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Transboundary particulate matter (PM) pollution has become an increasingly significant

public health issue around the world due to its impacts on human health. However,

transboundary PM pollution is difficult to address because it usually travels across

multiple urban jurisdictional boundaries with varying transportation directions at different

times, therefore posing a challenge for urban managers to figure out who is potentially

polluting whose air and how PM pollution in adjacent cities interact with each other. This

study proposes a statistical analysis framework for characterizing directional interaction

relationships between PM pollution in cities. Compared with chemical transport models

(CTMs) and chemical composition analysis method, the proposed framework requires

less data and less time, and is easy to implement and able to reveal directional interaction

relationships between PM pollution in multiple cities in a quick and computationally

inexpensive way. In order to demonstrate the application of the framework, this

study applied the framework to analyze the interaction relationships between PM2.5

pollution in 29 cities in East China, South Korea and Japan using one year of hourly

PM2.5 measurement data in 2018. The results show that the framework is able to

reveal the significant multilateral and directional interaction relationships between PM2.5

pollution in the 29 cities in Northeast Asia. The analysis results of the case study

show that the PM2.5 pollution in China, South Korea and Japan are linked with each

other, and the interaction relationships are mutual. This study further evaluated the

framework’s validity by comparing the analysis results against the wind vector data,

the back trajectory data, as well as the results extracted from existing literature that

adopted CTMs to study the interaction relationships between PM pollution in Northeast

Asia. The comparisons show that the analysis results produced by the framework

are consistent with the wind vector data, the back trajectory data as well as the

results using CTMs. The proposed framework provides an alternative for exploring
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transportation pathways and patterns of transboundary PM pollution between cities

when CTMs and chemical composition analysis would be too demanding or impossible

to implement.

Keywords: transboundary air pollution, particulate matter, interaction relationship, China, South Korea, Japan

INTRODUCTION

Transboundary particulate matter (PM) pollution has become an
increasingly significant public health issue around the world (1–
3). This is because, on one hand, transboundary PM pollution
has severe negative impacts on human health due to its
associations with respiratory diseases, cardiovascular diseases,
birth defects, etc. (4–7), raising considerable public concerns
over health and public pressure for government authorities to
take actions. On the other hand, transboundary PM pollution is
difficult to address, as transboundary PMpollution usually travels
across multiple urban jurisdictional boundaries with varying
transportation directions at different times driven by synoptic air
movement and complex meteorological conditions (1). In other
words, PM pollution in a city may interact with PM pollution in
adjacent cities, therefore posing a challenge for urban managers
in the city to figure out who is potentially polluting whose air,
how PM pollution in adjacent cities interact with each other,
and with whom they should cooperate in tackling transboundary
PM pollution.

Obviously, the interaction relationships between PMpollution
in adjacent cities must be examined before taking air pollution
mitigation plans and policy measures. An investigation of the
interaction relationships between PM pollution in adjacent cities
could allow for a better understanding of the transportation and
patterns of transboundary PM pollution, which has important
implications for air pollution exposome research. Moreover, such
an investigation could help inform the formulation of cross-
jurisdictional mitigation plans and policy measures. To this
end, scholars have developed various approaches suitable for
examining the interaction relationships between PM pollution
in cities at the city scale (8–10). Generally, these approaches
can be divided into two groups. One group is the mechanistic
modeling approaches that utilize the mechanism on the physical
and chemical processes of air pollutions over time and space to
examine the relationships between air pollution in different cities.
The other is the statistical modeling approaches that attempt
to use statistical methods to explore the relationships without
considering the detailed mechanisms.

