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The COVID-19 pandemic has caused great shocks on economic activities and carbon

emissions. This paper aims to monitor the CO2 emission trajectory in China before and

after the pandemic outbreak, and analyze the emission reduction effects by ETS and

its market performances, which are important determinants underlying the trajectory

and key drivers for emission reductions. We firstly find out a rather consistent trajectory

of CO2 emissions in pre- and post-pandemic China over a 2-year time horizon, using

the near-real-time datasets of daily CO2 emissions by Carbon Monitor and applying

the Cox-Stuart trend test and mean equality test. We then examine the emission

reduction effects by China’s carbon ETS and its pilot market performances, using the

methodologies of DID and PSM-DID as well as pre-pandemic region-level emission

datasets by CEADs. Furthermore, it’s found that the ETS pilot markets, which are

immature with defects, have been performing more vulnerably in terms of liquidity and

transaction continuity under pandemic shocks, thus undermining the emission reduction

effects by ETS. These findings are providing insights into further mechanism design

of the carbon ETS to the end of steady emission reductions even under shocks for

post-pandemic China. It’s of particular importance now that the nationwide market has

been launched and needs to be enhanced based on lessons learned.

Keywords: COVID-19 pandemic, CO2 emission reduction, emission trading scheme (ETS), pilot market

performances, propensity-score-matching difference-in-differences (PSM-DID)

INTRODUCTION

The COVID-19 pandemic has caused tremendous losses of human lives and wellbeing ever since its
first outburst at the beginning of 2020. Enforced lockdowns and voluntary cut-down in inessential
activities led to huge reductions in energy consumption and recession of the global economy.
Anthropic greenhouse gas emissions dropped drastically all over the world (1–3). In China where
the virus was first spotted and contained with strong measures, CO2 emissions fell sharply by more
than −10% in 2020Q1 over 2019Q1 (4–6). In this first wave of the pandemic, daily global CO2

emissions decreased by −17% on average by early April 2020 compared with the mean in 2019,
equivalent to levels last seen in 2006. At the peak, daily emission reductions in individual countries
averaged to −26%. Median of the estimates from a number of studies show that global emissions
fell by −7% in 2020 compared to 2019, including reductions by −12% in the US, −11% in the EU,
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−9% in India, and −1.7% in China. The year 2020 witnessed the
largest absolute annual decline in CO2 emissions ever recorded,
as well as the largest relative fall since World War II (7–10).

This decline in emissions seemed to be temporary though, as
mostly due to reduced economic activities and energy use during
lockdowns. Le Quéré (10) devised a confinement index on a scale
of 0 to 3 to quantify the levels of restrictions to normal activities
during the pandemic, and estimated its effects on CO2 emissions
for six sectors of the economy. Their analysis, covering 85% of the
world population and 97% of global CO2 emissions, found that
confinement had been significantly determining the reduction in
emissions for January throughApril 2020. This strong correlation
between containment and emission reductions would herald a
resurgence of emissions all over the world when containment gets
relaxed (11). Emissions are expected to return to their normal
trajectory and even make things worse, unless more profound
changes are induced toward a cleaner energy structure and less
carbon-intensive economic system (12).

Take China for instance. As the crisis unfolded since
December 2019, the Chinese government has implemented
forceful containment measures, including shutting down
factories, schools and cities. The economy was shocked heavily
in late January 2020, and CO2 emissions fell sharply by −25%
over a 4-week period commencing 3 February 2020 after the
lunar new-year break, compared with usual levels (13). Estimates
of China’s daily CO2 emissions further revealed that the monthly
variations between 2020 and 2019 were −18.4 and −9.2% in
February and March, respectively (14). Then as China slowly
emerged from the first wave, work and production resumed,
energy use resurged, and emissions began to return to normal.
By late March when lockdowns gradually lessened, the pandemic
effects on emissions had begun to diminish. Monthly variations
between 2020 and 2019 turned out to be +0.6% in April and
+5.4% in May, indicating that CO2 emissions have returned to
and even bounced higher than their pre-pandemic levels. Similar
findings have been reported by several studies (15, 16).

As after previous financial crises, there are chances that
governments’ stimulus in response to the disruption generate a
retaliatory rebound in emissions. It was predicted that global CO2

emissions could exceed the pre-crisis levels over a 2-year horizon
commencing 2020Q1, even if another wave of pandemic was to
occur within a year. The bouncing trend has been observed even
in countries renewing containment measures due to pandemic
rebounds (17–21). In this very likely event of emission resurgence
worldwide, prospects of meeting the objectives of global warming
control to 1.5–2◦C above pre-industrial levels under the Paris
Agreement could seemworsened. Thus, apart from observing the
short-run decline and rebound, it is high time to probe further
into the pandemic impacts on carbon emissions and their drivers
underlying. Whether the pandemic is changing the emission
trajectory and themain driving forces for emission reductions are
key questions in concern.

This paper aims to monitor the CO2 emission trajectory in
China before and after the pandemic, and analyze the emission
reduction effects by ETS and its market performances, which
are important determinants underlying the emission trajectory
and key drivers for emission reductions. We firstly examine

the pre- and post-pandemic trajectory of CO2 emissions in
China over a 2-year time horizon, using the daily CO2 emission
datasets by Carbon Monitor and applying the Cox-Stuart trend
test and mean equality test. We then look into the emission
reduction effects by China’s carbon ETS, using the methodology
of PSM-DID and pre-pandemic region-level emission datasets by
CEADs. Considering the ETS is market-based and pilot markets
have been experiencing shocks from the pandemic, we further
study the emission reduction effects by pilot markets, which are
immature with ever-existing defects and have been performing
more vulnerably in terms of liquidity and transaction continuity
under pandemic shocks than normal times. These findings are
providing insights into the emission reductions by ETS and its
market performances with further mechanism design for post-
pandemic China.

PRE- AND POST-PANDEMIC EMISSION
TRAJECTORY IN CHINA

Data and Descriptive Statistics
We use the near-real-time sector-specific region-level estimates
of daily CO2 emissions based on activity data by Carbon
Monitor. The dataset covers emissions from fossil fuel use and
industry including process emissions from cement production.
Figure 1 illustrates the daily CO2 emissions in China over 2 years
commencing 1 January 2019. Despite of severe shocks in the short
run, the trajectory of emissions was consistent before, during and
after the pandemic outbreak over the 2-year time horizon.

The COVID-19was first sporadically spotted in late December
of 2019 and soon evolved into an unprecedented nationwide
pandemic by late January 2020, represented by the lockdown
of Wuhan City on 23 January 2020 which lasted for 76

FIGURE 1 | China’s daily CO2 emissions in 2019 and 2020, based on datasets

by Carbon Monitor covering emissions from sectors of power, industry and

cement production, ground transport, aviation, international shipping,

residential, and commercial buildings. The dark-shaded area illustrates the

lunar new-year break, while the light-shaded area illustrates the lockdown of

Wuhan City, quite a representative of the first wave of the pandemic in China.
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TABLE 1 | Descriptive statistics of China’s daily CO2 emissions in 2019 and 2020.

