cited in (8), the effectiveness
of contact-tracing apps depends on the number of people in
the population who use them. Approximately 50–70% of the
population within a region or a country is highly recommended.
The scientific and epidemiological evidence suggests that CTAs
can lower pandemic-related suffering and ease lockdowns (26).
Interestingly, online surveys outcomes, conducted in advanced
countries (France, United Kingdom, Italy, Germany, and the
United States) has demonstrated strong support for the CTAs
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FIGURE 1 | Countries with COVID-19 contact-tracing initiatives as of July 6, 2021. Source: Hale et al. (33).

(11). However, as emphasized by (8), this does not imply that
people will use the app.

Numerous studies indicate that CTAs can considerably
contribute in limiting and halting the spread of COVID-19
by accelerating reporting and contact-tracing practices through
enhanced proximity tracing, digital data flow, and geolocation
monitoring (8, 27). They could play a critical role, given the
widespread usage of internet-connected devices, increasing the
speed with which many smartphone users can be monitored
in real time to determine infection hotspots. Contact-tracing
apps are critical to COVID-19 management measures in several
countries (28). Additionally, they can be vital in flagging other
illnesses, mainly when physical contact tracing is impossible.
Indeed, work by Kucharski et al. (29) emphasized that combining
testing and contact tracing significantly reduced the transmission
of the coronavirus more than either self-isolation or mass testing.

Notably, the literature has expressed consensus regarding the
difficulty of implementing contact tracing without infringing an
individual’s privacy (8, 9, 24). The threat to personal privacy was
significant enough for Google and Apple to work on an exposure
notification API, an application programming interface (API).
The API enables public health organizations to deploy contact-
tracing solutions designed to protect users’ privacy and security.
The efficiency of the apps in tracking and tracing individuals
infected with COVID-19 has however been questioned in
advanced countries by industry experts and academics. The apps
have been limited by privacy, security, and technical issues, and
their influence on the COVID-19 pandemic remains unknown
(30, 31).Moreover, many countries worldwide have notmade any
effort to implement CTAs, and their COVID-19 management has
been among the best (e.g., Mauritius, Tanzania, and Iceland) (32).
Figure 1 presents countries across the world, showing those with
no tracing, limited tracing, and comprehensive tracking.

2.1.1. Adoption of CTA
The development of contact tracing apps and adoption is a never-
ending problem for public health systems and policymakers
(34). This study offers an evidence-based, situation-specific
concern to understand better the theoretical and practical
significance of CTA adoption in KSA. The literature review
shows that most of the contact tracing apps adoption where
conducted in liberal countries (10, 11, 34–41). According to
the existing studies, the unified theory of acceptance and use
of technology (UTAUT), privacy calculus theory (PCT), and
extended technology adoption model (eTAM) dominated the
studies of CTA adoption. Similarly, privacy concerns are the
major issues studied in CTA adoption, and most of the literature
shows that privacy is not a significant predictor of CTA. However,
privacy concerns are not investigated in other regions, such as the
Middle East and Africa. This calls for more studies to investigate
this phenomenon in another geographical context.

Moreover, the current CTA adoption literature have
integrated multiple theories in their studies. For example, work
by Sharma et al. (36) integrated fairness theory (FT), dual
calculus theory (DCT), protection motivation theory (PMT),
theory of planned behavior (TPB), and Hofstede’s cultural
dimension theory (HCDT) to investigate the adoption intention
of CTA. The literature review has identified a few studies that
employed a two-stage analysis to investigate CTA adoption.
Specifically, Duan and Deng (37) employed CB-SEM with
an artificial neural network (ANN) approach to investigate
the CTA adoption through the lens of the unified theory of
acceptance and use of technology and privacy calculus theory in
Australia. In contrast, the study by Nguyen et al. (39) investigated
the extended technology adoption model through PLS-SEM
and fuzzy set/qualitative comparative analysis (fsQCA). The
summary of the review findings is presented in Table 1. This
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review provides a validated list of elements influencing people’s
CTA adoption concerns and attitudes in various countries.
However, similar studies in the context of KSA are lacking to
allow policymakers to take systematic steps to address these
issues and enhance CTA acceptance.

2.1.2. Tawakkalna
The recent support by information technology has enable
several countries implemented CTAs to restrict the spread of
the COVID-19 virus. The Kingdom of Saudi Arabia (KSA) is
among the countries that have harnessed technology innovation
to manage the spread of the coronavirus. Thus, in the KSA’s
efforts and as part of its commitment to protect the health and
safety of its citizens and residents from the risk of COVID-
19 transmission, the government introduced an app called
“Tawakkalna” to trace the health status of individuals and to
permit them to enter public places. The app was developed by
the Saudi Data and Artificial Intelligence Authority (SDAIA)
to support government efforts to fight the coronavirus spread;
this is along with other initiatives such as Tetamman, Tabaud,
Sehha, and Mawid (42). In the nine months since Tawakkalna’s
inception, the app has accumulated over 17 million users (43).
This result demonstrates the app’s high reliability as one of the
most successful and effective digital solutions.

As a result, the Tawakkalna app was built to support the
digital issuance of movement approvals for private sector and
government employees as well as individuals with emergency
concerns. This is in collaboration with the Ministry of Health
and other relevant authorities to limit the spread of the pandemic
during the movement control order period. Individuals, as well
as health, private, and security entities that are not primarily
concerned with movement control, can use the app to automate
all interactions between relevant parties, significantly reducing
the economic, health, and social consequences of policies
adopted to eradicate COVID-19 (6). Similarly, Tawakkalna assists
managers of the crisis to monitor CTA users’ health status.
Moreover, the app provides other services, such as allowing
individuals to report policy violations or any suspected cases
through social responsibility and encouraging users to take
precautions before leaving their homes (11). According to a
survey conducted by (44), Tawakkalna has higher ratings for
users’ expectations in its key performance indicators (KPIs) than
its counterparts, the Tetamman and Tabaud.

Furthermore, several studies in the literature have been
conducted on the KSA’s COVID-19 technology-supported
management (42, 44, 45). Although, peak number of these
studies focused on investigating the role of mobile applications
in health or investigating the adoption factors without a link to
adoption theory in the information systems literature. Hence,
most of the existing work has not addressed the adoption factors
based on the theoretical lens of information systems literature
concerning technology adoption model, as well as the holistic
picture of privacy risk concerns. Hence the focus of this study is
to investigate the acceptance of the Tawakkalna app via the TAM,
and the TTF and PCT theoretical models.

2.2. Theoretical Foundation
Technology adoption theoretical models are used to examine
adoption behavior in the IS literature. The following sections
discuss the models covered in this study. To be specific, the
explanation of each model is then provided along with the reason
why it is suitable for this study.

2.2.1. Technology Acceptance Model (TAM)
The technology acceptance model (TAM), created by (46) and
(47), comprises two fundamental factors, perceived ease of
use (PEoU) and perceived usefulness (PU), and a third factor
called attitude toward use (ATU). PU is defined as a person’s
belief that utilizing a system will improve his/her performance
and PEoU as explaining a person’s belief that using a system
is effortless. Additionally, Davis et al. (48) emphasized that
the actual usage of the system is influenced by the user’s
behavioral intention which is driven, in part, by the user’s attitude
toward the system’s use and perceived usage (49). The TAM is
employed in this study as it has been primarily acknowledged
by academic researchers in the technology adoption literature
(23, 50–52). Taherdoost (52) and Alwabel and Zeng (23) added
that the TAM is arguably the most frequently quoted model
in the field of technology acceptance. It has received strong
empirical backing during past decades. Moreover, research by
Turner et al. (53) suggested that, by using the TAM at the
time of the release of a technology, the model should be
able to forecast future usage of that technology. Similarly, the
suitability of the TAM to predict new technology usage has been
widely emphasized (51, 52). Research has suggested the use of
acceptance theories, such as the TAM, in future CTA studies (8).
Apart from being a widely compared model, the TAM, with some
updates, has been utilized to assess the intention to use apps
in various industries and contexts (54–56), including health app
(57).