A typical example of the mechanistic modeling approaches
is the Eulerian Chemical Transport Model (CTM). The CTM

Abbreviations: PM, particulate matter; PM2.5, fine particulate matter; CTM,

Chemical Transport Model; WRF-Chem, Weather Research and Forecasting

model coupled with Chemistry; NASA, the United States National Aeronautics

and Space Administration; MERRA-2, Modern-Era Retrospective analysis for

Research and Applications version 2; NOAA, the United States National Oceanic

and Atmospheric Administration; HYSPLIT, Hybrid Single-Particle Lagrangian

Integrated Trajectory Model; LTP, Joint Research Project for Long–range

Transboundary Air Pollutants in Northeast Asia.

incorporates a variety of physical schemes and chemical
mechanisms to describe the physical and chemical processes of
air pollutants over time, including the processes of pollutant
emission, transport, chemical transformation, and deposition.
Some implementations of the CTMs includingWeather Research
and Forecastingmodel coupled with Chemistry (WRF-Chem) (8)
and GEOS-Chem (9). These CTMs usually use a Eulerian grid
model based on a fixed longitude/latitude coordinate system to
describe the space and location. In order to enable the CTMs to
simulate the processes of pollutant emission, transport, chemical
transformation, and deposition, the CTMs usually require a
large amount of spatial data to drive the simulation of various
processes. Some of the essential data include emission inventory
data to drive the process of pollutant emission, meteorological
data to simulate the change of meteorological conditions (e.g.,
atmospheric pressure, temperature, wind speed and direction,
etc.) and drive the process of pollutant transportation (11, 12).
The ability of the CTMs in capturing the physical and chemical
processes of air pollutants over time and space allows the models
to directly link air pollution in the source city to air pollution
in the receptor city, thus providing a quantitative and causal
explanation of the directional interaction relationships between
air pollution in multiple cities.

Although CTMs are able to provide high-quality
characterization of interaction relationships between air
pollution in multiple cities, the CTMs are cumbersome,
demanding, and sometimes impossible to implement. First, the
CTMs require a large amount of high-quality spatial data, and
these data are usually not available in underdeveloped areas.
Even in developed regions, the quality of data heavily affects the
accuracy of analysis results and may cause huge uncertainties
(6, 11, 13–16). Second, the execution of the models is costly
both in terms of finance and time. CTMs are usually run in
expensive high-performance computing clusters, and it usually
takes months to complete a typical CTM run. Moreover, the
technical complexity and difficulty of running CTMs are high (1).
Generally, only experts who are trained in numerical simulation
in the field of atmospheric science are capable to configure,
debug and run a CTM.

The statistical modeling approaches do not rely on the
detailed mechanism of physical and chemical processes of
air pollutants. This group of approaches usually infer the
interaction relationships based on assumptions. In other words,
this group of approaches can only indicate association (or
correlation), but not causation. Chemical composition analysis,
for example, is developed based on the assumption that the
chemical composition of air pollutants is unique in different
places, and the unique chemical composition of air pollutants
represents the unique identity of that place. The more similar the
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chemical composition of air pollutants in one city to the chemical
composition of air pollutants in the other city, the more likely
the air pollution in the two cities were associated with each other
(17). For example, the ratio of two isotopes (206Pb/207Pb) was
used to infer the interaction relationship between Pb deposition
in Singapore and other countries in Southeast Asia (18). The
method of chemical composition analysis is not able to determine
the direction of the interaction relationship. Fortunately, with the
help of radiometric dating used in paleoenvironmental studies
(19), the time of samples can be estimated, which ascertains
the chronology and further determines the direction of the
interaction relationship.

Chemical composition analysis is a relatively convincing
statistical tool for inferring interaction relationships between air
pollution in cities. However, the assumption on the uniqueness of
the chemical composition of air pollutants across different cities
is doubtful because the chemical composition of air pollutants in
a place changes over time (20). Moreover, this method requires
laborious sample collection processes in various sampling points.
The accuracy of chemical composition analysis depends on the
number of samples. Furthermore, the spatial extent of chemical
composition analysis is strongly limited by the locations of the
sampling sites (1).