Period Mean P50 SD CV

20190101-20190131 29802.335 30701.864 2483.063 0.083

20200101-20200131 28694.036 31301.914 4210.001 0.147

20190201-20190831 27882.246 27841.723 1870.095 0.067

20200201-20200831 27443.480 28378.704 3225.738 0.118

20190901-20190930 28358.785 28196.294 1406.607 0.050

20200901-20200930 29446.249 28630.508 1537.701 0.052

20191001-20191231 30172.647 29718.501 2719.407 0.090

20201001-20201231 31927.276 31814.731 2885.190 0.090

days. The Chinese government immediately imposed forceful
containment measures, including calling off economic and social
activities especially during the lunar new-year break from 24
January till 2 February 2020. Normally CO2 emissions stay low
with the economy during the lunar new-year break, the year 2020
was without exception, only to see a drop more acute and lasting
than pre-pandemic times. Average daily emissions declined by
−3.98% during the lunar new-year break in 2020 compared
with the break in 2019. The economy was shocked severely in
2020Q1, and CO2 emissions didn’t recover after the break as
usual. Compared to pre-pandemic 2019 when daily emissions
bounced back to pre-break levels only 4 days after the beginning
of the break, daily emissions during the break in 2020 returned to
pre-break levels until 38 days later. The changes in CO2 emissions
before and during the first wave of the pandemic were apparent.

The emission trajectory turned out to be quite stable though.
Fluctuations in daily emissions before and after the pandemic
outbreak were roughly synchronous over a longer time horizon.
With the rapid economic recovery, the short-run impacts on
emissions had diminished by the end of March, and daily
emissions have returned to their normal trajectory ever since.
Table 1 gives the descriptive statistics of China’s daily CO2

emissions during same periods between 2019 and 2020.Themean
and median (P50) of daily emissions are not much different
in specific periods of 2020 compared to 2019. The standard
deviation (SD) and coefficient of variation (CV) from January
to August 2020 compared to the same period in 2019 indicate
changes related to the pandemic. However, such changes began to
diminish since September, and have almost vanished throughout
the rest of 2020, with the SD and CV being quite close to the levels
in 2019.

Cox-Stuart Trend Test
We apply two diagnostic tests to verify the consistency in the
trajectory of China’s daily CO2 emissions before and after the
pandemic. We firstly use the Cox-Stuart trend test (22, 23) for
the following two sets of hypotheses.
(HypothesisTesting1)

H0: no downward trend in data
H1: downward trend in data

(HypothesisTesting2)
H0: no upward trend in data
H1: upward trend in data

TABLE 2 | Cox-Stuart trend test.

Period Trend S− S+ K-value p-value

20190101-20190131 Downward 0 15 0 3.05e-05

20200101-20200131 Downward 0 15 0 3.05e-05

20190201-20190831 Upward 78 28 28 6.26e-07

20200201-20200831 Upward 101 5 5 1.31e-24

20190901-20190930 Downward 1 14 1 4.88e-04

20200901-20200930 Downward 0 15 0 3.05e-05

20191001-20191231 Upward 46 0 0 1.42e-14

20201001-20201231 Upward 46 0 0 1.42e-14

Let X denote a data set with size n, namely X =

{x1, x2, . . . , xn}. Take xi and xi+c to form a pair of data (xi, xi+c),
i = 1, 2, . . .. When n is an even number, c groups of data
pair are generated; otherwise, c-1 groups of data pair are
generated, where

c =







n
2 if n is an even number

(n+1)
2 otherwise

Let Di = xi − xi+c. S+ and S− are the numbers of
positive or negative number of Di, respectively. K is the test
statistic, and α is the nominal significance level. Further, when
verifying HypothesisTesting1, then K = S−; when verifying
HypothesisTesting2, then K = S+.It is easy to prove that if theH0

in the above hypothesis testing problems is true, then K follows
the binomial distribution b(m, 0.5), wherem = S+ + S−. Finally,
when considering HypothesisTesting1, then p = Pr(S− ≤ s−);
when considering HypothesisTesting2, then p = Pr(S+ ≤ s+),
where s+and s−, respectively, represents the observed values of
S+ and S−. If p < α, then we rejectH0 at the nominal significance
level α.

Table 2 gives the results of Cox-Stuart trend test for four
specific periods between 2019 and 2020. For January and
September, there seemed to be a downward trend in daily CO2

emissions as illustrated in Figure 1, and we hereby consider
HypothesisTesting1. Results show that the p-values of the Cox-
Stuart trend tests in January 2019 and 2020 are equal (namely,
3.05e-05), and H0 is rejected at the nominal significance level of
5%. Daily emissions in January 2020 and 2019 were both showing
the downward trend, and so were emissions in September 2019
and 2020.

For February through August, and for October through
December, daily CO2 emissions seemed to be on the rise on
the whole, and we consider HypothesisTesting2. The p-values
for February through August in 2019 and 2020 are 6.26e-07
and 1.31e-24, respectively, and H0 is rejected at the nominal
significance level of 5%. Daily emissions from February to August
in 2020 and 2019 were both showing the upward trend. Similar
results are observed for the periods from October to December
in 2019 and 2020.
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FIGURE 2 | Monthly mean variations in CO2 emissions between 2019 and

2020.

Mean Equality Test
Based on the Cox-Stuart trend test indicating downward or
upward trends of daily CO2 emissions in certain periods between
2019 and 2020, we further apply the mean equality test to verify
the consistency between trends with the same direction. Calculate
the monthly mean variations in emissions as sums of daily
variations divided by the numbers of days within a month, and
Figure 2 shows the contours ofmonthlymean variations between
2019 and 2020. We then conduct the equality test to examine
whether the two contours are overlaps. With the p-value being
0.81, the null hypothesis (H0: two contours are overlaps) was not
rejected. This mean equality test combined with the Cox-Stuart
test verifies that daily emissions in the same periods between
2019 and 2020 shared the same downward or upward trends with
variations statistically indifferent from each other.

For the time being, we find no signs of significant changes
in the trajectory of China’s daily CO2 emissions, even though
there were abrupt shocks in the first wave of the pandemic. This
finding is based on near-real-time estimates of pre- and post-
pandemic emissions from fossil fuel use and industry using the
same methodology by Liu et al. (4, 14). In other words, when
measured on the same scale, CO2 emissions in China before and
after the pandemic were following a consistent trajectory over a 2-
year time horizon. Even so, it’s necessary to look further into the
pandemic impacts on forces underlying the emission trajectory
and driving for emission reductions, before we can get a clearer
picture about the pandemic impacts on CO2 emissions.