Benbasat and Barki (58) argued that many adoption
contexts are required to understand diverse behavioral factors.
Understanding specific behaviors would provide more significant
recommendations for the design and practice of technology
than just arguing for higher usefulness. CTA are still in their
infancy, and just a few researchers have studied whether PU and
PEOU perceptions continue to be sufficient to account for users’
behavioral intents to use CTA. Although, CTA are sophisticated
technologies that operate under various laws, settings, and
features that vary based on social norms of a particular country
(8, 36). No study has investigated the PU or PEOU from the
Tawakkalna point of view. Therefore, this study employs the two
independent variables of the TAM. Additionally, this work aims
to close the gap in the literature on TAM and other technology
adoption models by applying machine learning (ML) techniques
to aid in developing a predictive technology acceptance model
that has received little attention in the existing literature (23). To
our knowledge, no study has usedML techniques such as artificial
neural networks to predict PU and PEOU in CTA adoption. As
a result, both PU and PEOU are required and appropriate for
examination in this study.
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TABLE 1 | Summary of existing CTA adoption studies.

References Theory Analysis method Findings Country

Velicia-Martin et al.

(10)

Extended TAM Empirical, PLS-SEM Usefulness and ease of use are significant predictors.

However, there is no cause of privacy concern.

Spain

Altmann et al. (11) NA Empirical, multivariate

regression analysis

The main barriers to adoption include cybersecurity and

privacy and lack of trust in the government.

France, Germany, Italy, the

United Kingdom, and the

United States.

Nguyen et al. (39) Extended TAM Empirical, PLS-SEM, and

fuzzy set/qualitative

comparative analysis

(fsQCA)

Risk perception, perceived usefulness, and health information

orientation positively influence behavioral intention, which

affects actual use.

United States

Hassandoust et al.

(34)

Integrative

situational PCT

Empirical, PLS-SEM Risk beliefs, perceived individual and societal benefits to

public health, privacy concerns, privacy protection initiatives

(legal and technical protection), and technology features

(anonymity and use of less sensitive data) are significant. In

addition, there is an indirect relationship between trust in

public health authorities and intention. Also, sex, education,

media exposure, and past invasion of privacy did not have a

significant relationship.

United State (US)

Meier et al. (41) Privacy calculus

perspective

Empirical, CB-SEM Positive effects include perceived benefits and knowledge on

actual app adoption, perceiving app benefits and usage

intention, and trust with perceived benefits. However, those

with negative effects include privacy concerns and usage,

trust and privacy concerns, and privacy concerns with app

usage.

Germany

Walrave et al. (35) UTAUT Empirical, CB-SEM Performance expectancy, facilitating conditions, and social

influence was significant, while effort expectancy was not.

Moreover, individuals’ innovativeness affects app use

intention, whereas privacy concerns have a negative impact

on intention.

Belgium

Duan and Deng

(37)

UTAUT and PCT Empirical, CB-SEM, and

ANN

Effort expectancy, the perceived value of information

disclosure, and social influence are significant. Moreover,

perceived privacy risks and performance expectancy are

indirectly significant. However, facilitating condition is

insignificant.

Australia

Blom et al. (38) NA Empirical, descriptive

statistics

Effectiveness of app-based contact tracing to contain the

COVID-19 pandemic.

Germany

Dowthwaite et al.

(40)

Extended TAM Empirical, descriptive

statistics

Differences in vulnerable populations’ attitudes toward and

trust in the app and compliance with self-isolation guidance

were emphasized.

United Kingdom

Sharma et al. (36) FT, DCT, PMT, TPB,

and HCDT

Empirical; PLS-SEM The relationship between the effectiveness of privacy policy

and privacy concerns is negative, perceived vulnerability and

privacy concerns is positive, expected personal and

community-related outcomes of sharing information and

attitudes is positive, privacy concerns and attitudes is

negative, and attitude, subjective norms, and privacy

self-efficacy on intention is positive.

Fiji

2.2.2. Privacy Calculus Theory (PCT)
According to privacy calculus theory (PCT), consumers make
privacy-related decisions by weighing the benefits of any
information disclosed against the risks of its exposure. Thus,
this study focuses on the specific risks that influence users’
acceptance of CTAs. The PCT has been employed to better
understand consumers’ assessment of the objectivity of disclosing
private information (59–61). Furthermore, the PCT claims that
consumers make privacy decisions by weighing the potential
benefits against the potential risks posed by disclosing their
personal information (62). Thus, the concept of privacy has a
significant impact on how information is disclosed (63, 64), in

the online context, privacy refers to the individual’s awareness
and control over the gathering and use of his/her personal data
(65).

Prior research has established that a user’s decision to
download a new app is not always reasonable when the risks
and rewards of information trading are evaluated. Instead,
external pressures such as time restrictions, quick gratification,
or optimistic bias impact on the decision, leading to acceptance
of the advantages while ignoring the risks (66, 67). As consumers
gain experience with mobile apps, they tend to focus on the
benefits and downplay the potential hazards. Users may be
unaware of the personal health data trade-off with a CTA when
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downloading the app. This research employs PCT to focus on
the rational evaluation of risk-benefit calculations that users may
undertake to determine whether to accept or reject this type of
interaction. Using findings from earlier studies that employed
PCT to explore electronic commerce (e-commerce) and mobile
commerce (62, 68–70), and CTA adoption (36, 71), this research
examines the critical risk and reward components of contact
tracing, a hitherto understudied area. The hypothesis is that
both perceived risks and advantages influence users’ acceptance
of Tawakkalna.

2.2.3. Task-Technology Fit (TTF) Model
Over the past few decades, a significant amount of research has
been conducted to understand behavioral intentions, including
general use intention, actual usage, and continuous use of
information systems (IS) via technology adoption models
(46, 72, 73). Among several theoretical frameworks, the TTF
model focuses on how newly developed technological solutions
(IS products) fit a user’s current tasks, hence boosting the
user’s performance (74–76). The assessment of how well the
technologies incorporated in an IS-based product meet users’
current tasks is the primary focus of the TTF model. The
TTF model has been extensively applied in information system
research and recently, it is frequently coupled with other models,
such as the information system success model (77), social
cognitive theory (SCT) (78), and the unified theory of technology
acceptance and use (UTAUT) (79, 80). As with the TTF model,
the use context established by an IT product is critical for its
acceptability and use (81, 82).

The CTA was developed and introduced as a result of the
integration of information technologies into health services.
The amount of research conducted under the contact-tracing
umbrella in the study of IT usage intentions has been substantial
(10, 44, 45). The concept of mobility has been viewed as an
explicit technological component within the TTF framework (79,
81, 83, 84). By utilizing a mobile app for a CTA, users’ perceptions
of the TTF model can be enhanced by the ability to perform
certain activities anywhere and at any time (79, 83, 85), which, in
turn, changes their behavioral intention toward the task. Mobile
health apps used in emergencies can be classified as “general-
purpose apps” or “built-for-disaster-purpose apps” (86, 87), with
contact tracing falling under the latter category. Most CTAs have
capabilities that allow interaction patterns between citizens and
crisis management authorities during emergencies (88). The use
of technology-mediated mobile apps is already ingrained in our
societal structure. Therefore, in addition to understanding the
mobile CTA, evaluating its technical characteristics, particularly
its mobility, need to be evaluated. In light of the success reported
in the literature of the TTF model on behavioral intentions
toward mobile apps, this study applies the model via integration
with TAM and PCT to better understand usage intentions toward
the KSA’s CTAs.

3. MODEL AND HYPOTHESES
DEVELOPMENT

Research on theory development has highlighted the need for
integrating theories and models (34, 36, 37, 80, 89, 90). Based

on the TAM, PCT, and the TTF model, this study develops and
applies an integrated model to explain behavioral use intention
toward the Tawakkalna COVID-19 tracing app, as shown in
Figure 2. Behavioral intention (BI) has been described as the
extent to which an individual hasmade deliberate decisions about
whether to perform or not to perform a particular behavior or
the probability of an individual’s intention to engage in a specific
behavior (91, 92). This study defines BI as the extent to which
an individual will adopt or continue to use Tawakkalna in the
future (71). Accordingly, the TTF model is influenced by both
mobility and task characteristics. The TAM PEoU also has effects
on perceived usefulness (PU). The BI is determinedmainly by the
TTF, PU, PEoU, perceived privacy risk, perceived social risk, and
social interaction. The perceived social risk has both positive and
negative effects on behavioral intention. The following section
discusses the research model and its hypotheses in detail.