In summary, existing methods are able to examine the
interaction relationships between PM pollution in multiple cities,
but are strongly limited by the availability of data and costs in
terms of time and finance. In cities and regions where there
is no data available, or only have limited financial resources,
it is impossible and too expensive to implement the methods
mentioned above. In fact, most of developing countries and
under-developed areas such as South Asia and Central Asia do
not have proper emission inventory data customized for running
CTMs in local areas (most of existing emission inventory data
are usually developed at a very coarse spatial resolution for global
or continental-scale simulations) (17, 21–24). Nor did these
areas conducted large-scale sampling campaigns for chemical
composition analyses (17). This is because the development
of such a customized emission inventory data and large-scale
sampling campaigns requires persistent financial input and
collaboration of hundreds of scientists. Therefore, a simple and
easy-to-implement method, that requires less data, less time and
less labor to examine the interaction relationships between PM
pollution in multiple cities, would therefore be useful.

This research aims to provide an alternative statistical
analysis framework for characterizing directional interaction
relationships between PM pollution in multiple cities when
CTMs and chemical composition analysis would be too
demanding or impossible to implement. This analysis framework
integrates the cross-correlation function with Granger causality
test. It requires only PM measurement data, which can be
obtained from existing air quality monitoring network or
low-cost air quality sensors. It is easy to implement and is
able to reveal directional interaction relationships between PM
pollution in multiple cities in a quick and computationally
inexpensive way.

In the following section, this study introduces the analysis
framework in details. Then a case study of 29 cities in East China,

South Korea and Japan is carried out to illustrate the analysis
framework. The 29 cities in Northeast Asia are selected as the
study area in that cities in Northeast Asia have been suffering
from severe transboundary PM pollution for decades, raising
considerable public concern; moreover, CTMs have been used to
simulate the transboundary PM pollution in Northeast Asia and
these CTM simulation results could be used to verify the analysis
results produced by the framework proposed in this study. In the
concluding section, this paper summarizes the advantages of the
framework and its limitations.

THE FRAMEWORK FOR
CHARACTERIZING THE MULTILATERAL
AND DIRECTIONAL INTERACTION
RELATIONSHIPS BETWEEN PM
POLLUTION AT CITY SCALE

The proposed framework consists of two steps. The first step is
to compute the strengths of potential interaction relationships
between PM pollution in adjacent cities using the cross-
correlation function. The second step is to determine the
directions of the interaction relationships using Granger causality
tests. Each step is introduced in detail below.

The Cross-Correlation Function
The strength of a potential interaction relationship between PM
pollution in two adjacent cities is measured using a statistical
measure called time lag-adjusted Pearson correlation coefficient.
The time lag-adjusted Pearson correlation coefficient is calculated
using cross correlation method (25–27).

First, the Pearson correlation coefficients between two PM
concentration time series in each pair of cities are calculated
at continuously varying time lags. This can be mathematically
described in the following equation:

P (τ ) = Corr(X1 (t) , X2(t − τ )), (1)

where P (τ ) is the Pearson correlation coefficient between two
PM concentration time series at a specific time lag value τ , and
X1 and X2 are the two PM concentration time series in the pair
of cities.

The value range of the time lag τ is set according to the
patterns of synoptic cycles of the study area. For example,
in Northeast Asia, the synoptic meteorological system usually
influences the air quality in the region on a weekly basis (28),
therefore the time lag value τ in the Equation (1) is set to
vary between the past 7 days (−168 h) and subsequent 7 days
(+168 h).

Then, the maximum Pearson correlation coefficient among
all the coefficients calculated in the first step is identified, as
described in Equation (2).

Pmax = max(P (τ )), (2)

Pmax is the maximum correlation coefficient which indicates the
strength of the interaction relationship between PM pollution in
the pair of cities.
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FIGURE 1 | The calculation of the time lag-adjusted Pearson correlation coefficient. (A) An illustration of the time-lagged correlation between PM2.5 concentration

time series in Weihai, China and Seoul, South Korea. The dashed line shows the aligned PM2.5 time series in Weihai, which is shifted later by 12 h to attain the best

alignment with the PM2.5 time series in Seoul. (B) The Pearson correlation coefficients [P(τ )] between the two PM2.5 concentration time series during January 12–24,

2018 in Weihai and Seoul at varying time lags (τ ).