PRE-PANDEMIC EMISSION REDUCTION
EFFECTS BY ETS

Amongst the driving forces of carbon emissions and their
reductions (24–27), the emission trading scheme (ETS) has
been regarded as of particular importance. As a market-based
environmental regulation mechanism, carbon ETS works on
firms’ incentives and behavior in emission abatement, including

cleaner technology innovation and application, through prices of
emission permits or allowances tradable on the market. Being a
key driver for emission reductions, ETS’s reduction effects have
been empirically analyzed with a variety of methodologies (28–
31). In this section we apply the methodologies of propensity-
score-matching (PSM) and difference-in-differences (DID) to
examine the reduction effects of China’s carbon ETS based on
pre-pandemic data. The results will hopefully provide us with
insights into the emission reductions effects by this key driver for
post-pandemic China, which are discussed in the next section.

PSM-DID Methodology
Baseline Model
China’s carbon ETS pilots have been running several compliance
cycles since their successive launch from 2013 to 2016 in
eight municipalities and provinces of Shanghai, Beijing, Tianjin,
Chongqing, Guangdong (with Shenzhen included herein),
Hubei, and Fujian. Although a nationwide ETS covering the
power generation industry was introduced in 2017 and began its
the first compliance cycle starting from 2021, the region-specific
pilots with a broader coverage of sectors and enterprises are still
going to play important roles in China’s ETS. We take these pilot
regions as treatment and the other provinces in mainland China
(except for Tibet due to missing data) as control, and use the DID
model as in Equation (1) to study the effects on CO2 emissions by
ETS policies.

ln(emissionit) = β0 + β1DIDit + provincei + yeart

+6λcontrolit + εit (1)

where ln(emissionit) denotes the log of CO2 emissions for region
i in year t. DIDit is the interaction term of piloti × postit . piloti
is the group dummy, piloti = 1 if i ∈ treatment and piloti = 0
if otherwise. postit is the time dummy, postit = 1, if t = 2013
for Beijing, Tianjin, Shanghai, and Guangdong, if t = 2014 for
Chongqing and Hubei, if t = 2016 for Fujian; and postit=0 if
otherwise. Then, the coefficient β1 of piloti × postit indicates
the average change in the log of CO2 emissions in pilot regions
relative to that in non-pilot regions post policy implementation.
provincei denotes the region-fixed effects on CO2 emissions from
unobserved region-specific time-invariant determinants, while
yeart denotes the time-fixed effects.

A set of control variables denoted by controlit captures the
main determinants of CO2 emissions.

ln(realGDPpc) and ln(popden), respectively, denote the log of
real GDP per capita calculated at prices in 2005 and population
density, controlling impacts on emissions related to the economic
scale and population agglomeration.

indshare and coalshare denote the proportions of added value
from the secondary industry to GDP, and coal consumption
to total energy consumption, respectively, representing the
structure of the economic and energy system.

Energy consumption intensity denoted by ecintensity,
calculated as consumption of standard coal equivalent
per unit of real GDP, could be regarded as a proxy for
technology advancement related to energy conservation and
emission reduction.
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TABLE 3 | Descriptive statistics of variables by group.

Variables Pilot (N = 105) Non-pilot (N = 345)

Mean P50 SD CV Mean P50 SD CV

ln(emission) 5.259 5.183 0.537 0.102 5.482 5.552 0.824 0.150

ln(realGDPpc) 1.479 1.557 0.531 0.359 0.803 0.847 0.512 0.637

ln(popden) 6.577 6.421 0.850 0.129 5.091 5.344 1.176 0.231

indshare 41.173 44.934 10.173 0.247 43.695 43.865 7.445 0.170

coalshare 60.578 61.722 19.104 0.315 105.473 99.759 39.612 0.376

ecintensity 0.772 0.732 0.326 0.421 1.511 1.284 0.816 0.540

urbanshare 69.471 64.243 15.195 0.219 49.432 49.734 9.470 0.192

eximshare 73.687 71.803 49.951 0.678 18.611 12.504 16.991 0.913

rdshare 1.337 1.262 0.591 0.442 0.808 0.687 0.498 0.616

indpoinvestshare 0.108 0.076 0.103 0.955 0.176 0.143 0.151 0.858

urbanshare, eximshare, rdshare, and indpoinvestshare denote
the proportions of urban population to total population, trade
value to GDP, industrial enterprises’ expenditures on R&D to
GDP, and investment completed in the treatment of industrial
pollution to GDP, respectively, controlling impacts on emissions
related to urbanization, trade, technology innovation and
environmental regulation.

Descriptive Statistics
We use the region-level CO2 emission inventories in China by
CEADs, and datasets on regional economy, energy use, and
environment by NBS. See Section Data Availability Statement for
details. Table 3 summarizes the descriptive statistics of variables
across treatment and control groups from 2005 to 2019. On
average, the absolutemagnitude of CO2 emissions in pilot regions
is lower than that in non-pilot regions by almost 20%. It’s
reasonable with the mean of indshare, coalshare, and ecintensity
being smaller and the mean of rdshare being greater in pilot
regions, indicating positive effects in reducing CO2 emissions in
an economic structure featured by less-intensive fossil fuel use
and greater investment on technology innovation, which more
than offset the emissions from a larger scale of economic output,
population agglomeration and urbanization.

Propensity Score Matching
The DID estimates indicate the emission reduction effects
induced by ETS, with the control group providing effective
counterfactual changes to emissions of the pilot regions.
It’s important to identify parallel trends in emissions across
treatment and control groups over time, before we attribute
variability across groups to the effects induced by ETS policies
rather than pre-existing time trends. Since the ETS pilots were
not randomly selected, it might not be appropriate if we take all
non-pilot regions as control. For this concern, we use the Probit
model as in Equation (2) to calculate propensity scores andmatch
pilot regions to non-pilot regions that have similar characteristics
in covariates of CO2 emissions. Table 4 gives the results.

P(controli) = Pr(piloti = 1
∣

∣controli ) = E(piloti
∣

∣controli ) (2)

TABLE 4 | Probit regression.