3.1. TAM Constructs
Earlier studies that used the TAM to examine public health IS
apps discovered that PEoU and PU were the most prevalent
and significant technology acceptance factors (93–95). Perceived
usefulness is defined as the degree to which an individual
believes that utilizing a system will reasonably improve his/her
performance (46). Perceived ease of use is described as a person’s
belief that utilizing technology will involveminimal exertion (96).
Similarly, according to the TAM, an individual’s attitude toward
a technological system is defined by these two variables: PU and
PEoU. Moreover, Velicia-Martin et al. (10) recently investigated
COVID-19 tracing app acceptance via the TAM’s theoretical
lens. The results of that study found that PEoU and PU were
significant predictors of intention to use the CTAs. Hence, this
study anticipates that the KSA population will embrace and use
Tawakkalna due to the benefits associated with its use. As a result,
the following hypotheses are formulated:

Hypothesis 1 (H1): Perceived ease of use has a positive and
significant effect on behavioral intention of Tawakkalna.
Hypothesis 2 (H2): Perceived usefulness has a positive and
significant effect on behavioral intention of Tawakkalna.
Hypothesis 3 (H3): Perceived ease of use positively and
significantly affects perceived usefulness.

3.2. PCT Constructs
Internet-related perceived privacy risk refers to the extent to
which internet users are concerned about how and to what extent
an online entity collects and uses their personal information
(97). This indicates a perceived disconnection between users’
expectations and the reality of how their personal information
will be managed (13). Numerous difficulties are arising in the
context of COVID-19 crisis management that may impede users’
acceptance of contact tracing. These difficulties cover the sixmain
dimensions that shape internet privacy concerns: data collection,
improper access, secondary usage, error, awareness, and control
(98). The degree to which an individual is concerned about
the amount of personal data that the internet app has gathered
is characterized as part of data collection. Concerns about
secondary data usage occur when an individual is worried that
personal information might be used for another reason or shared
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FIGURE 2 | Research model for adoption of Tawakkalna contact-tracing app (CTA). BI, behavioral intention; PCT, privacy calculus theory; PEoU, perceived ease of

use; PR, privacy risk; PU, perceived usefulness; SI, social interaction; SR, social risk; TAM, technology acceptance model; TF, task features; TM, technology mobility;

TTF, task-technology fit.

with third parties without his/her consent. Improper access is
when an individual is concerned about personal information
being stolen or made available to unauthorized parties. Error
focus refers to the accuracy of personal information and the
techniques used to correct and maintain error-free personal data.
Awareness refers to an individual’s understanding of privacy
terms and conditions. Control reflects the lack of adequate
measures to control data collection and management.

Privacy concerns are critical in the COVID-19 tracing
app context, as the app requires the acquisition of not only
personal information but also location information, which
many individuals regard as very sensitive due to the increased
potential of information misuse (99–101). The sharing of
personal information, such as health status and location details,
is of particular concern to users of certain mobile apps (19).
Additionally, several studies in the literature have already raised
concerns about the impact of privacy issues in relation to CTAs
(8, 10, 36, 71). As a result, it is reasonable to predict that
Tawakkalna will be seen negatively by persons with a high level
of perceived privacy concerns who are likely to view location
tracking and information storage as a danger to their freedom
and privacy. Thus, the following hypothesis is proposed:

Hypothesis 4 (H4): Perceived privacy risk has a negative and
significant effect on behavioral intention of Tawakkalna.

Moreover, perceived risk has been characterized as the
uncertainty, uneasiness, and worry felt by users when they

cannot anticipate the repercussions of providing personal
information online (102). This level of disclosure is enhanced
in the mobile environment, as it enables the detection of a
user’s location, the time, and the presence of other connected
users in the vicinity (62). Although perceived risk has been
conceptualized as a multidimensional term encompassing
financial, performance, physical, physiological, and social risk
(13, 60). This study focuses on social risk as a particularly
prominent component in the contact-tracing application.

In PCT, the readiness to disclose information is connected to
a negative perception of risk and the perception of a favorable
benefit. For example, by revealing location-based information
or health status to authorities, individuals may benefit from
physical movement (4, 16), which may increase the number of
users inclined to use the contact-tracing app. On the other hand,
location-based information is viewed as highly sensitive (16) by
users who perceive this information as intrusive, who do not
want their social activities to be threatened by authorities due
to COVID-19 risk exposure, or who are fearful of being forced
to self-isolate. Hence, the pandemic has significantly harmed
individuals’ capacity to have deep interpersonal relationships
with other people and has severely impaired the extreme
human need for contact, discouraging or containing any physical
manifestation of attachment and connection (4, 103). The reason
is that authorities are viewing reduced social interaction as the
way to save millions of lives during the COVID-19 pandemic
(104, 105). Moreover, the pandemic has displaced many people
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from their jobs and, crucially, from their social networks,
forcing them to collaborate and maintain affiliations remotely
and distantly (106). Thus, the following hypotheses are stated
concerning social risk and social interaction benefits that could
be derived from using a CTA.

Hypothesis 5 (H5): Perceived social risk has a negative and
significant effect on behavioral intention of Tawakkalna.
Hypothesis 6 (H6): Perceived social interaction has a positive
and significant effect on behavioral intention of Tawakkalna.

3.3. TTF Constructs
According to previous literature, the TTF framework has been
modified to meet the nature of emergency response settings and,
thus, it is integrated into the research model in its entirety.
As previously stated, mobility is viewed as a distinguishing
technological element of mobile contact tracing in this study.
To be more precise, mobility is defined as the degree to which
users perceive their ability to access and use mobile contact
tracing at any time and from any location (79, 81, 82). This
technological aspect is particularly beneficial for crisis and
emergency responses, as an individual suffering a time-sensitive
occurrence may immediately access the application (87, 107). As
a result, the following hypothesis is formulated:

Hypothesis 7 (H7): Technologymobility is positively related to
task-technology fit.

Moreover, in the TTF framework, task features/characteristics
are typically interpreted as helpful behaviors that satisfy users’
needs in using an information system (IS) (79, 82, 108). Typically,
the Tawakkalna tracing app has a bundle of specific task
characteristics that are reshaped to fit the study setting (84).
Individuals can utilize the app to seek/share health information,
engage with authorities, access COVID-19 vaccine, and report
concerns (43, 88). Users can also execute various emergency
response tasks within a single platform via their mobile at any
time and from any location (87). As a result of these task features
or characteristics, the following hypothesis is formulated:

Hypothesis 8 (H8): Task features or characteristics are
positively related to task-technology fit.

Validation of H7 and H8 contributes to knowledge of the fit
between mobility and emergency response tasks and, thus, are
crucial to the research questions. According to (79), a strong
match between task and technology promotes users’ behavioral
intentions, whereas a weak match has a negative effect on their
behavioral intentions. Numerous studies in the literature on
other mobile apps have demonstrated how consumers’ perceived
task-technology fit affects their adoption of a specific app
(77, 79, 84, 85). For example, evidence on users’ behavioral
intentions regarding mobile learning demonstrates the effective
implementation of the TTF model (108, 109). Similarly, an
individual’s perceived task-technology fit concerning emergency
responses via mobile social media is a significant predictor of
his/her behavioral intention toward mobile social media during
emergencies (82). Thus, this study proposes that the TTF could
impact on the success of behavioral intention toward Tawakkalna

as the app is mobile-based and has learning, health, and social
support. Hence, the following hypothesis is formulated:

Hypothesis 9 (H9): Task-technology fit positively and
significantly affects behavioral intention of Tawakkalna.

4. RESEARCH METHODOLOGY

4.1. Data Collection Process
The targeted sample comprised residents of the KSA, including
citizens and non-citizens, who were using the Tawakkalna app
and were above 18 years old. Purposive sampling, a non-
probability sampling strategy, was used in this study. It is
defined as an approach in which targeted items meet particular
requirements (110). Purposive sampling (judgement sampling) is
the purposeful selection of a participant based on the participant’s
characteristics (111). It is a non-random strategy that does not
require any underlying principle or a predetermined quantity
of participants. The researcher uses this technique to survey a
population that meets certain criteria for being viable for the
study (110, 111). The researcher determines what information
is required and then seeks out persons who can and will supply
it based on their knowledge or experience (111). Purposive
sampling improves the study’s rigor and the reliability of the data
and outcomes by better matching the sample to the research’s
goals and objectives (112). Moreover, the purposive sampling is
an effective strategy for researching the early phases, when target
participants have little or no expertise with the technology under
inquiry (111, 112). Contact-tracking apps, notably Tawakkanla,
are still in their infancy and consequently have a small user base
(8). Additionally, this technique has been employed to study the
adoption of existing IT (113). Thus, it is appropriate for this
research.