Two tests of significance are performed to ensure the results
are statistically significant. The first test is the significance test
of the correlation coefficient which is used to test whether
the calculated Pearson’s correlation coefficient is significantly
different from zero. The second test is the significance test
of the difference between two correlation coefficients using
Fisher’s r-to-z transformation (29, 30), which is used to
examine whether the maximum correlation coefficient (Pmax) is
significantly larger than the correlation coefficient without the
time lag (P (0)). If Pmax is significantly larger than P (0), the
observed difference between the two coefficients is not due to
random chance.

The Granger Causality Test
After the strength of the interaction relationship between PM
pollution in the pair of cities is calculated using the cross-
correlation function and the significance of the interaction
relationship is confirmed by statistical tests in the first step,

the next step is to determine the direction of the interaction
relationship between PM pollution in the pair of cities.

First, the time lag that generates the maximum correlation
coefficient Pmax is identified, as shown in Equation (3).

Tdelay = argmaxτ (P(τ )), (3)

The sign of Tdelay shows the potential temporal order of the two
PM concentration time series in the pair of cities, which suggests
the potential direction of the interaction relationship.

Then, Granger causality tests are applied to confirm the
potential direction. The Granger causality test is a statistical
hypothesis test for inferring causal influences between variables
based on temporal precedence (31, 32). The rationale of the
Granger causality test is that, given an autoregressive model that
predict the future values of the PM concentration in a city (X2)
based on the past values of X2, if adding the lagged values of
the PM concentration in the other city (X1) into the model
can better model X2, then X1 is said to Granger-cause X2. In
this way, we can confirm the direction of influence between

Frontiers in Public Health | www.frontiersin.org 4 May 2022 | Volume 10 | Article 875924

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Liu and Ho Transboundary PM Pollution

FIGURE 2 | Study area.

X1 and X2. The advantage of the Granger causality test over
correlation analysis is that it can remove spurious correlations
of the PM time series and therefore reduce the risk of reporting
false associations with wrong directions (32). Although Granger
causality cannot directly reflect the real physical causal chains,
it provides relatively convincing statistical evidence for inferring
causality without requiring additional data.

Figure 1 gives an illustration of the calculation process of
the time lag-adjusted Pearson correlation coefficient using fine
particulate matter (PM2.5) measurement data in two cities
of Northeast Asia. As shown in Figure 1A, the two PM2.5

concentration time series in Weihai, China and Seoul, South
Korea are best aligned when Weihai’s PM2.5 time series is shifted
later by 12 h. The Pearson correlation coefficient calculated at the
time lag of 12 is the maximum Pearson correlation coefficient
among all the coefficients calculated at varying time lags
(Figure 1B). Statistical tests confirm the statistical significance of
the correlation coefficient. Then, the time lag that generates the
maximum correlation coefficient can be identified as−12. Lastly,
Granger causality test confirms that the direction of influence in
the interaction relationship between PM2.5 pollution in Weihai
and Seoul is from Weihai to Seoul, suggesting that the PM2.5

pollution in Weihai may have an impact on the PM2.5 pollution
in Seoul during January 2018.

A CASE STUDY OF 29 CITIES IN EAST
CHINA, SOUTH KOREA AND JAPAN

Data
This study collected a full year of hourly PM2.5 measurement data
in 2018 from 29 major cities with a population of over 1 million
in Northeast Asia from the environmental monitoring agencies
in China, South Korea and Japan. The 29 cities include 14 cities
in East China (Beijing, Tianjin, Dalian, Shenyang, Tonghua,
Baishan, Yanbianzhou, Weihai, Qingdao, Rizhao, Lianyungang,
Yancheng, Nantong and Shanghai), 5 cities in South Korea
(Seoul, Daejeon, Daegu, Gwangju and Busan) and 10 cities
in Japan (Tokyo, Niigata, Sendai, Shizuoka, Nagoya, Osaka,
Okayama, Hiroshima, Fukuoka and Kumamoto). Figure 2 shows
the study area.

