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Ground-received solar radiation is affected by several meteorological and air pollution

factors. Previous studies have mainly focused on the effects of meteorological factors

on solar radiation, but research on the influence of air pollutants is limited. Therefore,

this study aimed to analyse the effects of air pollution characteristics on solar radiation.

Meteorological data, air quality index (AQI) data, and data on the concentrations of six air

pollutants (O3, CO, SO2, PM10, PM2.5, and NO2) in nine cities in China were considered

for analysis. A city model (model-C) based on the data of each city and a unified model

(model-U) based on national data were established, and the key pollutants under these

conditions were identified. Correlation analysis was performed between each pollutant

and the daily global solar radiation. The correlation between O3 and daily global solar

radiation was the highest (r = 0.575), while that between SO2 and daily global solar

radiation was the lowest. Further, AQI and solar radiation were negatively correlated, while

some pollution components (e.g., O3) were positively correlated with the daily global solar

radiation. Different key pollutants affected the solar radiation in each city. In Shenyang and

Guangzhou, the driving effect of particles on the daily global solar radiation was stronger

than that of pollutants. However, there were no key pollutants that affect solar radiation

in Shanghai. Furthermore, the prediction performance of model-U was not as good as

that of model-C. The model-U showed a good performance for Urumqi (R2
= 0.803),

while the difference between the two models was not particularly significant in other

areas. This study provides significant insights to improve the accuracy of regional solar

radiation prediction and fill the gap regarding the absence of long-term solar radiation

monitoring data in some areas.

Keywords: global solar radiation, prediction models, air quality index, air pollutants, meteorological factors

INTRODUCTION

Solar radiation is one of the main energy sources of the Earth–atmosphere system and drives
atmospheric motion (1). In recent decades, the solar radiation trends in most regions worldwide
have been decreasing. For instance, in the 1990’s, a global dimming phenomenon, which was
more evident in large cities, was observed (2–4). The reduction in solar radiation caused by
global dimming can change the climate and reduce the surface temperature of Earth (5, 6).
Long-term and accurate assessments of the amount of solar radiation reaching the Earth’s surface is
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important for determining the energy budget of the Earth–
atmosphere system, and to study climate change, evaluate solar
radiation patterns, and develop and utilize solar energy resources
(7–9). And high concentration of particulate matters in air
reduced the amount of solar radiation that can reach the earth
(10, 11). Appropriate lighting is also conducive to creating
a more liveable urban environment and encouraging more
citizens to participate in outdoor activities, such as outdoor
walking (12).

The regional estimation of solar radiation has shifted
from measurements using expensive and highly maintained
instruments to model calculations (13, 14). Various empirical
models, for example, sunshine-based models (15–18) and
temperature-based models (19–21) are commonly used due
to their simple operation and low computational costs (22–
26). Angstrom (27) and Prescott (28) first proposed a simple
solar radiation calculation model using average clear-sky
daily global radiation data and the sunshine duration of the
selected study area. Many subsequent studies further added
expressions (e.g., quadratic, cubic, square root, logarithm,
exponent, and idempotent) to the Angström–Prescott
model (16, 22).

Further, various meteorological factors, such as precipitation
and relative humidity, have been applied to improve the
model accuracy (29–33). In addition to empirical models,
machine learning models have been used for global solar
radiation prediction to address non-linear and multidimensional
relationships between solar radiation and meteorological factors
in noisy environments (34–38). Fan et al. (39) indicated that
by using vapor pressure deficit and relatively humidity, daily
global solar radiation could be estimated more accurately
in South China, which experiences a humid subtropical or
tropical climate. Zhang et al. (31) reviewed and compared
multiple models in terms of time scale and estimation type,
and proved that sunshine-based and artificial neural network
models exhibited similar performances in estimating monthly
average and daily global radiation. The advantage of regression
model is that the understanding and interpretation of the
model are very intuitive. Artificial neural network model
belongs to black box, which is difficult to understand the
internal mechanism.