Pilot Coefficient t-Value

ln(realGDPpc) −3.432*** −3.55

ln(popden) 2.529*** 3.94

indshare 0.211*** 5.58

coalshare −0.087*** −5.64

ecintensity −1.791*** −2.70

urbanshare 0.240*** 5.29

eximshare −0.039*** −4.24

rdshare −1.230** −2.35

indpoinvestshare 2.903* 1.82

Constant −23.737*** −5.07

Observations 450

Pseudo R2 0.675

***p < 0.01, **p < 0.05, *p < 0.1.

Then, we match pilot and non-pilot regions year by year, using
the estimated propensity scores and a most-commonly-used
matching algorithm, the k-nearest neighbor matching (NNM)
within radius, with k=2 and radius = 0.5σ̂ps, where σ̂ps
denotes the SD of estimated propensity scores. Table 5 reports
the differences in the mean values of variables across treatment
and control groups after matching. For all variables used in this
study, mean values across groups are much more balanced after
matching. Results of t-test further show that for most variables
the mean values across groups are insignificantly different,
suggesting the validity of matching.

PSM-DID Results of Average Treatment
Effects
Columns (3)–(8) in Table 6 give the PSM-DID results using
NNM within radius of 0.5σ̂ps. For reference, we also report
the DID baseline regression results as in Columns (1)–(2).
The coefficients of pilot × post under various regression
scenarios are all statistically significant and negative, indicating
significant effects in reducing emissions by ETS in pilot regions.
Moreover, the PSM-DID coefficients (ranging from −0.04 to
−0.09) are smaller in magnitude than DID coefficients (−0.13,
approximately), indicating that the emission reduction effects
by ETS could have been exaggerated if we simply applied the
DID methodology without caution. With more reliable estimates
after PSM, we calculate the average treatment effects on the
absolute magnitude of CO2 emissions in pilot regions post ETS
implementation, relative to control groups of non-pilot regions
(pre- or post-ETS) and pilot regions pre-ETS. Measured with
different sizes of matched samples using the same matching
algorithm, CO2 emissions in pilot regions post ETS are reduced
by 4–8.6%.

Robustness Checks
Parallel Trend Test
We apply two diagnostic tests for parallel trend across treatment
and control groups. Firstly, we calculate the average ln(emission)
within each group year by year from 2005 to 2019. Figure 3
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TABLE 6 | PSM-DID results.

Variables ln(emission)

DID PSM-DID (k-NNM within radius of 0.5σ̂ps)

k = 2 k = 4 k = 6

(1) (2) (3) (4) (5) (6) (7) (8)

Pilot × post −0.139*** −0.134*** −0.041* −0.042* −0.073*** −0.078*** −0.091*** −0.090***

(−6.87) (−6.69) (−1.62) (−1.74) (−3.44) (−3.76) (−4.64) (-4.55)

Controls Alla Yesb Alla Yesb Alla Yesb Alla Yesb

Province-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Year-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Constant −3.380*** −3.637*** 4.829** 3.349*** 5.960*** 3.549*** 7.378*** 8.686***

(−4.66) (−5.10) (2.27) (13.64) (3.15) (16.11) (4.15) (5.36)

Observations 450 450 88 88 111 111 124 124

R2 0.129 0.125 0.598 0.451 0.559 0.495 0.375 0.221

Effects on emissionsc −12.985 −12.508 −4.009 −4.078 −6.995 −7.466 −8.727 −8.567

t-values in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
a,bAll the control variables included and only statistically significant ones included, respectively.
cEffects on the absolute magnitude of CO2 emissions.

TABLE 5 | Mean of variables before and after PSM (2-NNM within radius of 0.174).

Variables Sample Treatment Control Difference p-Value of

t-Test

ln(emission) Unmatched 5.259 5.482 −0.223 0.001

Matched 5.350 5.442 −0.092 0.577

ln(realGDPpc) Unmatched 1.479 0.803 0.676 0.000

Matched 1.031 0.946 0.085 0.395

ln(popden) Unmatched 6.577 5.091 1.486 0.000

Matched 6.050 5.903 0.146 0.185

indshare Unmatched 41.173 43.695 −2.523 0.020

Matched 46.083 47.751 −1.668 0.268

coalshare Unmatched 60.578 105.473 −44.895 0.000

Matched 74.456 79.367 −4.910 0.168

ecintensity Unmatched 0.772 1.511 −0.739 0.000

Matched 0.969 0.960 0.009 0.897

urbanshare Unmatched 69.471 49.432 20.038 0.000

Matched 58.279 52.680 5.600 0.010

eximshare Unmatched 73.687 18.611 55.076 0.000

Matched 57.077 38.544 18.534 0.059

rdshare Unmatched 1.337 0.808 0.529 0.000

Matched 1.014 1.039 −0.026 0.801

indpoinvestshare Unmatched 0.108 0.176 −0.068 0.000

Matched 0.138 0.111 0.027 0.235

Matched sample size: N = 88, with 43 and 45 observations in treatment and

control, respectively.

shows similar upward trends in emissions over time across
pilot and non-pilot regions before 2013, indicating that those
regions would have similar trends after 2013 if there weren’t any
ETS policies.

FIGURE 3 | Year-to-year average of ln(emission) within groups before and

after ETS.

To further verify parallel trend, we follow the methods by
Chen et al. (32) and estimate the model as in Equation (3).

ln(emissionit) = β0 + β1DIDit +

11
∑

k=1

βk(piloti × yearbefore−k
it )

+provincei + yeart +
∑

λcontrolit + εit (3)

where yearbefore−k
it is a dummy denoting k-year(s) before ETS

implementation with k = 1, 2, . . . , 11 covering the years from

2005 to 2015. Then, if the coefficient βk of piloti× yearbefore−k
it is

statistically insignificant, we consider pilot and non-pilot regions
as having parallel trend before policy implementation.
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TABLE 7 | Parallel trend test.

Variables ln(emission)

(1) (2)

Pilot × post −0.108* −0.123**

(−1.74) (−2.14)

Pilot × yearbefore−1 −0.083 −0.104

(−1.30) (−1.77)

Pilot × yearbefore−2 −0.065 −0.064

(−1.22) (−1.27)

Pilot × yearbefore−3 −0.047 −0.043

(−0.90) (−0.86)

Pilot × yearbefore−4 −0.045 −0.047

(−1.00) (−1.07)

Pilot × yearbefore−5 −0.040 −0.037

(−0.94) (−0.88)

Pilot × yearbefore−6 −0.036 −0.033

(−1.42) (−1.34)

Pilot × yearbefore−7 −0.052 −0.044

(−1.45) (−1.32)

Pilot × yearbefore−8 −0.081 −0.076

(−1.95) (−1.93)

Pilot × yearbefore−9 −0.076 −0.072

(−1.80) (−1.81)

Pilot × yearbefore−10 −0.073 −0.057

(−1.35) (−1.09)

Pilot × yearbefore−11 0.007 0.012

(0.11) (0.20)

Controls Alla Yesb

Province–fixed effects Yes Yes

Year-fixed effects Yes Yes

Constant 4.784* 2.988***

(1.88) (16.60)

Observations 88 88

R2 0.582 0.490

t-values in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
a,bRefer to Table 6.