This study conducted a comprehensive data quality check
to remove problematic data points, including implausible zeros,
duplicated data records and missing measurements. Extremely
high hourly PM2.5 measurements (>1,000µg/m3) are considered
as outliers and therefore removed. After the data quality check,
the hourly PM2.5 measurements at all monitoring stations in each
city were averaged to generate an hourly PM2.5 time series for that
city. As China Standard Time (UTC+08:00) is 1 h earlier than
Japan Standard Time and Korean Standard Time (UTC+09:00),
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FIGURE 3 | The multilateral and directional interactions between PM2.5 pollution in the 29 cities in East China, South Korea and Japan, in (A) January, (B) April, (C)

July, and (D) October 2018.

the timestamps for all PM2.5 time series in South Korea and Japan
were adjusted to China Standard Time for the convenience of
data analysis.

In addition, this study used a weather reanalysis dataset
developed by NASA to draw wind vector maps at 50m above
the surface in 2018 in Northeast Asia. The dataset is produced
based on atmospheric, land, and ocean observations from
satellites, aircraft, and ships in the NASA’s project of Modern-Era
Retrospective analysis for Research and Applications version 2
(MERRA-2) (33).

Results
In order to show the temporal variation of the interaction
relationships between PM2.5 pollution in the 29 cities in East
China, South Korea and Japan, this study performs the analysis
using the framework on a monthly basis.

The analysis results in January, April, July and October
2018 were calculated and visualized in maps (see Figure 3). As
shown in Figure 3, each line connecting two cities indicates
that there is a significant interaction relationship between the

PM2.5 pollution in the two cities. The colors of the lines indicate
the strengths of the interaction relationship. The arrows in the
lines show the temporal order of the corresponding PM2.5 time
series, which suggest the prevailing transportation directions
of air parcels.

The visualizations in Figure 3 show that the interaction
relationships between the PM2.5 time series of pairs of cities
in East China, South Korea and Japan are significant and
strong in all four seasons. In January, April and October,
the PM2.5 time series in Japan lagged behind the PM2.5

time series in South Korea, which in turn lagged behind
the PM2.5 time series in East China; this suggests that the
PM2.5 pollution probably flows from China to South Korea
to Japan. Conversely, in July, the PM2.5 pollution probably
flows from Japan to South Korea to China. In summary, the
results demonstrate the strong and significant multilateral and
directional interactions between PM2.5 pollution in cities in
Northeast Asia.

The results on the multilateral and directional interaction
relationships between PM2.5 pollution in the 29 cities show how
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FIGURE 4 | Monthly-averaged wind vectors at 50m above the surface in (A) January, (B) April, (C) July, and (D) October 2018 in Northeast Asia. Unit: m/s.

PM2.5 pollution in China, South Korea and Japan interact with
each other, which suggests that transboundary PM2.5 pollution
in China, South Korea and Japan are linked with each other. It
is therefore recommended that various stakeholders such as the
general public, media and government agencies in China, South
Korea and Japan be made aware of that a cooperative relationship
and mutual support among all stakeholders are important
for building a broader coalition in mitigating transboundary
air pollution.

EVALUATION

This study used three data sets to verify the results produced
by the framework on the interaction relationships between
PM2.5 pollution in the 29 cities in Northeast Asia. The
first two data sets are the wind vector data and calculated
trajectories of air mass movement. The third data set is the data
extracted from existing literature that adopted CTMs to quantify
the relationships.

Evaluation Using the Wind Vector Data and
Back Trajectories
Figure 4 shows four monthly-averaged wind vector maps in
January, April, July and October 2018 at 50m above the surface
in Northeast Asia, which were drawn using a MERRA-2 weather
reanalysis data developed by NASA (33). As shown in Figures 3

and 4, the directions of the interaction relationships between
PM2.5 pollution in the 29 cities match the wind vectors very well.

In addition, this study calculated backward trajectories of
the air masses reaching Seoul, South Korea based on the
Global NOAA-NCEP/NCAR reanalysis meteorological data
for the year of 2018 using NOAA’s Hybrid Single Particle
Lagrangian Integrated Trajectory (HYSPLIT, version 4) model.
TheHYSPLITmodel is able to trace air parcels’ paths back in time
and space and indicate where the air parcels have been before they
reach the receptor site (34). Each trajectory had a run time of 96 h
with 3 h time intervals. The Python package Matplotlib and the
R package openair (http://www.openair-project.org/) developed
by Carslaw and Ropkins (35) were used to visualize the back
trajectories produced by the HYSPLIT trajectory model.
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FIGURE 5 | The 96-h HYSPLIT back trajectories with Seoul, South Korea as the receptor site in (A) January, (B) April, (C) July, and (D) October 2018.