In data gathering, purposive sampling can be used with several
techniques (110). To recruit respondents, this study used the
snowball sampling technique which follows purposive sampling
(110, 112). Snowball sampling is the process of identifying
participants “through referrals made among people who share
or know of others who possess some characteristics that are
of research interest” (114). This technique is suitable for this
study due to the difficulty of obtaining a list of targeted users
of Tawakkalna to ask them to describe their perceptions and
experiences (110). A pre-test phase was conducted to validate
and refine the questionnaire (115). Five information systems
professors were asked to assess the survey questionnaire in
order to confirm the questions and items’ face validity. Minor
revisions were made in response to their feedback. The survey
was prepared on google form and the link was then sent by
email and posted on two popular and highly used social network
tools in the KSA, namely, WhatsApp and Twitter. The initial
respondents were invited to forward the link to family members,
friends, and coworkers, in order to encourage them to complete
the questionnaire and share the URL with others (112). Two
survey links were created to reveal the numbers recruited from
the selected settings. In total, 1,080 clicks were accessed via
the questionnaire link; 78% of responses were recruited from
Twitter and WhatsApp, while 22% received an email invitation.

Frontiers in Public Health | www.frontiersin.org 8 May 2022 | Volume 10 | Article 847184

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Alkhalifah and Bukar Examining the Prediction of COVID-19 CTA Adoption

Furthermore, responses that were incomplete (549), responses
that were completed in less than the average time for survey
completion (7 min) (193), and responses that indicated the
respondent was under the age of 18 (30) were removed from the
study during the data cleaning. Hence, the final sample consists
of 309 records which were completed and ready for further
evaluation. The data collection procedure was conducted in 2
weeks between March 1 and 15, 2021.

A sufficient sample size should be used to estimate a model’s
parameters (116). When using confirmatory factor analysis
(CFA), (117) recommended that the sample size be greater than
300 in order to objectively and adequately accomplish the study.
However, the work byHair et al. (116) disputed this figure, stating
that, for a minimum R2 (coefficient of determination) value of
0.25 with 5% error probability and 80% statistical power, the
minimum sample size should be 45 for at least a maximum
number of five arrows pointing to the dependent variable. Our
sample is larger than those in similar SEM–ANN studies (118).
Therefore, based on the criteria listed above and the statistical
analysis method used in this study, the total sample size obtained
(N = 309) is deemed adequate and sufficient for estimating the
parameters of the model. As this study adopted partial least
squares (PLS) and conducted CFA, the normality issue did not
need to be considered for normally distributed variables (119,
120).

4.2. Item Development
The item creation phase is important to confirm the content
validity of measurement items (120). The item measures
utilized in this study were designed and tested previously in
well-established research, with minimal alterations to match
the purpose of this study (121). Hinkin (122) hinted that
there is no strict rule governing the number of items that
should be included in each construct. Although, it is critical
to guarantee that each construct’s domain is adequately
sampled (123). Also, work by Gefen et al. (120) insisted
that three indicators that are completely dependent on a
single common factor can statistically detect the construct
factor measurement model. Accordingly, most constructs in
the current study were measured by at least three items (see
Table A1).

Behavior intention (BI) was reflected by three items adopted
from (71, 73). Perceived ease of use and usefulness scales were
adopted from (47) and (10). Three items were created for task
features (TF) (79, 82), while mobility (TM) (79, 81, 82) was
measured using four items. Three items were employed for each
of TTF (79, 82) and social interaction (SI) (103). Also, this study
adapted four reflective indicators to measure each of privacy
risk (PR) (13, 98) and social risk (SR) (13). A 7-point Likert
scale was used as a multiple-item scale so respondents could
rate their degree of agreement to record their responses. The
scale ranged from “strongly agree” to “strongly disagree,” with “7”
being strong agreement and “1” being strong disagreement (122).
The questionnaire was written in English and translated into the
Arabic language as responses were sought from all layers of Saudi
citizens, providing them with the opportunity to participate.

4.3. Common Method Bias and
Non-response Bias
The study findings may be vulnerable to common method bias
(CMB), as survey data were self-reported, and behavior was
not quantified as it was based on users’ self-assessment (124).
As a result, some methods were implemented to evaluate and
mitigate the potential for CMB, as recommended by (125). To
be specific (126), priori procedural remedies were incorporated.
This method was utilized during the pre-test phase to refine the
scale items and eliminate potential ambiguities, with multiple-
choice questions periodically included to break up the pattern
of questions rated using Likert scales. Moreover, to check for
CMB, Harman’s single-factor test was run. The result shows that
the total variance was <50%, which is 40.72%, indicating that
CMB was not an issue in this study (Table 2). Also, the path
coefficients obtained from the structural model assessment had
varying degrees of relevance (125).

This study applied the non-response bias test (121). Thus,
two subsamples were created based on the order in which
respondents responded to the survey questionnaire. The first 75
early responders were divided into two groups, while the second
75 late respondents were divided into two groups. The two groups
were compared using a two-tailed t-test with a 5% threshold of
significance (127). There were no significant differences in the
test outcomes between these two groups of responders. As a
result, this study was not concerned with non-response bias.

4.4. Data Analysis Methods
4.4.1. Structural Equation Modeling (SEM)
The study used a PLS-SEM technique to analyze the data.
Two primary reasons prompted the researchers to select
this technique: firstly, the PLS technique does not make a
strict assumption about the normal distribution of data (128).
Secondly, the PLS technique is preferable for composite analysis
(129). Another reason for using the PLS-SEM technique was
a dearth of established hypotheses for predicting behavioral
intention toward the COVID-19 CTA, as well as the model’s
relative complexity, as it contained nine constructs. As such, the
study evaluated the measurement model first by determining
the constructs’ reliability and validity, and then estimated the
path coefficients and other structural model parameters through
CFA based PLS-SEM approach, in accordance with available
recommendations (129, 130). Therefore, SmartPLS 3 software
was specifically employed throughout the SEM process.

4.4.2. Artificial Neural Network (ANN)
The study re-examined the research model using an artificial
neural network (ANN). The dual analysis was undertaken due
to the benefits from both PLS-SEM and ANN strengths (22, 23,
131, 132). Thus, the ANN was used to determine the predictors
of Tawakkalna use intention (133). The PLS-SEM technique is
regularly used to examine and test causal relationships (116, 134).
Moreover, Chan and Chong (134) and Teo et al. (135) reported
that the ANN is utilized to identify complex linear and non-
linear relationships. Although recent studies suggested that the
ANN is not enough to handle a complex nonlinear relationship
(136, 137). Nevertheless, the ANN approach give better results
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TABLE 2 | CMB total variance explained.

Factor Initial eigenvalues Extraction sums of squared loadings

Total % of variance Cumulative % Total % of variance Cumulative %

1 13.302 41.568 41.568 13.032 40.724 40.724

2 3.327 10.398 51.966

3 1.969 6.153 58.12

4 1.492 4.663 62.783

5 1.05 3.283 66.065

6 0.981 3.065 69.13

7 0.812 2.536 71.666

8 0.766 2.395 74.062

9 0.733 2.292 76.353

10 0.696 2.174 78.527

than conventional prediction methods (137) and is more precise
than the usual regression strategy in terms of prediction (82, 138).
As a result, the ANN approach has been utilized to examine the
link between dependent and independent variables in IS research
(22, 82, 132, 139, 140). Hence, this study employed ANN analysis
to determine the factors that significantly influence Tawakkalna
use intention.

5. RESULTS

5.1. Descriptive Statistics
Table 3 shows the demographic profile of respondents. The
samplemostly comprisedmale respondents (66.9%). Ages ranged
from 18 to 41 (79.9%) and 21% were older than 41 years. The
sample level of education shows that 90.4% have a Bachelor’s
degree or higher. With respect to mobile app usage, 78.3% of
the sample used the apps between 1 and 7 h daily. This data
is consistent with a previous survey report indicating that the
average daily mobile usage time is between 5 and 6 h (141).
Furthermore, according to the mean values, the number of
responses falls between 4 and 7, which spans from 4.39 to 5.39.
In addition, the standard deviation range is narrow, indicating
that the values are near the mean. In addition, the data shows
minor variations and deviations. Rumsey (142) defined the data
concentration toward themean as the respondents’ agreement on
the impact of factors on behavioral intention. Table 2 shows the
results of the mean and standard deviation of the constructs.