With expanding industrialization and the increasing
proliferation of cars, especially in developing countries, the
existing issue of air pollution is bound to further aggravate.
Some researchers began to consider the impact of air pollution
on solar radiation. Air pollution can change the amount of
total solar radiation reaching the ground surface (40). Further,
suspended particles capable of scattering and absorbing radiation
can weaken the ground solar radiation. Elminir (41) concluded
that air pollution reduced the total ground radiation in Egypt
by 9.3–22% under clear sky conditions. Moreover, Fu and
Dan (42) reported that an increased atmospheric aerosol
concentration significantly affected the number of sunshine
hours and the proportion of scattered radiation. Therefore,
considering the impact of air pollution when estimating
solar radiation estimation is important. Considering the
impact of air pollution, the previous empirical solar radiation

model may be difficult to meet the needs of solar energy
utilization. Some researchers have studied the impacts of air
pollution index (API) or air quality index (AQI) on solar
radiation prediction (43–45). Furlan et al. (46) introduced
a new regression model that considered the effects of air
pollution and cloud cover on hourly diffuse solar radiation
data. Their results showed that their model performed better
than previously developed models. Further, Janjai et al. (47)
proposed a semi-empirical model to estimate clear sky global
and direct normal solar irradiances in Thailand. The model
included physical parameters, such as aerosol optical properties
and perceptible water, and performed better than previous
empirical models. The validation of solar radiation data acquired
from several cities showed that the new daily diffuse solar
radiation (NDDSR) model and its modified version were
applicable to various regions. Zhao et al. (48) and Suthar
et al. (49) established linear, exponential, and logarithmic
empirical models using data from China and India, and their
results showed that inclusion of air pollution can improve
the prediction accuracy of models. Moreover, Yao et al. (50)
developed a new method using AQI and solar radiation
data of 55 years measured in Beijing to modify the existing
NDDSR model.

Although many studies have explored the impacts of
air pollution on solar radiation, most focused only on the
impact of AQI on solar radiation, and neglected the regional
differences in the impacts of different pollutants on solar
radiation. Presently, air quality monitoring mainly assesses
the mass concentrations of PM2.5, PM10, NO2, SO2, CO,
and O3 (9, 51–53). The standardization of urban air quality
monitoring procedures can facilitate the use of measured data
on different pollutants and the corresponding solar radiation for
further analysis.

As few studies have analyzed the impact of air pollutants on
solar radiation estimation, the present study filled this research
gap. This study aimed to analyse the correlation characteristics
between air pollution and daily global solar radiation. Data
on various meteorological factors, AQI, and six air pollutants
(O3, CO, SO2, PM10, PM2.5, and NO2) were considered from
nine Chinese cities from 2015 to 2020. Further, the influence
mechanism of air pollutants on daily global solar radiation was
analyzed using stepwise regression. Moreover, a unified model
(model-U) based on national data and city model (model-
C) based on the data of each city were obtained through
regression analysis, and the key pollutants that significantly
affected solar radiation were identified. In particular, this
study aimed: (1) to explore the correlation between different
meteorological parameters, air pollution parameters, and solar
radiation; (2) to establish a solar radiation model to analyse
the influencing characteristics of pollutant parameters on solar
radiation in each city; (3) to propose a sunshine pollution
model-U with universal applicability in China and compare
its performance with model-C; and (4) to extract the key
pollutants for model-U and each model-C. The characteristics
of the impact of pollutants on solar radiation in different cities
were revealed and regional solar radiation prediction strategies
were formulated.
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MATERIALS AND METHODS