Figure 5 shows the results of the 96-h back trajectories

centered on Seoul, South Korea in January, April, July and
October 2018. As Figure 5 shows, in January, April and October

2018, the air parcels traveled from China to South Korea, while
in July 2018, the air parcels traveled from Japan to South Korea.
It can be further inferred from Figure 5 that, the air parcels

continued to travel from South Korea to Japan in January, April
and October 2018, while in July 2018 the air parcels continued to
travel from South Korea to China. It can be seen that the results

of back trajectory simulations and wind vectors are consistent
with the results on the directional interactions between PM2.5

pollution in the 29 cities of Northeast Asia produced using the
framework proposed in this study.

Figures 4 and 5 also suggest that the seasonal pattern of the
interaction relationships between PM2.5 pollution in the 29 cities
of East China, South Korea and Japan is probably driven by the
atmospheric circulation, particularly the westerlies and the East

Asian monsoon, which usually brings south-eastern winds in
summer and north-eastern winds in winter (36).

Evaluation Using the Data Produced by
CTMs in the Literature
As introduced in the section of introduction, CTMs are able
to produce high-quality analysis results on the interaction
relationships between air pollution inmultiple cities. Fortunately,
a handful of modeling studies using CTMs have been carried out
to study the interaction relationships between PM pollution in
China, South Korea and Japan (37–41). Although the interaction
relationships are analyzed at national/regional scale and the
results are calculated at national/regional level in these studies,
the results of these studies are helpful and can be used to verify
the analysis results in this study.

Table 1 shows a list of studies that quantified the interaction
relationships between PM pollution in China, South Korea and
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TABLE 1 | A list of CTM studies and their quantified interaction relationships between PM pollution in China, Korea and Japan.

Entry Time

period

Pollutant Unit Contribution

of China

to Korea

Contribution

of China

to

Japan

Contribution

of Korea

to China

Contribution

of Korea

to

Japan

Contribution

of

Japan

to China

Contribution

of Japan to

Korea

LTP (37) 2017 PM2.5 Percentage 32% 25% 1.9% 8.2% 0.80% 1.5%

Li et al. (38) 2010 PM10 µg/m3 11.2 2.80 0.100 0.600 0.000 0.200

Kajino et al.

(39)

2006 Total

nitrate

deposition

Gg 19.3 74.8 7.69 13.3 0.0590 1.62

Kajino et al.

(40)

2002 Total

sulfate

deposition

Gg 76.5 364 44.1 60.8 31.8 16.4

Lin et al. (41) 2001 total

nitrogen

deposition

Percentage 39% 21% 2.6% 15% 0.50% 4.6%

Note that nitrate and sulfate are components of particulate matter (PM). The percentages are calculated as the ratio between the amount of pollutants one country contributed to the

other country and the total amount of pollutants the other country received. “Korea” refers to South Korea except that “Korea” refers to North Korea and South Korea in the study by

Lin et al. (41).

Japan using CTMs. The table listed the pollutants modeled,
the time period simulated, the data figures that quantified the
interaction relationships between PM pollution in China, South
Korea and Japan. For example, in the study by Kajino et al.
(40), the CTM modeling results showed that in 2006, China
contributed 76.5 Gg and 364 Gg of total sulfate deposition to
South Korea and Japan, respectively; South Korea contributed
44.1 Gg and 60.8 Gg of total sulfate deposition to China and
Japan, respectively; and Japan contributed 31.8 Gg and 16.4 Gg
of total sulfate deposition to China and South Korea, respectively.
These results produced by CTMs clearly show that the interaction
relationships between PM pollution in China, South Korea and
Japan are significant and mutual.