Moreover, to better confirm the normality distribution, the
skewness and kurtosis tests were used to evaluate multivariate
normality in the data (143). The skewness test verifies that the
variable distribution is symmetrical by determining the most
likely scenario (116). The ranges from −1.96 to +1.96 are used
to determine if the data is normally distributed. However, if
the sample size is more than 300, the thresholds for skewness
and kurtosis are −2 to +2 and −7 to +7, respectively (144).
The skewness and kurtosis results for this study are reported
in Table 4. Hence, the data met the appropriate normality
assumption based on the regression normality coefficient. As a
result, themotivation to use path analysis using PLS is valid (116).

TABLE 3 | Demographic characteristics of sample.

Category Frequency Percent

Gender

Male 207 66.9

Female 102 33.1

Age (years)

<18 0 0

18–21 28 9.1

22–31 95 30.7

32–41 121 39.2

42-51 45 14.6

52–61 17 5.5

More than 61 3 1

Education

Not educated 0 2.6

Secondary school 8 4.9

Diploma 15 58.3

Bachelor 180 14.6

Master 45 17.5

PhD 54 2.9

Others 9

Nationality

Saudi 226 73.1

Non-Saudi 83 26.9

Mobile app day usage

<1 h 11 3.6

1–3 h 160 51.8

4–7 h 82 26.5

8–11 h 35 11.3

12–15 h 12 3.9

More than 15 h 7 2.3

Not specified 2 0.6

5.2. Reliability and Validity
The reliability and validity of the study’s constructs were
determined by confirmatory factor analysis. To test the
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TABLE 4 | Descriptive statistics: mean, standard deviations (S.D.) skewness, and kurtosis.

Mean Std. deviation Skewness Kurtosis

Statistic Statistic Statistic Std. error Statistic Std. error

BI 5.175 0.957 −0.613 0.139 0.878 0.276

PU 5.188 1.039 −0.471 0.139 −0.132 0.276

PEoU 5.395 0.845 −0.513 0.139 0.311 0.276

PR 4.385 1.391 −0.476 0.139 −0.696 0.276

SI 5.272 0.999 −0.700 0.139 0.251 0.276

SR 5.232 0.961 −0.340 0.139 −0.384 0.276

TF 5.159 0.949 −0.293 0.139 −0.971 0.276

TM 5.215 1.037 −0.702 0.139 0.342 0.276

TTF 5.215 1.037 −0.702 0.139 0.342 0.276

TABLE 5 | Scale properties.

Variable Item Standardized Cronbach’s α Rho_A CR AVE

loading

Behavioral Intention (BI) BI1 0.901 0.829 0.836 0.898 0.746

BI2 0.877

BI3 0.81

Perceived Ease of Use (PEoU) PEoU1 0.742 0.75 0.755 0.841 0.57

PEoU2 0.788

PEoU3 0.781

PEoU4 0.707

Perceived Usefulness (PU) PU1 0.851 0.85 0.851 0.909 0.77

PU2 0.903

PU3 0.878

Privacy Risk (PR) PR1 0.89 0.893 0.953 0.921 0.745

PR2 0.932

PR3 0.782

PR4 0.841

Social Interaction (SI) SI1 0.825 0.79 0.791 0.877 0.705

SI2 0.87

SI3 0.823

Social Risk (SR) SR1 0.762 0.827 0.838 0.886 0.662

SR2 0.854

SR3 0.896

SR4 0.732

Task Features (TF) TF1 0.851 0.843 0.846 0.895 0.68

TF2 0.818

TF3 0.819

TF4 0.809

Technology Mobility (TM) TM1 0.811 0.817 0.816 0.892 0.733

TM2 0.901

TM3 0.854

Task-Technology Fit (TTF) TTF1 0.792 0.784 0.787 0.875 0.699

TTF2 0.87

TTF3 0.845

internal consistency reliability, the values for standard loadings,
Cronbach’s alpha, Rho_A, composite reliability (CR), and average
variance extracted (AVE) were obtained for each construct, as
summarized in Table 5. Most item loadings had values >0.7 and

were statistically significant at p < 0.001 which is considered
acceptable (119). In addition, each construct had an AVE value
greater than the critical level of 0.5, indicating good convergent
validity. Similarly, all constructs had values for CR, Rho_A, and
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TABLE 6 | Factor correlation coefficients and square roots of average variance extracted (AVE) values*.

BI PEoU PR PU SI SR TF TM TTF

BI 0.864

PEoU 0.617 0.755

PR −0.056 −0.073 0.863

PU 0.673 0.546 −0.102 0.877

SI 0.589 0.664 0.002 0.539 0.84

SR 0.512 0.626 −0.059 0.519 0.747 0.814

TF 0.682 0.609 −0.237 0.702 0.656 0.57 0.824

TM 0.668 0.637 −0.075 0.707 0.626 0.558 0.726 0.856

TTF 0.674 0.659 −0.071 0.632 0.692 0.633 0.762 0.757 0.836

*Diagonal elements with bold font are the square roots of AVE values. BI, behavioral intention; PEoU, perceived ease of use; PR, privacy risk; PU, perceived usefulness; SI, social

interaction; SR, social risk; TF, task features; TM, technology mobility; TTF, task-technology fit.

Cronbach’s alpha of more than 0.7, indicating good consistency
dependability (115, 119, 129).

Furthermore, the discriminant validity of the variables was
determined by comparing the square roots of AVE values
and the inter-construct correlations for each construct, as
recommended by (129), as presented in Table 6. Accordingly,
the diagonal elements were significantly larger than the off-
diagonal elements, indicating acceptable discriminant validity.
Additionally, a heterotrait-monotrait (HTMT) criterion test was
used to assess discriminant validity (129). The HTMT ratios
were less than 1, correlating with the Fornell-Larcker criterion
test results.

5.3. Hypotheses Testing
Various studies have recommended the bias-corrected and
accelerated (BCa) bootstrap as the optimal method for
discovering relationship effects (145–147). The study therefore
ran a minimum of 5,000 bootstrap samples to provide a powerful
method for assessing the model’s hypothesized relationships
(146). Figure 3 and Table 7 summarize and present the findings
of the hypotheses’ assessments. Except for the influence of
variables derived from PCT’s behavioral intention, all proposed
relationships from the TAM and the TTF model were statistically
supported, with 58.8% of the variance in the dependent variables
explained by the model. Each of the TAM’s variables was
highly influential on BI, with the values of all relevant path
coefficients exceeding 0.20, and PEoU explaining 29.8% of the
variance of PU. As a result, hypotheses H1, H2, and H3 were
supported. Regarding risk-related variables, the model produced
some intriguing yet sensible conclusions. Both privacy and social
risks were not endorsed; however, perceived social interaction
had little effect (B = 0.119), but the hypothesis was rejected due
to the p-value requirement. The result may show that rational
decision-makers make sensible use of Tawakkalna to guide their
movements to avoid COVID-19 high-risk areas. Among all
variables, PU had the greatest influence on BI (B = 0.546, t −
value = 16.713, p = 0.000). Additionally, the results associated
with risks and benefits, specifically, social interaction associated
with social risk, had little effect on BI (B = 0.119, t − value =

1.333, p = 0.182). As a result, H4, H5, andH6 were not approved.
Also, when the indirect effects for the PEoU-PU-BI relationship

were observed, the indirect effect of PU on use intention was B =

0.110, t − value = 2.730, p = 0.006, which was also significant.
Moreover, the assessments of the task-technology fit

hypothesis were all supported. Perceived technology mobility
(TM) and task features (TF) both influenced perceived TTF
at B = 0.430, t − value = 8.372, and p = 0.000; and
B = 0.450, t − value = 9.040, and p = 0.000, respectively.
As a result, the variables explained 68.8% of the variance
in TTF. Therefore, H7 and H8 were also supported. Hence,
task features (TF) had a slightly greater positive effect
than perceived technology mobility (TM). Also, TTF had
a favorable effect on behavioral intention of Tawakkalna
(B = 0.269, t − value = 3.083, p = 0.001), supporting H8.
Mobility and task characteristics had indirect impacts behavioral
intention at B = 0.116, t − value = 3.083, and p = 0.002; and
B = 0.121, t − value = 3.219, and p = 0.001, indicating support
for indirect relationships.