Study Area
The study area included the following nine Chinese cities:
Urumqi, Lanzhou, Shenyang, Beijing, Chengdu, Kunming,
Wuhan, Shanghai, and Guangzhou, with varying geographical
locations (Urumqi and Lanzhou–northwest, Shenyang and
Beijing–northeast, Guangzhou–southeast coast, Chengdu and
Kunming–southwest, Wuhan–central China, and Shanghai–
eastern coast) (Figure 1). Further, Shanghai, Guangzhou,
Wuhan, Kunming, and Chengdu experience a subtropical
monsoon climate, Beijing experiences a temperate monsoon
climate, Shenyang experiences a temperate semi humid
continental climate, and Urumqi and Lanzhou experience a
temperate continental climate. Lanzhou and Shanghai have the
highest (1,874.4m) and lowest altitude (5.5m), respectively.
Further, the annual average temperature of Harbin, Urumqi,
Lanzhou, and Shenyang is relatively low. The lowest annual
average relative humidity is observed in Beijing (51.14%).
Moreover, the annual average sunshine hours are the lowest
in Chengdu (2.86 h), while Guangzhou has the highest annual
average precipitation.

The selected nine cities suffer from air pollution, particularly
with high concentrations of inhalable particulate matter and
haze. In Urumqi and Beijing, the annual average AQI is 96.59
and 87.33, respectively. The API in Kunming and Guangzhou
is generally low, while the annual average AQI is 54.83 and
54.09, respectively. Urumqi has the highest levels of inhalable
particulate matter and NO2 among the nine cities, while
Shenyang has the highest SO2 concentration. Further, the
O3 concentration is the highest in Lanzhou, while the CO
concentration in all cities is similar. Different pollution sources
cause differences in the pollutant characteristics in different cities.

In terms of solar radiation, the average annual total solar
radiation in Urumqi is the highest (6,123 MJ/m2). However, due
to a higher proportion of rain and fog and less sunny days,
the average annual total solar radiation in Chengdu is only
3,854 MJ/m2.

Data Sources
Meteorological data, including daily observation values of
average relative humidity (%), daily maximum temperature
(◦C), minimum temperature (◦C), sunshine duration (h),
and precipitation (mm), were acquired from the National
Meteorological Information Center (http://data.cma.cn/). The
acquired real time data were quality controlled and the
availability of all elements exceeded 99.9%, with the percentage
of correct data being 100%.

Solar radiation data were acquired from the National
Meteorological Information Center. The dataset was mainly
developed based on the HYBRID/MLWT2 model. Compared
with the measured value, the average error of the product
was −0.1 W/m2, relative error was −0.04%, and correlation
coefficient was 0.98 (http://data.cma.cn/Market/Detail/code/
RADI_CHN_MUL_HOR/type/0.html).

The air quality data (comprising all compositional
information) were obtained from the national urban air

quality real-time release platform of China Environmental
Monitoring Station. The dataset provides data on AQI and six
air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3; http://www.
cnemc.cn/).

According to previous studies (27, 28), actual daily sunshine
hours n, daily potential sunshine hours N, daily extra-terrestrial
solar radiation Q0, daily minimum temperature Tmin, relative
humidity Rh, and maximum temperature Tmax are typically
the most influential input parameters to predict global solar
radiation. Sunshine rate is the ratio of the actual daily sunshine
hours and the daily potential sunshine hours. In addition to the
daily maximum and minimum temperatures, some researchers
used daily temperature difference 1T or the logarithm of
temperature difference ln (1T) in their empirical equations
(29, 54, 55). Wind and urban heat island effect are also one
of the influencing factors of air pollution accumulation and
photochemical reaction. Wind can affect the density and spatial
distribution of air pollutants, and also affects the speed of
photochemical reaction (12, 56, 57). Due to the existence of
ground buildings, the wind also changes greatly in a small size
range. It is difficult for traditional weather stations to achieve the
required measurement density (58).

In this study, 14 initial independent variables were selected,
including one radiation variable (daily extra-terrestrial solar
radiation Q0), seven pollution factors (AQI, O3, CO, SO2, PM10,
PM2.5, and NO2), and six meteorological variables [ratio of the
daily actual sunshine hours and the daily potential sunshine
hours, relative humidity Rh, daily minimum temperature Tmin,
daily maximum temperature Tmax, daily temperature difference
1T, and logarithm of temperature difference ln (1T)]. Four
different temperature representation methods were selected
to determine the most suitable representation method for
the model.