Table 7 gives the results estimated from the sample after PSM
using the algorithm of 2-NNM within radius of 0.5σ̂ps. The

estimated coefficients of piloti × yearbefore−k
it (k = 1, 2, . . . , 11)

are all statistically insignificant, or statistically not different from
0. This finding verifies that the assumption of parallel trend is not
violated, and estimates using the PSM-DIDmethodology capture
the emission reduction effects by ETS.

Placebo Test
We conduct a placebo test to further check robustness of our
estimation results. Based on Monte Carlo simulation, regions
and years are randomly selected to generate a virtual treatment
group for 1,000 times. With these random permutations, we
then use the DID regression to estimate β1 as in Equation (1).
Figure 4 shows the kernel density of coefficients estimated from
counterfactual treatment groups. The estimates from the real
treatment group (as reported in Table 6) fall at the tail of the
distribution, indicating significant differences in estimates from
real and virtual treatment groups. Hence, we exclude the placebo

FIGURE 4 | Kernel density of estimated DID coefficients in 1,000 random

permutations based on Monte Carlo simulation.

effect and consider the estimates of emission reduction effects by
ETS as valid.

FURTHER CHECKS ON PILOT MARKET
PERFORMANCES AND POST-PANDEMIC
IMPLICATONS

Reduction Effects by Pilot Market
Performances
Since the ETS is a market-based mechanism for emission
reduction, the reduction effects are bound to vary with the
performances of pilot markets [See (33) for a recent review].
To capture the pandemic shocks on emission trading markets
and their implications for post-pandemic emission reductions,
we hereby estimate as in Equation (4) the emission reduction
effects by pilot market performances regarding the trading price,
liquidity and transaction continuity.

ln(emissionit) = β0 + β1(DIDit × performanceit)

+provincei + yeart +
∑

λcontrolit + εit (4)

where performanceit is a set of variables capturing the
characteristics of transactions on pilot markets if i ∈ treatment,
and takes the value of 0 if otherwise indicating no market
performances whatsoever in non-pilot regions. Following Liu
et al. (33) and Cui et al. (34), the set includes the log of yearly
average trading prices and volumes of emission allowances,
denoted as ln(priceit) and ln(volumeit), respectively. Considering
that a market with greater trading volumes tends to be more
active and maintains prospects for assets to be more easily
exchanged, we use ln(volumeit) to capture the liquidity of pilot
markets (35, 36). To represent transaction continuity, we use
the counts of continuous trading days and their proportions to
total trading days within a year, denoted as continuitycountsit and
continuitypropit , respectively.
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TABLE 8 | Effects by pilot market performances.

Variables ln(emission)

(1) (2) (3) (4)

DID × ln(price) −0.038***

(−5.92)

DID × ln(volume) −0.022***

(−6.13)

DID × continuitycounts −0.001***

(−4.46)

DID × continuityprop −0.167***

(−5.49)

Controls Yes Yes Yes Yes

Province-fixed effects Yes Yes Yes Yes

Year-fixed effects Yes Yes Yes Yes

Constant −3.411*** −2.780*** −2.676*** −3.061***

(−4.75) (−3.86) (−3.74) (−4.29)

Observations 450 450 450 450

R2 0.128 0.137 0.136 0.132

t-values in parentheses.

***p < 0.01.

Table 8 reports the effects on CO2 emissions by pilot market
performances, estimated from the datasets as used in the
previous section and datasets of emission allowance transactions
on various pilot exchanges. In accordance with literature, we
find statistically negative coefficient of DID × ln(price) as in
Column (1), indicating the pilot markets are working in emission
reductions through the fundamental signals of carbon prices,
which reflect marginal abatement costs and provide incentives
for emission reductions. Still, to increase the odds of trading
prices efficiently reflecting marginal abatement costs, we rely
on a moderate liquidity with reasonable trading volumes on
pilot markets. As Column (2) reports, the coefficient of DID ×

ln(volume) is also statistically negative, indicating the emission
trade in pilot regions is working in emission reductions through
liquidity of carbon assets. Furthermore, we find statistically
negative coefficients of DID × continuitycounts and DID ×

continuityprop. As the proportion of continuous trading days
to total trading days within a year increases by 1 unit on pilot
markets post implementation of ETS, the log of CO2 emissions
are estimated to reduce by 0.167%. Apart from the trading prices
and liquidity, the continuity of transactions on pilot markets is
another important determinant for emission reductions. These
findings are of particular importance for us to better understand
the post-pandemic emission reductions by ETS.

Implications for Post-pandemic Emission
Reductions by ETS
As important determinants for emission reduction effects by
ETS, pilot market performances, especially in terms of liquidity
and transaction continuity, have been experiencing severe shocks
during the pandemic.

Take the pilots of Shanghai and Beijing for instance. Figure 5
shows that the trading volumes for most months in 2020 were
lower than the monthly volumes in pre-pandemic 2018 and 2019
on both pilot markets. A total amount of 2.14 million tons of
emission allowances were traded on the Shanghai Exchange in
2020, a fall by −20.78% compared to 2019. During the first
wave of the pandemic, the trading volume shrank especially
dramatically, falling by−78.3% in 2020Q1 compared to 2019Q1.
The Beijing Exchange experienced a very similar decrease
in trading volumes, by −63.38% throughout 2020 compared
to 2019.

Transactions even halted for months on some markets in
2020. Take the pilot of Fujian for instance. There were no
transactions at all for the first 6 months, compared to a total
trading volume of 3.34 million tons for the same period in 2019.
This transaction halt lasted for 187 days until July 2020 with a
rather small trading volume of 3,748 tons, almost 98.25% less
compared to the same period in 2019. Throughout 2020, total
trading intervals without transactions amounted to 302 days on
the Fujian Exchange.

The pilot markets suffered from great shocks during the
pandemic, including markedly decreasing trading volumes
and long-lasting transaction halts. Considering the negative
coefficients of liquidity and continuity as in Table 8, neither
shrinking volume nor discontinuity on pilot markets is a good
sign for emission reductions, which could otherwise have been
realized or augmented through better performances of ETS.

If regarded as a natural experiment, the pandemic, or indeed
any crisis whatsoever, is intensely exposing the ever-existing
defects of China’s carbon ETS and its pilot markets. Low
liquidity with trading volume usually concentrated right before
compliance deadlines, few and non-diverse participants and
their lack of incentives in emission trading, and regulated firms’
tendency to reserve emission allowances for upcoming stricter
policies rather than trading, as well as regional barriers among
exchanges due to differential regulation and technical methods,
have contribute to the weakmarket performances.When shocked
by the pandemic, the markets would only perform even more
vulnerably. Consequently, the ETS, as a key driver for emission
reductions, might just end up with limited reduction effects.
Unless handled properly with careful and effective mechanism
design, the defects and immaturity of ETS markets would
continuously undermine the emission reduction efforts in post-
pandemic China.

