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Despite the importance of understanding the ecology of freshwater viruses, there are not

many studies on the subject compared tomarine viruses. Themicrobiological interactions

in these environments are still poorly known, especially between bacteriophages and

their host bacteria and between cyanophages and cyanobacteria. Lake Bologna, Belém,

capital of the Brazilian State of Pará, is a water source that supplies the city and its

metropolitan region. However, it remains unexplored regarding the contents of its virome

and viral diversity composition. Therefore, this work aims to explore the taxonomic

diversity of DNA viruses in this lake, especially bacteriophages and cyanophages, since

they can act as transducers of resistance genes and reporters of water quality for human

consumption. We used metagenomic sequencing data generated by previous studies.

We analyzed it at the taxonomic level using the tools Kraken2, Bracken, and Pavian;

later, the data was assembled using Genome Detective, which performs the assembly

of viruses. The results observed here suggest the existence of a widely diverse viral

community and established microbial phage-regulated dynamics in Lake Bolonha. This

work is the first ever to describe the virome of Lake Bolonha using a metagenomic

approach based on high-throughput sequencing, as it contributes to the understanding

of water-related public health concerns regarding the spreading of antibiotic resistance

genes and population control of native bacteria and cyanobacteria.
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INTRODUCTION

Amazonia is a 10 million years old unrivaled nest of biodiversity that reigns over South America;
from bird-eating spiders to emperor tamarins to pink river dolphins, biologists find a new species
every other day (1). Its ecosystems are essential for biodiversity preservation, climate regulation,
energy production, and food andwater security. The Amazon has a vital role in controlling zoonotic
diseases and vector-borne and water-borne infections (2, 3).

Despite its importance, policies, laws, agreements, funds, and practical actions focused on
Amazon protection have been weakened in Brazil, encouraging deforestation and culminating in
losing about 20% of the original Amazon forest cover in Brazil by 2019 (4). The association between
anthropogenic action in the Amazon rainforest, eutrophication of its water bodies, climate change,
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and alterations in vector dynamics, human migration, genetic
changes in pathogens, and the poor social and environmental
conditions in many Latin-American countries serve as an
opportunity for the emergence and re-emergence of human
infectious diseases in Brazil and other Amazonian countries (5).

Amazonian fauna hosts a vast diversity of well-known
pathogens and many other potential new or even unknown
pathogens (6–11). This abundance of microorganisms indicates
that the emergence of new infections from the forest is a
constant threat to human health, particularly favorable to water-
borne diseases due to anthropogenic activities nearby freshwater
sources, such as ponds, rivers, basins, and lakes (12–14).

Lakes close to urban areas are increasingly changing
their ecosystem as human population expansion occurs and
commercial, recreational, and residential uses increase (15).
The eutrophication process offers particular conditions for the
replication of viruses, as environments of this type seem to
provide high viral activation and hypothetically control host
abundance, respiration, and production (16).

Regarding lake environments, little is known about the
ecology of the freshwater virus when compared to marine viruses
(17). Most are bacteriophages or human and other animal
viruses, but plant viruses are also identified (18). Bacteriophages
can play an essential function in the aquatic ecosystem as
they can contribute to the acquisition and spread of antibiotic
resistance genes (ARGs) (19). Some studies have shown ARGs-
carrying phages to be abundant inmany environments, especially
those impacted by anthropogenic activities (20–24), which
demonstrates that these types of viruses are relevant to local
microbial ecology (20).

Like bacteriophages, another essential group of DNA viruses
is cyanophages, which infects cyanobacteria and have a similar
morphology (25). Being abundant in both fresh and saltwater,
they play an essential role in modulating cyanobacterial
populations and preserving water quality (25, 26). Also,
cyanophages are abundant in aquatic environments and play
a fundamental role in flowering dynamics, including growth
regulation and photosynthesis of cyanobacteria (27). However,
unlike bacteriophages, it has many genera of possible hosts;
therefore, freshwater cyanophages can be classified according to
the taxonomy of their host organisms (28).