Further, the daily average values of all air pollution data
from 2015 to 2020 were calculated and associated with the
acquired meteorological data and daily global solar radiation
data. Incomplete datasets were deleted; additionally, to exclude
the influence of thick cloud cover, only zero precipitation
data were selected. The final data volume of each city was
as follows: Urumqi−1,340 groups, Lanzhou−1,577 groups,
Shenyang−1,603 groups, Beijing−1,599 groups, Chengdu−1,173
groups, Kunming−1,356 groups,Wuhan−1,077 groups (without
2018 data), Shanghai−1,226 groups, and Guangzhou−1,169
groups. Differences in the amount of data could affect the
model accuracy.

Methods
Figure 2 presents the method for analyzing the driving effect
of air pollution on solar radiation. Pearson’s correlation was
applied to determine the relation between daily global solar
radiation and the air pollution parameters. Further, linear
regression analysis was used to investigate the driving influence
of air pollution factors on daily global solar radiation and
determine the key pollutants that have strong effects on daily
global solar radiation. Nine city models (model-C) based
on the data of each city and a unified model (model-U)
based on national data using comprehensive city data were
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FIGURE 1 | The geographic location of the study area.

established using stepwise regression analysis. The comparative
analysis of model-C and model-U was conducted to discuss
the regional differences in the impact of air pollution on
solar radiation.

Stepwise Regression Analysis Model
The prediction model was established using stepwise regression,
which introduced the variables that affect daily global solar
radiation step-by-step, determined the variables most
significantly affecting daily global solar radiation each time,
tested the existing variables in the equation, and eliminated the
variables determined to be insignificant. Finally, neither new
variables were introduced nor were old variables deleted. The
calculation formula is:

Y = β0 + βiXi + ε, i = 1, · · · , p

where Xi is the independent variable affecting solar radiation
and Y is the dependent variable. The F-test statistic value of the
corresponding regression coefficient of Xi is calculated as given

below, and recorded as F(1)1 , · · · , F(1)p , with the maximum value

given as F(1)i1
.

F
(1)
i1

= max
{

F
(1)
1 , · · · , F(1)p

}

At a significance level α, the corresponding critical value was

recorded as F(1)1 , F(1)i2
≥ F(2); subsequently, Xi2 was introduced

into the regression model and I1 was added to index set.
This method was repeated, and an independent variable that

had not been introduced into the regression model was selected
each time until no variable was left to be introduced.

Model Assessment and Statistical Error Analysis
Coefficient of determination (R2), root mean square error
(RMSE), mean absolute error (MAE) and mean deviation error
(MBE) were used to evaluate the accuracy and performance of
the models. To compare model performance, Lin’s Concordance
Correlation Coefficient (LCCC) (59) were used, which were
calculated as follows:

LCCC =
2sxy

s2x + s2y +
(

x − y
)2
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FIGURE 2 | Structure and technical framework of the study.

where xi and yi are the measured and predicted daily global solar
radiation; x and y are the means for xi and yi;and s2x and s

2
y are the

corresponding variances and,

sxy =
1

n

n
∑

i = 1

(xi − x) (yi − y)

According to Zhao et al. (60), LCCC = 1 indicates perfect
agreement. LCCC larger than 0.9 means excellent agreement,
and the value ranging from 0.80 to 0.90 shows good agreement.
The moderate agreement is achieved when LCCC values
are between 0.65 and 0.80, while the values <0.65 mean
poor agreement.