CONCLUSIONS

There have been shocks on the economic activities and carbon
emissions all around the world since the outbreak of the
pandemic. They could be only temporary, though, if there
are no fundamental changes in the emission trajectory and its
determinants by reason of the pandemic. To examine the CO2

emission trajectory for pre- and post-pandemic China, we use
the near-real-time datasets of daily CO2 emissions by Carbon
Monitor, and apply the Cox-Stuart trend test and mean equality
test. A fairly consistent trajectory is observed over a 2-year
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FIGURE 5 | Monthly trading volume and continuity in 2018–2020.

time horizon before and after the pandemic outbreak, despite
abrupt shocks in the first wave. Although for the time being we
find no signs of significant changes in the emission trajectory,
we believe it’s necessary to further investigate the pandemic
impacts on key forces underlying the trajectory and driving for
emission reductions.

Amongst these drivers, particular importance has been
attached to the market-based ETS. China’s carbon ETS, however,
has been working mostly through the eight pilot markets,
which are immature and bound to undergo shocks during the
pandemic. The effects on CO2 emissions by China’s carbon ETS
and its pilot market performances still need to be examined,
especially when under pandemic shocks. To this end, we firstly
estimate the reduction effects by ETS for pre-pandemic China,
and then check on the pandemic impacts on pilot market
performances with implications for emission reductions in post-
pandemic China.

Using the methodology of PSM-DID and pre-pandemic
region-level CO2 emission datasets by CEADs, we find
statistically significant emission reduction effects by China’s
carbon ETS. Estimated with different sizes of matched samples
using the algorithm of k-NNM within radius, CO2 emissions in
pilot regions post the implementation of ETS are significantly
reduced, with the average treatment effects ranging from 4–
8.6%. For robustness checks, we apply two diagnostic tests for
parallel trend across treatment and control groups, as well as a
placebo test with 1,000 random permutations based on Monte
Carlo simulation.

We also find statistically significant emission reduction
effects by pilot market performances regarding the trading

price, liquidity, and transaction continuity. The pilot markets
are working in emission reductions through the fundamental
signals of carbon prices, as well as the liquidity and continuous
transactions of emission allowances. The pilot markets,
however, have been experiencing great pandemic shocks.
With markedly decreasing trading volumes and long-lasting
transaction halts, the pilot markets have been performing
more weakly and vulnerably under pandemic shocks compared
to usual times. Consequently, the emission reduction effects
by ETS during and after the pandemic could just end up
undermined. Rather than being the root for such performance
deterioration, however, the pandemic shocks are more like
catalyzer, exposing the ever-existing defects on immature
pilot markets intensely and aggravating the limited emission
reductions by ETS.

If regarded as a natural experiment, just as previous crisis
were, the pandemic might as well provide some lessons on the
mechanism design of the carbon ETS for post-pandemic China.
It’s critical to ensure and maintain the market liquidity and
transaction continuity, so as for the market-based ETS to fully
realize its emission reduction effects. More efforts need to be
devoted to increasing the trade varieties and introducing more
and diverse participants into the markets. Encourage firms to
get more involved in emission trading by the price discovery
function of trading prices as they reflect the marginal abatement
costs and provide incentives for emission trading, rather than just
requiring them to meet control goals by compliances deadlines.
Now that based on pilot operations, the nationwide market has
entered into its first compliance cycle and started to play an
increasingly core role in the carbon ETS, it’s of particular value
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that we learn the lessons and improve the mechanism design
of the national ETS for post-pandemic China. There are still a
lot to be explored, especially regarding the desired properties of
heterogeneous emission trading markets to the end of steadily
reducing emissions even under shocks. We’re to further our
research, and expect to be in a better position to study with future
access to more detailed datasets of CO2 emissions at all levels
covering a longer time horizon.

DATA AVAILABILITY STATEMENT

Datasets of daily CO2 emission estimates can be accessed through
Carbon Monitor (https://carbonmonitor.org.cn/). Refer to Liu
et al. (4, 14) for technical details. CO2 emission inventories
by regions of China using IPCC Sectoral Emission Accounting
Approach can be accessed through CEADs (https://www.
ceads.net/data/province/by_sectoral_accounting/). Refer to (37–
40) for technical details. Datasets of emission transactions
can be accessed through each pilot exchange, such as the
Shanghai Environment and Energy Exchange (https://www.
cneeex.com/), Beijing Green Exchange (https://www.cbeex.

com.cn/), Guangdong China Emissions Exchange (http://
www.cnemission.cn/), Tianjin Climate Exchange (https://www.

chinatcx.com.cn/), China Hubei Emission Exchange (http://
www.hbets.cn/), Chongqing Carbon Emissions Trading Center
(https://tpf.cqggzy.com/), as well as the carbon emission
trading platform (http://www.tanjiaoyi.org.cn/). Datasets for
other variables used in this study can be accessed through China
Statistical Yearbook, China Energy Statistical Yearbook, and
China Statistical Yearbook on Environment, compiled by the
NBS (National Bureau of Statistics, https://data.stats.gov.cn/).

AUTHOR CONTRIBUTIONS

KL: conceptualization, methodology, analysis, and writing. AX:
conceptualization and reviewing. RY: methodology, analysis,
and reviewing. WL: methodology, data analysis, and writing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This research was supported by National Social Science
Foundation of China (Grant No. 21BTJ068) and Zhejiang
Provincial Philosophy and Social Science Planning Project of
China (Grant No. 22NDQN284YB).

REFERENCES

1. International Energy Agency (IEA). Global Energy Review 2020. (2020).
Available online at: https://www.iea.org/reports/global-energy-review-2020
(accessed July 01, 2021).

2. Tollefson J. How the coronavirus pandemic slashed carbon emissions – in five
graphs. Nature. (2020) 582:158–9. doi: 10.1038/d41586-020-01497-0

3. Forster PM, Forster HI, Evans MJ, Gidden MJ, Jones CD, Keller CA, et al.
Current and future global climate impacts resulting from COVID-19. Nat
Clim Change. (2020) 10:913–9. doi: 10.1038/s41558-020-0883-0

4. Liu Z, Ciais P, Deng Z, Lei R, Davis SJ, Feng S, et al. COVID-19 causes record
decline in global CO2 emissions. arXiv. arXiv:2004.13614 (2020).