Given the need to study the diversity of different
environments, techniques have been developed, such as
viral metagenomics, also known as virome. This technique
allows the study of various viruses from environmental samples
(29). In this way, metagenomics and next-generation sequencing
(NGS) have demonstrated considerable genetic complexity and
inter-species and intra-species interaction by exploring viral
populations both in aquatic environments and within the human
microbiome (30, 31). However, despite increasing studies using
the technique, there are still significant gaps in the virome
databases. It has been estimated that 1,031 viral particles are
infecting bacterial populations. However, <2,200 double-chain

Abbreviations: ARGs, Antibiotic resistance genes; NGS, Next-Generation
Sequencing; dsDNA, double-chain DNA; NCBI, National Center for
Biotechnology Information.

DNA virus (dsDNA) and retrovirus genomes are deposited at
the National Center for Biotechnology Information (NCBI),
compared to more than 45,000 bacterial genomes (32).

In order to understand the relationships that may exist
between human actions and the emergence of new diseases
from water sources in the Amazon, it is crucial to comprehend
the role and dynamics displayed by the present viruses inside
the local community. Therefore, our objective was to identify
and describe the diversity of DNA viruses through viral
metagenomics analyses in Lake Bolonha, especially those that
have bacteriophagic and cyanophagic behavior, thus contributing
to the future handling of water-borne diseases associated with
resistance to antimicrobials of public health concern.

MATERIALS AND METHODS

Sample Collection
All sequencing data employed in this study were generated
previously by Alves et al. (33). The water samples were collected
in January of 2017 at Lake Bolonha, Belém-PA, at three
different points, namely: P1 (S 01◦25.530

′′

W 048◦26.043
′′

),
upstream of the Water Treatment Plant uptake; P2 (S 01◦25.530

′′

W 048◦26.018
′′

) in the morning-glory spillway that supplies
other water treatment substations, and P3 (S 01◦24.992

′′

W
048◦25.785

′′

) in the channel connecting the lakes Água Preta
and Bolonha (Figure 1). The assessment of water quality,
DNA extraction, and Total Community DNA (TC-DNA)
metagenomics sequencing by the Ion ProtonTM platform are
described in Alves et al. (33).

Metagenomic Dataset
The raw metagenomic data used in this work is
currently available at SRA/NCBI database under the
access numbers SRR8893560 (P1), SRR8893561 (P2), and
SRR8893559 (P3) (Table 1). This data can also be found at

FIGURE 1 | Map of the lake area and identification of sampling points (P1, P2,

and P3). Alves et al. (33).
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TABLE 1 | General information about the metagenomic dataset used in this work.

SRA accession number Sample code Number of spots Number of bases Size Study Sequencing technology

SRR8893560 P1 16,671,734 2.3 Gb 1.7 Gb Freshwater Metagenome Ion ProtonTM

SRR8893561 P2 16,278,151 2.2 Gb 1.7 Gb Freshwater Metagenome Ion ProtonTM

SRR8893559 P3 12,236,522 1.7 Gb 1.3 Gb Freshwater Metagenome Ion ProtonTM

TABLE 2 | List of samples (P1, P2, and P3) and their respective number of reads obtained after the sequencing, after quality control, the number of reads associated with

viruses, and the number of reads used for coverage depth.

Sample code Raw data After control quality Reads associated with viruses Average depth of assembly

P1 16,671,734 reads 8,410,372 reads 202,318 reads 5,359 reads

P2 16,278,151 reads 8,339,898 reads 44,877 reads 4,067 reads

P3 12,236,522 reads 6,299,043 reads 131,370 reads 2,217 reads

www.ncbi.nlm.nih.gov/sra/PRJNA506429. It is important to
note that the data employed here was generated through high-
throughput metagenomic sequencing of environmental samples
using the Total Community DNA approach. However, we only
included in our analyses the viral portion of the metagenomic
dataset for this work being the virome our aimed subject of study.

Taxonomy Analysis
The raw data was used to perform the taxonomic analysis
through the Kraken2 tool (34) with the parameter “–download-
library viral” to download the complete viral sequences of RefSeq
and classify the reads regards its taxonomy.