RESULTS

Comparative Analysis of Air Pollution and
Solar Radiation
Figure 3 shows the daily global solar radiation and pollutant
parameters of the selected nine cities from 2015 to 2020. The
daily global solar radiation showed evident periodicity, with low
and high values observed in winter and summer, respectively.
The pollutant concentrations in Urumqi, Shenyang, Beijing, and
Wuhan changed periodically, which was not evident in other
cities. The AQI levels of Urumqi and Beijing were initially high
in 2015 and 2016, and then decreased. In Lanzhou, Kunming,
and Guangzhou, the AQI levels in 2018 were higher than
those in other years. Moreover, in Shenyang and Shanghai,
AQI levels did not have considerable yearly variations, and no
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FIGURE 3 | Daily global solar radiation and pollution parameters from 2015 to 2020 in nine cities (Wuhan lacks 2018 data).

evident fluctuations were observed. The variations in the AQI
level in each city may be related to the industrial development
and population density of each city. Furthermore, AQI level
as well as CO, NO2, SO2, PM10, and PM2.5 were negatively
correlated with daily total solar radiation. Contrastingly, O3

showed a significant periodic change, similar to the daily total
solar radiation. This indicated that the influence of various
pollutants and comprehensive AQI on global daily solar radiation
was not consistent.

Analysis of the Influence of Air Pollution on
Solar Radiation
Correlation Analysis Between Solar Radiation and Air

Pollution
Figure 4 shows the correlation coefficients between daily global
solar radiation and air pollution in the nine cities during 2015–
2020. The correlation between any single pollutant and daily
global solar radiation differed. O3 and daily global solar radiation
showed the highest correlation (r = 0.575), while the correlation
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FIGURE 4 | Correlation coefficients between air pollution parameters and daily global solar radiation in the nine cities from 2015 to 2020.

between SO2 and daily global solar radiation was the lowest.
AQI, CO, NO2, PM10, and PM2.5 were negatively correlated with
daily global solar radiation. Further, the correlation coefficients
between various pollution parameters and daily global solar
radiation showed spatial heterogeneity. SO2 showed a negative
correlation in all areas, except Kunming, and O3 showed a
positive correlation with daily global solar radiation in all nine
cities. Except for O3, the correlation of all other pollutants
with daily global solar radiation was significantly weaker in
Kunming than that in other areas. This could be attributed to the
climatic conditions of Kunming, which facilitates the diffusion of
pollutants. In addition, the air quality in this city was excellent
due to long-term uniform precipitation. In 2020, the annual rate
of air quality in Kunming was 100%. Moreover, the number of
excellent days was 203 and the number of good days was 163.

Influence of Air Pollution on Daily Global Solar

Radiation and the Selection of Key Pollutants
Table 1 shows the regression analysis results of the selected
factors for the model to explain daily global solar radiation.
Based on the regression analysis results, the pollution factors
with a strong effect on daily global solar radiation were labeled
as key pollutants for further investigation. Subsequently, daily
extra-terrestrial solar radiation Q0 and sunshine rate were the
most important factors affecting solar radiation, and were always
selected as the top two elements of model-U and model-C.

Among these, Q0 was related to the local latitude, while the
sunshine rate represented local sunshine conditions. In addition
to the above two factors, temperature contributed the most to
the model in Beijing, Wuhan, Shanghai, and Guangzhou. During
the selection of modeling elements, four temperature types were
provided. According to the regression analysis results, model-U
contained nine variables, and their order of contribution was Q0,
the ratio of the daily actual sunshine hours and the daily potential
sunshine hours, Rh, Tmin, Tmax, O3, NO2, and SO2. Further, the
results showed that Tmin had the greatest contribution to model-
U in the four temperature representations, while ln (1T) and1T
had lower contributions. Tmax and Tmin combined contributed
more to the model than ln (1T) alone; additionally, Tmin had the
highest impact on the solar radiation, and approximately half of
the total sites in model-C showed the same results.

Nine city models (model-C) included relative humidity, and
based on the analysis of the contribution of meteorological
factors to the model, the effects of relative humidity and
temperature were equivalent. Urumqi model-C did not include
relative humidity, possibly because Urumqi is at the center of the
Eurasian continent and experiences a temperate continental arid
climate. As can be seen from Table 1, in Urumqi and Lanzhou,
Q0 and sunshine rate rank first, followed by NO2 and O3. In
Urumqi, NO2 ranks third in the impact on solar radiation, and
O3 ranks third in Lanzhou. The pollution elements selected for
model-UwereNO2, SO2, andO3, which indicated that there were
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TABLE 1 | Elements of the city models and ranking of their contributions.