5. Han P, Cai Q, Oda T, Zeng N, Shan Y, Lin X, et al. Assessing the recent impact
of COVID-19 on carbon emissions from China using domestic economic
data. Sci Total Environ. (2021) 750:141688. doi: 10.1002/essoar.10503412.1

6. Wang Q, Li S, Li R, Jiang F. Underestimated impact of the COVID-
19 on carbon emission reduction in developing countries - a novel
assessment based on scenario analysis. Environ Res. (2022) 204:111990.
doi: 10.1016/j.envres.2021.111990

7. Evans S. Daily global CO2 emissions ‘cut to 2006 levels’ during height of
coronavirus crisis. Carbon Brief. (2020). Available online at: https://www.
carbonbrief.org/daily-global-co2-emissions-cut-to-2006-levels-during-
height-of-coronavirus-crisis (accessed October 01, 2021).

8. Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A,
et al. Global carbon budget 2020. Earth Syst Sci Data. (2020) 12:3269–340.
doi: 10.5194/essd-12-3269-2020

9. McSweeney R, Tandon A. Coronavirus causes ‘record fall’ in fossil-fuel
emissions in 2020. Carbon Brief. (2020). Available online at: https://www.
carbonbrief.org/global-carbon-project-coronavirus-causes-record-fall-in-
fossil-fuel-emissions-in-2020 (accessed October 01, 2021).

10. Le Quéré C, Jackson RB, Jones MW, Smith AJP, Abernethy S, Andrew
RM, et al. Temporary reduction in daily global CO2 emissions during
the COVID-19 forced confinement. Nat Clim Chang. (2020) 10:647–53.
doi: 10.1038/s41558-020-0797-x

11. Kumar A, Singh P, Raizada P, Hussain CM. Impact of COVID-19 on
greenhouse gases emissions: a critical review. Sci Total Environ. (2022)
806:150349. doi: 10.1016/j.scitotenv.2021.150349

12. Nguyen XP, Hoang AT, Ölçer AI, Huynh TT. Record decline in global
CO2 emissions prompted by COVID-19 pandemic and its implications
on future climate change policies. Energy Sourc A. (2021) 2021:1–21.
doi: 10.1080/15567036.2021.1879969

13. Myllyvirta L. Coronavirus temporarily reduced China’s CO2 emissions by a
quarter. Carbon Brief. (2020). Available online at: https://www.carbonbrief.
org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-
by-a-quarter (accessed October 01, 2021).

14. Liu Z, Ciais P, Deng Z, Lei R, Davis SJ, Feng S, et al. Near-real-timemonitoring
of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat
Commun. (2020) 11:5172. doi: 10.1038/s41467-020-20254-5

15. Zheng B, Geng G, Ciais P, Davis SJ, Davis SJ, Martin RV, Meng J,
et al. Satellite-based estimates of decline and rebound in China’s CO2

emissions during COVID-19 pandemic. Sci. Adv. (2020) 6:eabd4998.
doi: 10.1126/sciadv.abd4998

16. Wang Q, Lu M, Bai Z, Wang K. Coronavirus pandemic reduced China’s
CO2 emissions in short-term, while stimulus packages may lead to
emissions growth inmedium- and long-term.Appl. Energy. (2020)278:115735.
doi: 10.1016/j.apenergy.2020.115735

17. Sikarwar VS, Reichert A, Jeremias M, Manovic V. COVID-19 pandemic and
global carbon dioxide emissions: a first assessment. Sci Total Environ. (2021)
794:148770. doi: 10.1016/j.scitotenv.2021.148770

18. Wang Q, Wang S. Preventing carbon emission retaliatory rebound post-
COVID-19 requires expanding free trade and improving energy efficiency. Sci
Total Environ. (2020) 746:141158. doi: 10.1016/j.scitotenv.2020.141158

19. Smith LV, Tarui N, Yamagata T. Assessing the impact of COVID-19 on global
fossil fuel consumption and CO2 emissions. Energy Econ. (2021) 97:105170.
doi: 10.1016/j.eneco.2021.105170

20. Tollefson J. Covid curbed carbon emissions in 2020– but not bymuch.Nature.
(2021) 589:343. doi: 10.1038/d41586-021-00090-3

21. Li R, Li S. Carbon emission post-coronavirus: continual decline or rebound?
Struct Change Econ D. (2021) 57:57–67. doi: 10.1016/j.strueco.2021.01.008

22. Wu XZ, Zhao BJ. Nonparametric Statistics. Beijing: China Statistics
Press. (2009).

23. Rutkowska A. Properties of the cox-stuart test for trend in application to
hydrological series: the simulation study. Commun Stat Simul C. (2015)
44:565–79. doi: 10.1080/03610918.2013.784988

Frontiers in Public Health | www.frontiersin.org 10 February 2022 | Volume 10 | Article 848211

https://carbonmonitor.org.cn/
https://www.ceads.net/data/province/by_sectoral_accounting/
https://www.ceads.net/data/province/by_sectoral_accounting/
https://www.cneeex.com/
https://www.cneeex.com/
https://www.cbeex.com.cn/
https://www.cbeex.com.cn/
http://www.cnemission.cn/
http://www.cnemission.cn/
https://www.chinatcx.com.cn/
https://www.chinatcx.com.cn/
http://www.hbets.cn/
http://www.hbets.cn/
https://tpf.cqggzy.com/
http://www.tanjiaoyi.org.cn/
https://data.stats.gov.cn/
https://www.iea.org/reports/global-energy-review-2020
https://doi.org/10.1038/d41586-020-01497-0
https://doi.org/10.1038/s41558-020-0883-0
https://doi.org/10.1002/essoar.10503412.1
https://doi.org/10.1016/j.envres.2021.111990
https://www.carbonbrief.org/daily-global-co2-emissions-cut-to-2006-levels-during-height-of-coronavirus-crisis
https://www.carbonbrief.org/daily-global-co2-emissions-cut-to-2006-levels-during-height-of-coronavirus-crisis
https://www.carbonbrief.org/daily-global-co2-emissions-cut-to-2006-levels-during-height-of-coronavirus-crisis
https://doi.org/10.5194/essd-12-3269-2020
https://www.carbonbrief.org/global-carbon-project-coronavirus-causes-record-fall-in-fossil-fuel-emissions-in-2020
https://www.carbonbrief.org/global-carbon-project-coronavirus-causes-record-fall-in-fossil-fuel-emissions-in-2020
https://www.carbonbrief.org/global-carbon-project-coronavirus-causes-record-fall-in-fossil-fuel-emissions-in-2020
https://doi.org/10.1038/s41558-020-0797-x
https://doi.org/10.1016/j.scitotenv.2021.150349
https://doi.org/10.1080/15567036.2021.1879969
https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter
https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter
https://www.carbonbrief.org/analysis-coronavirus-has-temporarily-reduced-chinas-co2-emissions-by-a-quarter
https://doi.org/10.1038/s41467-020-20254-5
https://doi.org/10.1126/sciadv.abd4998
https://doi.org/10.1016/j.apenergy.2020.115735
https://doi.org/10.1016/j.scitotenv.2021.148770
https://doi.org/10.1016/j.scitotenv.2020.141158
https://doi.org/10.1016/j.eneco.2021.105170
https://doi.org/10.1038/d41586-021-00090-3
https://doi.org/10.1016/j.strueco.2021.01.008
https://doi.org/10.1080/03610918.2013.784988
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Luo et al. Monitoring Trajectory and Reduction Effects