5.4. Predictive Relevance and Effect Size
Additionally, the suggested model’s predictive significance was
tested using cross-validated redundancy (Q2), following the
existing literature (129, 130, 132). All endogenous factors in
Table 8 showed Q2 values >0, indicating that the model was
predictive of PU, TTF, and BI. Additionally, (148) effect size
(f 2) was used to estimate each exogenous variable, as shown
in Table 5. According to the magnitude of f 2, 0.02, 0.15, and
0.35 correspond to small, medium, and large effects, respectively
(130, 132). As indicated in Table 5, PeoU, PU, and TTF had a
moderate to significant effect on BI, while the associated risk and
benefits variables, namely, PR, SR, and SI, had a negligible impact
on behavioral intention (BI). Also, TM and TF had a medium
effect on TTF. Similarly, PEoU was a crucial antecedent of PU,
having a medium impact. Notably, the associated f 2 values that
suggested non-significant effects were consistent with the path
coefficient findings.

5.5. Artificial Neural Network (ANN)
Analysis Results
According to Chong (149), an ANN is a modeling tool capable
of imitating human–neural systems and learning. Hence, the
learning capabilities of ANNs allow them to be trained to
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FIGURE 3 | Test results of the structural model. n.s., non-significant; *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 7 | Summary of hypotheses.

Hypothesis Path coefficient (B) SE t-statistics p-values Support

H1 PEoU − > BI 0.202** 0.013 2.803 0.005 Yes

H2 PU − > BI 0.361*** 0.012 5.564 0 Yes

H3 PEoU − > PU 0.546*** 0.006 16.713 0 Yes

H4 PR − > BI 0.010n.s. 0.008 0.222 0.824 No

H5 SR − > BI −0.060n.s. 0.014 0.747 0.455 No

H6 SI − > BI 0.119n.s. 0.016 1.333 0.182 No

H7 TM − > TTF 0.430*** 0.009 8.372 0 Yes

H8 TF − > TTF 0.450*** 0.009 9.04 0 Yes

H9 TTF − > BI 0.269** 0.014 3.451 0.001 Yes

n.s., non-significant; SE, standard error; *p < 0.05; **p < 0.01; ***p < 0.001.

improve their performance (135, 150). In this study, IBM SPSS
Statistics (SPSS) v24 software was used to conduct the ANN
analysis, following previously published and applied procedures
(82, 131, 132, 151). This study identified the relative importance
of exogenous elements to an endogenous variable using a multi-
layer perceptron (MLP) artificial neural network (ANN) with
a feed–forward back-propagation (FFBP) algorithm. Figure 4
depicts the ANN models developed using (152) neural networks
drawing guidelines. To avoid overfitting, tenfold cross-validation
was performed on the data set (resulting in 10 ANN models),
with 70% of the data used for training and 30% for establishing
the trained network’s projected accuracy (also known as testing).
Additionally, the algorithm generated a specified number of
hidden neurons, with the hidden layer activated using the

hyperbolic tangent activation function. In contrast, the output
layers were activated using the sigmoid activation function.
The root-mean-square error (RMSE) was determined for each
network in the ANN model to determine the model’s predictive
accuracy, as indicated by numerous studies (82, 131, 135). As
shown in Table 9, the ANN model has a mean RMSE of 0.545
for training data and 0.553 for testing data, showing the model’s
prediction capacity. Apart from implying a level of predictive
accuracy, a lower RMSE value indicates a more precise fit and
forecast of the data. Additionally, the relevance of external
variables was assessed by the number of hidden neurons in an
ANNmodel with non-zero synaptic weights.

After establishing the ANN model’s anticipated accuracy and
predictive relevance, a sensitivity analysis was conducted to
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statistically evaluate the exogenous variables’ predictive capability
concerning endogenous components (135, 153). The relative
importance of each exogenous variable was determined, and
the normalized relative value was computed, as indicated in
Table 10. The exogenous variables were then ranked according
to their normalized relative relevance and influence strength.
Interestingly, when the three variables were examined on the
ANNmodels, perceived usefulness was the strongest predictor of
Tawakkalna behavioral intention, with 100% normalized relative
importance. Moreover, the result of the relative importance of
TTF (66.45%) and perceived ease of use (35.06%) were significant

TABLE 8 | R2, Q2 predictive relevance, and effect size (f2).

Endogenous R2 Q2 Exogenous f2

variables variables

BI 0.588 0.43 PEoU 0.045

PU 0.176

PR 0

SR 0.003

SI 0.012

TTF 0.068

PU 0.298 0.151 PEoU 0.425

TTF 0.668 0.458 TF 0.288

TM 0.263

predictors of behavioral intention, in that order. Perceived
usefulness was conclusively the strongest predictor of behavioral
intention, whereas perceived ease of use was the weakest.

6. DISCUSSION

This study’s primary purpose was to determine the key factors
influencing users’ behavioral intention of a CTA. In this
research, an integrated model was developed that combined
three perspectives: firstly, behavioral intention is driven by a
user’s perceived ease of use and usefulness. Secondly, BI is
driven by perceived risk and corresponding benefits, classified
as privacy risk, social risk, and social interaction. Thirdly, BI
is influenced by the fit between technology mobility and task
features. Accordingly, the survey data supported six hypotheses
in the proposed model and revealed some intriguing findings.

The TAM is considered a valuable model for predicting the
behavioral intention of a new app that tracks individuals who
have been exposed to a positive COVID-19 case, hence breaking
the infection chain (10). Therefore, the hypotheses for the TAM
constructs, perceived ease of use and perceived usefulness, were
supported by the findings. Interestingly, the variable with the
largest significant impact was perceived usefulness. As these
hypotheses were derived from the original TAM, the theoretical
TAM can be used to examine the adoption of apps to prevent
and mitigate the COVID-19 pandemic’s effects. These findings
corroborate existing studies that employed the extended TAM,

FIGURE 4 | Artificial neural network (ANN) model. Hidden layer activation function: hyperbolic tangent; output layer activation function: sigmoid; input neurons: PU,

perceived usefulness; PEoU, perceived ease of use; TTF, task-technology fit.
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testing both perceived ease of use and perceived usefulness as
significant factors of use intention (10, 154).

The variables derived from PCT were not found to be
significant in the proposed model. Specifically, privacy risk was
not significant. Hence, the privacy risk concern was not found
to effect the intention to use the tracing app. Thus, H4 was
not supported. This suggests that privacy risk concerns about
the app, such as the associated risk (from utilizing private
information), had no adverse effect on the behavioral intention
of the tracing app. This finding was supported by several studies
in the literature (10, 155). Our finding also is in the line
with previous studies that found insignificant influence between
behavior adoption and privacy risks and concerns. These studies
include privacy risk on intentions toward IoT health services
(156), privacy concerns on Mobile health technologies (157) and
CTAs (71).The privacy risk hypothesis was obviously in relation
to health concerns. As simply stated by (158), individuals are
more concerned about their health, enhancing their readiness
to use CTAs developed for this purpose, even at the risk of
jeopardizing their personal privacy (19). Li et al. (159) added that
the perceptions of the benefits of CTAs are stronger predictors of
behavioral intentions than the perceptions regarding security and
privacy risk.

Likewise, in relation to the effect on BI, the analysis revealed
that social risk and social interaction outcomes were not
significant. Thus, findings revealed that the effects of risks, as
proposed in H5 andH6, were not significant. The study’s findings
did not support those in prior research about the social impact
of COVID-19 that emphasized the effect of the coronavirus on
relationships among the public despite the human need for social
contact (4, 106). Nevertheless, the finding could be consistent as
the restriction of movement due to pandemic-imposed physical
distancing creates a distressing awareness that one’s wellbeing
depends on others. This is true when comparing the benefits
of CTAs to protecting oneself from getting COVID-19 with the
combined risk of losing privacy, security, and the social risk
(19, 159).

Similarly, privacy and perceived risks were found to have no
relationship with behavioral intention. This could be a result
of the variable’s narrow assessment, which was limited to social
and privacy risk perceptions. However, incorporating additional
privacy concerns, such as uncertainty avoidance, perceived
severity, and vulnerability (36), as well as risk perceptions, such
as uncertainty, time, performance, and psychological loss, may
provide a more full picture of these risk variables, which may
bolster their perceived importance. As a result, researchers are
urged to conduct comprehensive studies on risk perceptions
associated with the acceptance of CTAs such as Tawakkalna.