Rank Model-C Model-U

Urumqi Lanzhou Shenyang Beijing Chengdu Kunming Wuhan Shanghai Guangzhou

1 Q0 Sunshine rate Q0 Q0 Sunshine rate Sunshine rate Sunshine rate Q0 Sunshine rate Q0

2 Sunshine rate Q0 Sunshine rate Sunshine rate Q0 Rh Q0 Sunshine rate Q0 Sunshine rate

3 NO2 O3 Rh Tmin 1T Q0 ln (1T) Tmin ln (1T) Rh

4 Tmin Rh ln (1T) Rh Rh ln (1T) Rh Rh Rh Tmin

5 SO2 Tmin Tmax NO2 O3 CO Tmin PM10 Tmax

6 PM10 SO2 PM2.5 Tmax PM2.5 O3 1T O3

7 AQI NO2 PM10 CO O3 NO2 NO2

8 ln (1T) SO2 SO2

9 Tmax PM10

10 AQI

common air pollutants that affected solar radiation in different
cities in China. However, because of dissimilar composition of
air pollutants in each city, the selected pollutants in model-C
for each city were not the same as model-U. To be specific,
five city models included NO2, four city models included SO2,
while four city models includedO3. In Shenyang andGuangzhou,
driving effect of particulate matter (PM10 and PM2,5) on the
daily global solar radiation was stronger than gas molecules.
However, none of the pollution elements inmodel-C of Shanghai,
which differed from the results of other research areas studied
previously. This phenomenon may indicate that meteorological
factors have a greater impact on solar radiation than pollution
factors in Shanghai.

City Models (Model-C)
Figure 5 shows the scatter plots of the predicted and measured
daily global solar radiation of model-C for each city. The
regression results showed that model-C performed well in terms
of R2, RMSE, MAE, and MBE. The restrictive effect of regional
pollution factors on solar radiation cannot be ignored. The R2 of
model-C indicated a good fit, suggesting that the solar radiation
models based on regional differences can accurately reveal the
spatial differences in air pollution. The R2 value of model-C
in Kunming was the lowest (0.824), while that of Urumqi was
the highest (0.963), followed by that of Lanzhou (0.914). The
R2 values of the models of other cities ranged between 0.8 and
0.9, indicating that solar radiation of each urban model could be
well-explained by the independent variables. Further, the RMSE
value of the Shenyang model was the highest (3.055), while
that of the Urumqi model was the lowest (1.961). The model
RMSE values of other cities ranged mostly between 2 and 3.
RMSE initially involves the addition of all errors, which are then
squared; therefore, it enlarges the gap between larger errors. MAE
can better reflect the actual situation of the predicted value errors.
The highest MAE value was observed in Shenyang (2.076), while
Guangzhou showed the lowest MAE value (1.481). Further, the
mean deviation error of each model-C was low, with that of the
Lanzhou model-C being negative, indicating that the predicted
value was slightly greater than the measured value. The MBE

values of other cities were negative, indicating that the predicted
values were lower than the measured values.

Unified Models (Model-U)
The factors affecting solar radiation as identified by model-
U were selected as key pollutants to further simulate and
predict solar radiation. Figure 6 shows the scatter plots of the
predicted and measured values of model-U for each city. The
performance of model-U was the worst in Kunming (R2 =