24. Jiang M, An H, Gao X. Jia N, Liu S, Zheng H. Structural decomposition
analysis of global carbon emissions: the contributions of domestic
and international input changes. J Environ Manage. (2021) 294:112942.
doi: 10.1016/j.jenvman.2021.112942

25. Wu R, Wang J, Wang S, Feng K. The drivers of declining CO2 emissions
trends in developed nations using an extended STIRPAT model: a historical
and prospective analysis. Renew Sust Energ Rev. (2021) 149:111328.
doi: 10.1016/j.rser.2021.111328

26. Wen L, Li Z. Provincial-level industrial CO2 emission drivers and
emission reduction strategies in China: combining two-layer LMDI
method with spectral clustering. Sci Total Environ. (2020) 700:134374.
doi: 10.1016/j.scitotenv.2019.134374

27. Wang J, Rodrigues J, Hu M, Behrens P, Tukker A. The evolution of
Chinese industrial CO2 emissions 2000–2050: a review and meta-analysis of
historical drivers, projections and policy goals. Renew Sust Energ Rev. (2019)
116:109433. doi: 10.1016/j.rser.2019.109433

28. Wen H, Chen Z, Nie P. Environmental and economic performance of China’s
ETS pilots: new evidence from an expanded synthetic control method. Energy
Rep. (2021) 7:2999–3010. doi: 10.1016/j.egyr.2021.05.024

29. Shen J, Tang P, Zeng H. Does China’s carbon emission trading reduce carbon
emissions? Evidence from listed firms. Energy Sustain Dev. (2020) 59:120–9.
doi: 10.1016/j.esd.2020.09.007

30. Wang X, Cao F, Ye K. Mandatory corporate social responsibility (CSR)
reporting and financial reporting quality: evidence from a quasi-natural
experiment. J Bus Ethics. (2018) 152:253–74. doi: 10.1007/s10551-016-3296-2

31. Hu Y, Ren S, Wang Y, Chen X. Can carbon emission trading scheme
achieve energy conservation and emission reduction? Evidence
from the industrial sector in China. Energy Econ. (2020) 85:104590.
doi: 10.1016/j.eneco.2019.104590

32. Chen S, Shi A, Wang X. Carbon emission curbing effects and influencing
mechanisms of China’s emission trading scheme: the mediating roles of
technique effect, composition effect and allocation effect. J Cleaner Prod.

(2020) 264:121700. doi: 10.1016/j.jclepro.2020.121700
33. Liu J, Woodward R. Zhang Y. Has carbon emissions trading reduced PM25 in

China? Environ Sci Technol. (2021) 55:6631–43. doi: 10.1021/acs.est.1c00248
34. Cui J, Zhang J, Zheng Y. Carbon pricing induces innovation: evidence from

China’s regional carbon market pilots. AEA Pap Proc. (2018) 108:453–7.
doi: 10.1257/pandp.20181027

35. Frino A, Kruk J, Lepone A. Liquidity and transaction costs in the
European carbon futures market. J Deriv Hedge Funds. (2010) 16:100–15.
doi: 10.1057/jdhf.2010.8

36. Liu X, Zhou X, Zhu B, He K, Wang P. Measuring the maturity of carbon
market in China: an entropy-based TOPSIS approach. J Cleaner Prod. (2019)
229:94–103. doi: 10.1016/j.jclepro.2019.04.380

37. Guan Y, Shan Y, Huang Q, Chen H, Wang D, Hubacek K. Assessment to
China’s recent emission pattern shifts. Earths Fut. (2021) 9:e2021EF002241.
doi: 10.1029/2021EF002241

38. Shan Y, Huang Q, Guan D, Hubacek K. China CO2 emission
accounts 2016–2017. Sci Data. (2020) 7:1–9. doi: 10.1038/s41597-020-0
393-y

39. Shan Y, Guan D, Zheng H, Ou J, Li Y, Meng J, et al. China CO2

emission accounts 1997–2015. Sci Data. (2018) 5:1–14. doi: 10.1038/sdata.20
17.201

40. Shan Y, Liu J, Liu Z, Xu X, Shao S, Wang P, et al. New provincial CO2

emission inventories in China based on apparent energy consumption
data and updated emission factors. Appl Energy. (2016) 184:742–50.
doi: 10.1016/j.apenergy.2016.03.073

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Luo, Xu, Ye and Li. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Public Health | www.frontiersin.org 11 February 2022 | Volume 10 | Article 848211

https://doi.org/10.1016/j.jenvman.2021.112942
https://doi.org/10.1016/j.rser.2021.111328
https://doi.org/10.1016/j.scitotenv.2019.134374
https://doi.org/10.1016/j.rser.2019.109433
https://doi.org/10.1016/j.egyr.2021.05.024
https://doi.org/10.1016/j.esd.2020.09.007
https://doi.org/10.1007/s10551-016-3296-2
https://doi.org/10.1016/j.eneco.2019.104590
https://doi.org/10.1016/j.jclepro.2020.121700
https://doi.org/10.1021/acs.est.1c00248
https://doi.org/10.1257/pandp.20181027
https://doi.org/10.1057/jdhf.2010.8
https://doi.org/10.1016/j.jclepro.2019.04.380
https://doi.org/10.1029/2021EF002241
https://doi.org/10.1038/s41597-020-0393-y
https://doi.org/10.1038/sdata.2017.201
https://doi.org/10.1016/j.apenergy.2016.03.073
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles

	Monitoring the CO2 Emission Trajectory and Reduction Effects by ETS and Its Market Performances for Pre- and Post-pandemic China
	Introduction
	Pre- and Post-pandemic Emission Trajectory in China
	Data and Descriptive Statistics
	Cox-Stuart Trend Test
	Mean Equality Test

	Pre-pandemic Emission Reduction Effects by ETS
	PSM-DID Methodology
	Baseline Model
	Descriptive Statistics
	Propensity Score Matching

	PSM-DID Results of Average Treatment Effects
	Robustness Checks
	Parallel Trend Test
	Placebo Test


	Further Checks on Pilot Market Performances and Post-pandemic Implicatons
	Reduction Effects by Pilot Market Performances
	Implications for Post-pandemic Emission Reductions by ETS

	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References