Furthermore, in assessing the TTF predictors, the findings
indicated that users’ perceptions of the mobility of Tawakkalna
were ideally aligned with their task characteristics, which
influenced their behavioral intention of the tracing app. Mobility
and task features accounted for 68.8% of the variance in
the TTF in the model which had a more significant effect.
The findings supported the earlier IS research regarding the
influences of TTF on use intention (77, 82, 84, 160). This
study emphasized the critical role of TTF in meeting the

TABLE 9 | Root-mean-square error (RMSE) values for training and testing.

Network Training Testing

1 0.536 0.553

2 0.531 0.563

3 0.564 0.551

4 0.543 0.552

5 0.549 0.551

6 0.539 0.559

7 0.544 0.549

8 0.545 0.544

9 0.55 0.555

10 0.551 0.547

Mean 0.545 0.553

SD 0.009 0.006

Network and input neurons: perceived usefulness, perceived ease of use, and task-

technology fit; SD, standard deviation.

TABLE 10 | Sensitivity analysis.

Network PU PEoU TTF

1 0.501 0.165 0.334

2 0.465 0.188 0.348

3 0.558 0.138 0.304

4 0.452 0.181 0.367

5 0.54 0.173 0.287

6 0.477 0.202 0.321

7 0.448 0.165 0.387

8 0.465 0.159 0.376

9 0.567 0.175 0.258

10 0.524 0.191 0.284

Average RI 0.4997 0.1737 0.3266

Normalized RI (%) 100 35.06 66.45

Input neurons: perceived usefulness, perceived ease of use, and task-technology fit;

RI, relative importance; PU, perceived usefulness; PEoU, perceived ease of use; TTF,

task-technology fit.

users’ CTA needs. Also, the findings revealed that perceived
usefulness was the most important direct antecedent of BI,
followed by TTF. Thus, this research offers significant knowledge
about the relative value of TTF as a predictor of a CTA’s
behavioral intention.

It is worth mentioning that the use intention explained a
58.8% variance in the proposed model. Compared to other
variables, TTF had a higher predictive R2 value at 66.8%,
with perceived usefulness explaining only 29.8%. Also, the Q2

assessment revealed that the predictive accuracy of TTF was
slightly higher than the use intention, at 0.458 and 0.430,
respectively. On the other hand, perceived usefulness had the
lowest Q2 value (0.151). Thus, the results for the R2 values were
aligned with the predictive potential of the model. Moreover, the
ANN analysis results were in line with the SEM path coefficient
outcomes, which ranked the variables according to their impact
on the model. Perceived usefulness was the strongest factor, with
TTF the second strongest.
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6.1. The Optimality of the Proposed
Approach
The information system literature about the technology adoption
model primarily predicts behavioral intention, usage intention,
or adoption intention as the dependent variable. Most of the
studies investigate this variable predictive power through PLS-
SEM (10, 34, 39) or CB-SEM (35–37, 41). One of the primary
criteria used to examine the model’s predictive capacity is
the coefficient of determination (R2). Since this study adopted
the PLS-SEM approach, the R2 values of existing studies
are compared with the current studies. This is to show the
novelty and optimality of the proposed approach. Hence, the
comparative analysis revealed an exciting result. Firstly, studiess
by Velicia-Martin et al. (10) and Hassandoust et al. (34) have
higher R2 values than the proposed approach. However, these
studies adopted a single theory, while our approach integrated
three theories (TAM, PCT, TTF). Secondly, since existing studies
based on PLS-SEM have not integrated multiple theories, this
study compared the result of the proposed approach with the
work by (36), which is based on CB-SEM and incorporated
multiple theories (FT, DCT, PMT, TPB, andHCDT). Remarkably,
the R2 of the proposed approach is slightly higher than the CB-
SEM approach. Thirdly, the proposed approach is the first to
apply two-stage SEM–ANN analysis among the existing studies
based on the PLS-SEM approach.Moreover, similar studies in the
context of middle-east countries, specifically KSA, are lacking.
Thus, this study has addressed this gap to allow policymakers to
take systematic steps to address these issues and enhance CTA
acceptance. Table 11 presents the comparative analysis of the
previous studies and the proposed approach.

7. CONTRIBUTIONS AND IMPLICATIONS

7.1. Theoretical Contributions
Numerous theoretical contributions are made by this study and
its findings. The study examines the significant factors in the
use of CTAs to determine users’ behavioral intention through
the lens of the TAM, and the PCT and TTF theoretical models.
Despite the advent of health apps, particularly tracking apps, and
their use to restrict the transmission of the COVID-19 virus,
an information system perspective on the interaction between
adoption determinants remains necessary.

Firstly, the TAM was used to understand the predictive
potential of behavioral intention (10, 54, 161). The TAM’s key
constructs were then incorporated into Tawakkalna, a new
technology, to reveal the key factors of users’ behavioral
intention. The key variables of the TAM contributed
significantly to the model and improved the investigation’s
outcomes. The TAM variables thus explain why IS and
geolocation technology have been adopted to prevent or reduce
coronavirus transmission.

Secondly, through PCT, it was revealed that the public might
be persuaded to embrace the app and to sacrifice their privacy
and social concerns. Still, complications could arise due to the
loss of privacy, higher-level notifications on devices, or the
software’s incompatibility in other countries (10). Accordingly,

one of this study’s key focuses is the negative effect of privacy
on behavioral intentions. Several studies have focused on users’
privacy on tracing apps, the measures to protect people’s privacy
(162, 163), or individuals’ concerns regarding privacy issues (10).
This study reveals that when it comes to health issues, individuals
are unconcerned with privacy risk. These outcomes support the
findings by (10) regarding the insignificant impact of privacy.
Additionally, the positively or negatively evaluated social risk and
social interaction have not yielded positive results. This does not
support assertions by Schleicher (4) and Settersten et al. (106)
regarding losing relationships among the public.

Thirdly, while examining the TTF variables, the data reveal
that users’ perceptions of Tawakkalna’s mobility are optimally
connected with their task characteristics which influence their
behavioral intention. Mobility and task characteristics have
indicated a more significant effect on technology fit (77, 82, 84).
Hence, this study emphasizes the vital importance of the TTF in
addressing the satisfaction of users’ needs by mobile CTAs. To
our knowledge, this is the first time the TTF model has been used
to investigate the adoption of CTA. Therefore, the study offers a
theoretical contribution that advances the understanding of the
effectiveness of TTF on behavioral usage.

Furthermore, IT adoption studies, using a hybrid
measurement analysis, are lacking. Studies have suggested that
more research should be undertaken that combines ML tools
with structural equation modeling (SEM) (22, 23, 82, 132, 149).
Hence, this study establishes the proportional importance of
critical characteristics that precede the behavioral intention
of Tawakkalna by using the two-stage SEM–ANN analysis to
address this gap by ranking these antecedents. The core factor
of behavioral intention, namely, PU, helps users to adopt the
app, while TTF is ranked second. These factors are shown to be
conceptually and practically relevant, and this work contributes
to the body of knowledge by directly measuring their relative
importance utilizing a two-stage analysis.

This is the first empirical study to examine CTAs from
a KSA perspective. Previously, CTA investigations have taken
place in various countries, such as the UK (164), Germany
(165), USA (159), Ireland (71), and Fiji (36). The differences
in culture, infrastructure, legislation, and economies could
impact on individuals’ decision making (36). Research on theory
development has emphasized the importance of measuring
theories and models in the contexts of different countries (80).
The findings of this study therefore contribute in this regard.

7.2. Practical Implications
COVID-19’s spread has resulted in a pandemic, infectingmillions
of people and killing thousands. The use of notable measures by
numerous countries has contained the spread of the coronavirus,
enabling healthcare centers to care for the sick. However, this
pandemic’s constraints have severely affected the world economy.
Moreover, stakeholders are demanding that movement control
mechanisms should be enforced to control the spread. Health
officials must be able to discover positive cases early and follow
their prospective contacts. As a result, numerous technology-
based tracking methods have been proposed, including mobile
apps (1).

Frontiers in Public Health | www.frontiersin.org 16 May 2022 | Volume 10 | Article 847184

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Alkhalifah and Bukar Examining the Prediction of COVID-19 CTA Adoption

TABLE 11 | Comparison of proposed approach with existing studies.