0.735), and the best in Lanzhou (R2 = 0.893). The MBE value
of most cities was more than 0, implying that the predicted
value was generally less than the measured value, while an MBE
value of <0 implied that the predicted value was generally
more than the measured value. In general, model-U did not
evidently show an overestimation or underestimation tendency.
Furthermore, the RMSE (4.928), MAE (3.622), and MBE (1.142)
values of Urumqi were the highest among the nine stations.
The predicted values of the Urumqi models were underestimated
during high solar radiation. In Shenyang, few predicted values
were <0, which was inconsistent with the actual scenario. This
could be possibly because model-U included maximum and
minimum temperatures. When the maximum temperature in
winter was <0, the predicted values were negative. In most cities,
higher solar radiation values resulted in a better convergence
of the scatter plot. However, this does not indicate that a
higher actual solar radiation increases the model-U performance.
Because model-U considers that precipitation is completely
absent, seasons with more rainfall provided less data, which may
have also affected the model prediction accuracy. In the future,
the issue of low model prediction accuracy during high solar
radiation in Urumqi should be addressed to further increase the
prediction accuracy ofmodel-U; additionally, negative prediction
values in cold winter areas should be addressed, and strategies to
improve the model-U accuracy during low solar radiation should
be considered.

Comparison and Prediction Analysis of Solar

Radiation Models
The comparison results of the statistical values of model-U and
model-C are shown in Figure 7. The corresponding R2 values
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FIGURE 5 | Scatter plot of predicted values and measured values of model-C.

indicated that the prediction performance of model-U in all
cities was worse than that of model-C. Further, the model-
U prediction performance was not as good as that for the
optimal model of each city, and the difference between the
performances of the two models was the greatest in Urumqi.
Similarly, the LCCC values of the two models differ the most
in Urumqi, with model-U being 0.847 and model C being 0.980.
The LCCC difference between the two models in Shenyang is the
smallest, which is 0.905 and 0.910. In general, except Urumqi,
the difference between the two models was not significant in
other cities. Additionally, the Urumqi model-U showed a good
performance (R2 = 0.803).

DISCUSSION

Influence of Air Pollution on Solar
Radiation
Air pollution particles can reduce atmospheric transparency and
affect the total solar radiation reaching the ground by reflecting
and absorbing solar radiation. After the pollutants in the
atmosphere absorb the energy of solar radiation, photochemical
reactions may occur to produce toxic substances. Most previous

studies analyzed the influence mechanism of AQI on solar
radiation. However, this cannot completely reveal the influence
mechanism of air pollutants on solar radiation. Therefore, in
this study, AQI and six pollutants (PM2.5, PM10, SO2, NO2, CO,
and O3) were considered for mechanism and prediction analyses;
subsequently, the mechanism analysis based on pollutants was
verified. The comprehensive evaluation index AQI was negatively
correlated with solar radiation, while some pollution components
(such as O3) were positively correlated with the daily total solar
radiation. This explains the need and rationality of determining
the driving mechanism of atmospheric pollutants on solar
radiation in a study area. By adjusting the concentration of
various air pollutants, the response mechanism on solar radiation
can be realized and the dimming phenomenon in cities can be
improved. Further, strategies to assess the impacts of air pollution
on solar radiation can be changed from using a conventional
comprehensive evaluation index to a comprehensive evaluation
method using data on the influence of pollutants on solar
radiation. Further, the list of key pollutants is conducive to
targeted intervention on air pollutants and can enhance the
obtained solar radiation data. In this study, key pollutants
were defined as the pollution variables selected for the models
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FIGURE 6 | Scatter plot of predicted values and measured values of model-U.

during stepwise regression analysis. These pollutants represented
the pollution factors that had a strong driving effect on
solar radiation in the models. In model-C, the key pollutants
evidently differed, and the proportion and types of pollutants
in each city model differed. NO2 was a key pollutant in five
cities, while CO was a key pollutant in only two cities, thus
indicating that that the driving effect of NO2 was stronger
than that of CO in most study areas. The differences in the
pollution factors may be caused by the industrial characteristics
of cities; however, as various factors affect the daily global
solar radiation and the origins of pollutants are complex,
further assessments are required. The nine cities selected in
this study are almost evenly distributed in China, including
four climatic regions. Although evident regional differences
were observed in the key pollutants in model-C, some overall
similarities were also observed. The key pollutants in model-U
were O3, NO2, and SO2, indicating that these were common
pollutants affecting the solar radiation in the selected cities. By
controlling the emission of key pollutants, the dimming effect
in cities can be reduced, which in turn can increase the total
solar radiation.