Assessment of Viral Diversity
The output generated by Kraken2 was submitted to the tool
Bracken (35), using abundance and diversity to generate more
accurate estimations on the viruses genus and species levels.
The input parameters were “${CLASSIFICATION_LVL} = ‘S’
(Species)” and “input data = kraken2 output (report).” All other
parameters were set as default. Later, the results were displayed
with the Pavian tool (36), which allows comparing the taxonomic
classifications obtained by Kraken2 and Bracken and presenting
abundance estimations in several samples. Veen diagrams were
generated using the web-based tool InteractiVenn (37).

Viral Metagenome Assembly
The online tool Genome Detective (38) was used in default
parameters to assemble the sequencing data and classify the
contigs formed into their respective taxa, identified using
metaSPAdes software for single-end reads (39).

RESULTS

Virome Assembly
The viral portion of the raw metagenomic data was assembled
to prepare the data for the classification of their respective
taxon per each of the freshwater samples (Table 2). The species
with the highest percentage of coverage after assembly were
Cyanophage KBS-S-2A (P1) with 25.37% and 69.66% identity,
Cladosporium fulvum T-1 virus (P2) with 23.14% coverage and

56.90% identity, and Cyanophage KBS-S-2A (P3) with 20.65%
coverage and 71.18% identity.

Viral Diversity of Lake Bolonha
Taxonomic analysis performed by Kraken2 revealed that
there might be more than 3.500 distinct species of viruses in
Lake Bolonha. A Sankey diagram is represented summarizing
taxonomic diversity at samples P1, P2, and P3, respectively,
in Figure 2. The complete data from the taxonomic
analysis comparison between each sample site is reported
as Supplementary Tables S1–S3.

The 20 species with a higher reads count in all freshwater
samples are represented in Figures 3–5. The number of reads
found for each virus on this top selection was compared with
their respective number of reads on the other two samples
from this study. Also, a Venn diagram showcasing the overlap
between these top 20 most represented viruses for samples P1,
P2, and P3, is displayed in Figure 6. A similar diagram for
the complete dataset of the identified viruses is reported as
Supplementary Figure S1.

The sample P1 presented an overall abundance of
Synechococcus phage, a cyanophage (Figure 3). We obtained the
highest reads for a single virus in sample P2 for Choristoneura
fumiferana granulovirus (Figure 4). The sample P2 also presented
a much more significant amount of the genus Pandoravirus and
Mimivirus compared to other collection sites. Haemophilus
phage HP1 was only observed on sample P3 (Figure 5).

DISCUSSION

Aquatic ecological environments have a broad range of viruses
that are crucial in controlling bacterial communities and
regulating biogeochemical cycles (40, 41). While most of
the literature on water virome has concentrated on viruses
in marine waters (42, 43), previous research indicated that
freshwater harbored specific viral communities distinct from
other aquatic environments (44). Other studies have described
the characterization of freshwater viromes in ballast water (45),
sewage (46, 47), lakes (48, 49), river estuaries, where marine
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FIGURE 2 | Sankey diagram display of the taxonomic diversity found at samples P1 (red “viruses” tag), P2 (coral “viruses” tag), and P3 (green “viruses” tag),

respectively.
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FIGURE 3 | Bar graph showing the distribution of reads for each top 20 virophages found in sample P1, plotted against their respective representations on samples

P2 and P3.

FIGURE 4 | Bar graph showing the distribution of reads for each top 20 virophages found in sample P2, plotted against their respective representations on samples

P1 and P3.

and freshwater mix (50–52), and long rivers (53). In the present
study, we identified the diversity of the viral community for three
different metagenomic samples from the Lake Bolonha, obtained
by the previous work of Alves et al. (33), to acquire a vivid
understanding of this Amazonian lake water system.