Category Single theory Multiple theories

Ref (39) (34) (10) (36) Proposed model

Country US US Spain Fiji KSA

Theoretical model Extended TAM PCT Extended TAM FT, DCT, PMT, TPB,

and HCDT

TAM, PCT, TTF

Method PLS-SEM and fsQCA PLS-SEM PLS-SEM CB-SEM PLS-SEM-ANN

Dependent Variable App use Intention to install CTA Behavioral intention to

use

Adoption intention Behavioral intention

R2 (%) 44 75 77 51 56

Even though the balance between health and the economy
must favor the former, the economy has been severely harmed.
Thus, tracking technology should be integrated into people’s
movements in order to protect population safety and facilitate
the isolation of new positive cases and their associated contacts.
This type of technology has been beneficial in countries such
as Malaysia, South Korea, and Japan that were able to rapidly
and safely decrease COVID-19’s spread, reviving their economies
through using geolocation-based apps (166, 167). The study’s
findings indicate that users’ behavioral intentions (BI) are
decided by the app’s perceived usefulness (PU), perceived ease
of use (PEoU), and task-technology fit (TTF). Concern about
possible risks such as privacy risk, social risk, and associated
benefits were not viewed as equally important by respondents.
The choice of health was evident among respondents when they
were confronted with choices, such as privacy and social risks.

Correspondingly, the knowledge obtained through this study
will be beneficial to app developers who develop geolocation apps
and to governments that decide on their use and the associated
loss of privacy. Many discussions have been held concerning
the loss of privacy rights, especially in liberal countries such as
France, the UK, and the USA (8). Governments may find this
study incredibly beneficial as they learn that users are particularly
concerned about becoming infected or infecting their family
members, with this concern significantly impacting on their
decision to use the app. The user’s intention is also influenced
by his/her perception of vulnerability to COVID-19 coronavirus
infection. Therefore, both anxiety and a sense of vulnerability,
when combined with the perception of a high risk of COVID-19
infection, have a noticeable effect on behavioral intention. These
findings corroborate the findings of recent studies (10, 166).

8. FUTURE WORK AND LIMITATIONS

The study acknowledged few limitations. Firstly, respondents
are from the KSA, demonstrating that our findings could only
be applied to one geographical location. According to Li et al.
(159), worries related to public health activate the behavioral
immune system. This evolutionary adaptive process is culture-
independent and, hence, the study’s outcomes should be culture-
independent. Therefore, the significant cross-cultural disparities
in privacy concerns and potential users who did not use the
CTA because of privacy concerns merit additional research.

As mentioned earlier, certain cultures, such as those in China,
Malaysia, and Japan may be more receptive to the government’s
acquisition and surveillance of personal data than cultures in
more liberal countries.

The pandemic’s long-term impact is unknown, although it
is guaranteed to last longer than anticipated (4). However, one
of the pandemic’s most significant and immediate repercussions
has been the way it has shattered the relationships among the
public. While social participation may influence individuals’
ability to adapt during a pandemic, physical separation measures
also reveal and alter the character of the relationships among
the public. Hence, this study suggests that this social issue is
cause for concern. Important theoretical contributions might
be made by explaining the mechanisms underlying these user’s
behaviors, particularly when weighing the risks and advantages
of adopting CTAs.

Additionally, age has been demonstrated to be a moderator
in numerous research published in the literature (80, 89) and
CTA studies (159). The implication is that significant effects
could potentially be tempered by age. However, this was not the
study’s objective, with no comparisons made between age groups.
Consequently, future research could examine the acknowledged
moderating effect of age. Finally, our findings may apply to
other m-health technologies besides CTAs, such as electronic
health records and wearables, although we lack the data to
conclusively make this claim. As a result, additional research
should be conducted to determine whether age acts as a
moderator of the significance of the impact and to determine
whether prominent disease concerns influence the adoption of
other m-health technologies.

Furthermore, certain methodological limitations apply to the
study. This includes the point that the data were collected
through the snowball sampling approach. Hence, the sample is
neither random nor fully representative of the population; this
could result in a skewed sample of respondents, raising the issue
of socially desired responses. Future research could use other
data collection techniques. Moreover, the proposed model does
not cover some factors such as government support, facilitating
conditions, and social influence. Examining these factors could
enhance our understanding of CTA adoption. Therefore, future
studies may consider investigating their effect on behavioral
intention to adopt Twakkalna and other CTAs. Also, future
studies could investigate the impact of trust, as widely reported
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in the technology adoption literature (22) and as one of the key
variables in the extended TAM (TAM2) (168).

9. CONCLUSION

The search for interventions to quickly and effectively control
COVID-19’s spread, which has endangered humans despite
the increasing efforts committed to managing the pandemic,
motivated the researchers to undertake this study. A mobile
contact-tracing app is introduced to help KSA citizens to take
precautions and to enable health authorities track potential
positive cases. The app has various functions, including
controlling the spread of the virus without impeding citizens’
movement and consequential economic loss. As a result, this
study examines the various factors that can affect the app’s
acceptability by the general population. Based upon the TAM,
and PCT and TTF theoretical models, which are commonly used
theories regarding behavioral intention, the study investigated
the antecedents of Tawakkalna contact tracing as conducted in
the Kingdom of Saudi Arabia. Of the nine hypotheses, the six
corresponding to TAM and the TTF model were supported.
Specifically, PU and PEoUwere found to be significant predictors
of behavioral intention. Also, the findings demonstrated that
three constructs derived from PCT, namely, privacy risk, social

risk, and social interaction, were not significant determinants of
behavioral intention. Furthermore, users’ perceived mobility and
task features to use Tawakkalna matched perfectly, explaining
66.8% of the variation of task-technology fit. These conclusions
are based on a two-stage SEM–ANN analysis coupled with
different testing methodologies. In conclusion, the findings may
shed new light on the overall role of contact-tracing apps.
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APPENDIX

TABLE A1 | Research items.

Constructs Code Items References

Mobility TM1 Using Tawakkalna mobile contact-tracing app is independent of time. (79, 81, 82)

TM2 Using Tawakkalna is independent of place.

TM3 Using Tawakkalna is convenient because the phone is usually with me.

Task features TF1 I need to accomplish some tasks at any time, e.g., scanning QR code to enter places. (79, 82)

TF2 I need to accomplish some tasks anywhere, e.g., scanning QR code to enter places.

TF3 I have some tasks which need to be completed immediately, e.g., scanning QR code

to enter places or reporting violators.

TF4 I have some tasks which need to be completed importantly, e.g., registering an

appointment for vaccination.

Task–technology fit TTF1 In helping to complete my tasks, the functions of Tawakkalna mobile contact-tracing

app are enough.

(79, 82)

TTF2 In helping to complete my tasks, the functions of Tawakkalna are appropriate.

TTF3 In general, the functions of Tawakkalna fully meet my needs, either when I am in an

emergency or when I am not.

Perceived usefulness PU1 Using the Tawakkalna app would make me feel better about myself. (10, 46)

PU2 By using the Tawakkalna app, I would hope to be helping society.

PU3 The use of Tawakkalna app would increase my peace of mind.

Perceived ease of use PEoU1 The purpose of Tawakkalna is clear and understandable. (10)

PEoU2 I think that learning to use Tawakkalna would be very easy for me.

PEoU3 With Tawakkalna, it would be easy for me to avoid the contagion of COVID-19.

PEoU4 I would find it useful to have Tawakkalna to tell me how to avoid people who have

COVID-19.

Behavioral intention BI1 I intend to continue using Tawakkalna in the future. (71, 73)

BI2 I will try to use Tawakkalna in my daily life.

BI3 I intend to continue to use Tawakkalna frequently.

Privacy risk PR1 It bothers me when health authorities track my location through my Tawakkalna

mobile contact-tracing app.

(13, 98)

PR2 I am concerned that health authorities are collecting too much location information

about me through my Tawakkalna mobile contact-tracing app.

PR3 It bothers me if health authorities collect my mobile location and I cannot alter the

location settings.

PR4 It bothers me when I do not have control over how my mobile location is used by

health authorities.

Social risk SR1 I am concerned that my movement may be restricted if I do not use Tawakkalna. (13)

SR2 I am concerned that I may not be allowed to visit places without Tawakkalna installed

on my phone.

SR3 I am concerned that my family and friends will not allow me to visit them if I am not

using Tawakkalna.

SR4 I am concerned that if Tawakkalna indicates that I am a suspected case, I will be

forced to self-isolate.

Social interaction SI1 By using Tawakkalna, I will be allowed to move freely, without any restrictions. (103)

SI2 By using Tawakkalna, I will visit places, anywhere and at any time.

SI3 By using Tawakkalna, my family and friends will allow me to visit them.
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