Prediction Performance of Solar Radiation
Models
Based on theR2, RMSE,MAE, andMBE values of the twomodels,
model-C showed better performance. Local climate and pollution
elements were used in model-C, which provided a basis for
accurate solar radiation prediction. Model-U used the data on all
cities, and showed a similar prediction performance for all nine
cities, but the prediction accuracy of each city was worse than that
of model-C. Both models showed good prediction performance
for solar radiation, with an R2 value exceeding 0.8. In Urumqi,
the difference between the two models was relatively significant,
while marginal differences were observed for other cities. This
could be possibly because model-U included relative humidity,
which was not considered in the Urumqi model-C, thereby
causing deviations in the prediction results. This indicates that
the accuracy of model-U in arid areas needs to be further verified.

Due to varied industry types and population densities
in different cities and different air pollutants in different
regions, the driving mechanism of daily global solar radiation
differed. Model-C was observed to provide a better prediction
accurately using the regional pollution characteristics and the
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FIGURE 7 | Comparison of R2 and LCCC values between the two models.

impact of key pollutants on solar radiation than only using
meteorological factors. Simultaneously, controlling the emission
of key pollutants can allow the coordinated development
of air quality and solar energy resource utilization during
urbanization. Although the model-U performance was not as
good as that of model-C, it still showed high prediction accuracy.
Model-U can be applied in areas lacking long-term solar
radiation monitoring data in China to obtain relatively accurate
prediction data.

Limitations and Future Work
This study has some limitations. First, problems in data
acquisition limited the regional coverage of the study. Some
areas, such as plateau areas, were not included in the study.
In addition, factors such as topography, wind and climate
may affect pollutant diffusion in the stratosphere, thus adding
more uncertainty and complexity to the regional solar radiation
prediction and photochemical reaction. This highlights the need
to consider the impact of the lag effect of air pollution on
solar radiation. Second, due to the coupling effect of many
factors, comprehensively analyzing the driving effect of various

pollutants on solar radiation is difficult. Thus, the driving
mechanism of individual pollutants should be further studied.
The analysis results of driving mechanism indicated that several
problems need to be resolved to alleviate the negative impacts
of air pollution on solar radiation. Despite these limitations,
this study effectively evaluated the correlation between different
air pollutants and solar radiation, and identified key pollutants
that have a strong impact on solar radiation in each study area;
additionally, key pollutants suitable for the national prediction
model were shortlisted, which also can be used as a reference for
other regions.

CONCLUSION

Many studies have indicated that the impact of air pollution
on solar radiation cannot be neglected. Previous studies mostly
analyzed the impact of AQI on solar radiation through a
general perspective of air pollution; however, they ignored the
differences in the impacts of different pollutants (PM2.5, PM10,
NO2, SO2, CO, and O3) on solar radiation. Because direct
accurate measurement of solar radiation data is difficult, solar
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radiation prediction models are gaining increasing importance.
Understanding the differences in the impacts of pollutants on
solar radiation is significant to improve the model prediction
accuracy and formulate effective pollution control policies. In
this study, Pearson’s correlation coefficient was used to analyse
the correlation between different pollutant types and daily
global solar radiation, while the influence mechanism of air
pollutants on daily total solar radiation was analyzed using
stepwise regression. Varying industrialization levels and climate
conditions in different cities can result in different impacts
of air pollutants on solar radiation in different regions. The
key pollutants that influence solar radiation were identified
by model-U and model-C. The accuracy of model-C was
higher than that of model-U, but model-U is significant for
areas lacking long-term solar radiation data. Further, the key
pollutants reflect the regional heterogeneity of the impacts of
air pollution on solar radiation, which can assist in improving
the model accuracy, proposing more targeted pollution control
countermeasures, and promoting the efficient utilization of solar
energy resources.
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