According to Alves et al. (33), the Amazonian vegetation on
its shore characterizes Lake Bolonha and the propagation of
large plants under its surface, resulting in eutrophication. Also,
it presents increased phosphorus and total nitrogen values in
physical-chemical analysis and a high fecal coliform rate (33).
In this study, we noted the significant presence of cyanophages,
mainly at P1 and P3 (Figure 2). This finding contributes as an
essential indicator of the interference of these phages in the
environment, known for their ability to perform photosynthesis
by consuming oxygen and their potential for binding to nitrogen

and producing toxins (54). Nitrogen or phosphorus supplies
and reduced growth rate and biomass may naturally limit
freshwater ecosystems, including those involving cyanobacteria
accumulation (55).

When it comes to viral abundance, taxonomic analysis
reveals that a plethora of more than 3.500 distinct viruses
is present at freshwater Brazilian Lake Bolonha, an area of
environmental preservation. It is possible to observe that the
phages with a higher abundance of reads in P1 and P3 have
a lower distribution among their P2 (Figures 3–5), which can
be explained by the proximity between sampling sites P1 and
P3. The alpha diversity observed in the raw sequencing data
of Table 1 of Alves et al. (33) also shows significant sample
abundance in P1 and P3, which could also be related to
this observation.
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FIGURE 5 | Bar graph showing the distribution of reads for each top 20 virophages found in sample P3, plotted against their respective representations on samples

P1 and P2.

FIGURE 6 | Venn diagram showing the overlap between the top 20 viruses for

samples P1 (in red), P2 (in green), and P3 (in blue).

The diversity and abundance imbalance of essential viruses,
such as bacteriophages and cyanophages, can cause significant
changes in the aquatic ecosystem. Some of these phages can
mediate the transduction of resistance genes between bacteria,
which can provide evolutionary advantages to microorganisms
and affect the water quality (33). In addition, understanding this
viral community’s diversity could help prevent the spread of
antimicrobial resistance elements and circumvent possible future
multi-resistant pathogen epidemics.

Although all samples came from the same lake and
environment, the overlap of viruses best represented at each
sampling site showed a vast distinction when considering

its top 20 viruses (Figure 6). For instance, only Escherichia
phage DE3 was at the top 20 viruses for all three samples.
At the top, only shared by samples P1 and P3 were five
viruses: Mycobacterium phage Crossroads; Yellowstone lake
phycodnavirus 3; Agrobacterium phage Atuph07; Yellowstone
lake phycodnavirus 2; and Acidovorax virus ACP17. Moreover,
sample P2 had no virus shared exclusively with sample P1 or
P3 at its top 20. That observation shows the diversity of viral
entities present in a single environment, such as Lake Bolonha.
It highlights choosing different and representative sites when
studying an environmental microbiome.

The sample P1 presented an abundance of Synechococcus
phage (Figure 3). This phage frequently infects cyanobacteria of
the Synechococcus genus in diurnal patterns of infection due to
the photosynthetic activities of its host (56). This infection affects
their population dynamics by killing part of this cyanobacteria
population daily, estimated between 0.005 and 30% per day (27,
57, 58). In addition, it has been described that such cyanophages
play a vital role in the diversity and evolution of their host
cyanobacteria (18, 32, 54, 59–62).

Amongst the abundant species, the cyanophage S-RIM50 was
found in P1, which could infect cyanobacteria of the genus
Synechococcus (63). The abundance of cyanophage S-RIM50 has
been reported in both fresh and seawater (26). Cyanophages
such as the cyanophage S-RIM50 and Synechococcus phage
are abundant in freshwater environments. They have been
isolated from various freshwater reserves, including lakes, ponds,
streams, and sewage points (27, 56, 58). They have an essential
contribution to maintaining the cyanobacterial community and
the preservation of water quality (25).

Synechococcus phages, present in both samples P1 (Figure 3)
and P3 (Figure 5), can be associated with health problems such
as multiple sclerosis. This phage expresses proteins containing
consensus peptide stretches that are highly homologous to
the products of 16 autoantigens related to multiple sclerosis
susceptibility genes (64). Other viruses associated with multiple
sclerosis, such as the Epstein-Barr virus, have also shown
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this behavior, and the bacteriophage Synechococcus has been
identified as a new relevant contributor to this phenomenon.
Its cyanobacterial host prefers a temperate climate, indicating
that the ecology of this cyanophage is consistent with the overall
distribution and epidemiology of multiple sclerosis (63).

Yellowstone Lake phycodnaviruses, a double-stranded DNA
virus that infects algae, and Escherichia phage DE3 on the sample
P1 were also observed (Figure 3). A more significant number of
reads associated with Shigella phage SfIV was observed compared
to samples P2 and P3 (Figure 3). It is important to mention
a relationship with the possible environmental presence of the
Shigella bacterial host, responsible for causing intestinal infection
followed or not by fever, colic, and diarrhea with blood and
mucus (65). This observation demonstrates the importance of
this study in characterizing the environmental conditions as a
possible source of information for public health.

The P2 collection point presented many Choristoneura
fumiferana granulovirus (Figure 4), part of the Baculoviridae
family (66). HalovirusHF1, responsible for infecting members of
the Halobacteriaceae family (67), was also identified (Figure 4).
Interestingly, a small number of reads (25 reads) associated with
the species Diplodia scrobiculate RNA virus 1 is only present in
P2. As a preferable host, this phage has the endophytic fungus
Diplodia scrobiculate, which primarily affects the genus Pinus spp.
among other conifers (68), which would be odd to find on a water
sample from a tropical locality.

A considerable amount of Bacillus phage Bp8pC has also
been observed on sample P2 (Figure 4), which hosts the bacteria
Bacillus thuringiensis and Bacillus pumilus. Both are of economic
importance because they are used in agriculture as pest control
bringing little harm to humans (69). The presence of the genus
Bacillus in lake water may indicate the contamination of the
water environment by different types of residues coming from
the watershed to the lake (70).

Exclusively on P2, a much more significant amount of the
genus Pandoravirus and Mimivirus was observed compared to
the other collection points (Figure 4). Previous studies suggest
a potential role of Mimivirus in respiratory pathology displayed
during seroconversion in patients with pulmonary pneumonia.
In addition, positive serology for Mimivirus is associated
with increased duration of mechanical ventilation supported
breathing and intensive care unit in patients with ventilator-
associated pneumonia (71). Both genera are constituted of
giant viruses and have Amoeba as their typical host (72–74).
Pandoravirus has a size of about 1 micron and may resemble
some types of bacteria. Their genome contains more than 100
distinct genes and can be twice as large as the Mimivirus genome,
besides the fact that their genome is quite different compared to
other known organisms (75).

Haemophilus virus HP1, a bacteriophage that infects the
Haemophilus influenzae bacterium (76), was only observed at
sample P3 (Figure 5). Its sampling site is located at the starting
point of the channel connecting both Lakes Bolonha and Água
Preta. It is crucial to note that what occurs at this site may in the
future influence the environment of nearby Lake Água Preta.

Overall, these results denote the presence of a diverse viral
community and suggest the existence of established regulation

dynamics in the local microbial environment of Lake Bolonha,
highly influenced by the bacteriophages and cyanophages that
inhabit the location. The dispersion of those biological entities
along the water distribution channels using Lake Bolonha as
a water source and general eutrophic activity might contribute
to the spread of minor genetic elements like ARGs and future
unbalance the microenvironment of close by freshwater sources,
such as Lake Água Preta.

CONCLUSIONS

Given the importance of Lake Bolonha as a source of drinking
water supply for the metropolitan region of Belém, the
elucidation of the viral diversity from this environment is
relevant to provide a better understanding of how its exploration
can affect it. The results observed in this work indicate a
widely diverse viral community, especially bacteriophages and
cyanophages. These findings also suggest the existence of
established micro-environmental dynamics in Lake Bolonha,
possibly regulated by such phage entities. The dispersion of
those viral beings bare similarity along the course of the lake,
apparently more related the deeper they are into the lake (P1,
P3) and the further away they are from the water evacuation
sites to other treatment substations (P2). This study is the first-
ever work to describe the virome of Lake Bolonha and, as such,
contributes to the understanding of water-related public health
concerns regarding the spreading of antibiotic resistance genes
and population control of native bacteria and cyanobacteria.
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