In addition, the study by Kajino et al. (39) quantified
the interaction relationships of total nitrate deposition in
March, July, and December 2006, respectively, which enable
a seasonal comparison. As shown in Figure 6, from March
to July, the contribution of South Korea to the total nitrate
deposition in China increased, but the contribution of South
Korea to Japan decreased; from July to December, the
contribution of South Korea to the total nitrate deposition
in China decreased, but the contribution of South Korea to
Japan increased. Obviously, the directions of influence in the
results produced by CTM are consistent with the directions
identified in the analysis results produced by the framework in
this study.

ADVANTAGES AND LIMITATIONS OF THE
FRAMEWORK

The proposed framework in this study has several advantages in
examining the interaction relationships between PM pollution in
cities compared with CTMs and chemical composition analysis.
As shown in Table 2, the framework requires much less data
than CTMs. The framework only needs the PM measurement
data of the cities of interest which can be obtained from existing

FIGURE 6 | The contribution of South Korea to China and Japan in terms of

total nitrate deposition in March, July and December 2006 in the study by

Kajino et al. (39).

air quality monitoring network or low-cost air quality sensors.
The CTMs, however, not only require the PM measurement
data of the cities to evaluate and calibrate the model, but also
require emission inventory and meteorological data to drive
the simulation of the processes of pollutant emission, transport,
chemical transformation, and deposition.

The framework also costs much less time to implement, and
is easy to execute. It usually takes a few hours to apply this
framework using the PM measurement data. But, for a CTM,
it usually takes months to execute. For example, a CTM such as
the GEOS-Chem model is used to simulate the PM pollution in
East Asia. The simulations are carried out in a nested domain
at a horizontal resolution of 1/2◦ latitude by 2/3◦ longitude
over the East Asia. The nested domain is embedded in a global
chemical transport simulation at a horizontal resolution of 4◦

latitude by 5◦ longitude, which provides initial and boundary

Frontiers in Public Health | www.frontiersin.org 9 May 2022 | Volume 10 | Article 875924

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Liu and Ho Transboundary PM Pollution

TABLE 2 | Comparison between the framework proposed in this study, CTMs and chemical composition analysis.

Method Type of approach Quality of results Data required Time required Technical difficulty

CTMs (e.g.,

GEOS-Chem)

Mechanistic modeling

approach

Able to establish causal

relationships between

PM pollution and

quantify the relationship

1. Meteorological data;

2. Emission

inventory data;

3. Pollutant

measurement data

Several months for a

domain such as

Northeast Asia

High, difficult to learn

and execute

Chemical composition

analysis

Statistical modeling

approach

Able to reveal

relationships between

PM pollution in cities

1. Chemical

composition data of

pollutant

Usually takes several

months even years

Medium

The framework

proposed in this study

Statistical modeling

approach

Able to reveal

relationships between

PM pollution in cities

and determine its

direction of influence

1. Pollutant

measurement data

Several hours Low, easy to learn and

implement

conditions for the nested domain. The computer to run the
model has 128 gigabyte computer memory and 2 Intel Xeon
processors with each processor having 16 cores (Intel Xeon Gold
5218 CPU). Then it needs approximately twomonths to complete
the simulations. As for chemical composition analysis, it usually
takes several months even years to collect a sufficient number of
samples. Moreover, when the samples are collected, the samples
have to be analyzed using expensive devices to obtain the detailed
chemical compositions.

In summary, compared with CTMs and chemical composition
analysis, the proposed framework in this study provides a simple
but valid and easy-to-implement method, that requires less
data and less time, to examine the interaction relationships
between PM pollution inmultiple cities. The framework provides
an alternative for exploring the transportation pathways and
potential source areas when CTMs and chemical composition
analysis would be too demanding or impossible to implement.

The proposed framework in this study has two limitations.
The first limitation is that it cannot establish causal interaction
relationships between PM pollution in multiple cities the way
the CTMs are able to do (Table 2). As the case study shows,
the analysis results produced by the framework show there exist
significant multilateral and directional interaction relationships
between PM2.5 pollution in the 29 cities in Northeast Asia. These
interaction relationships show that PM2.5 pollution in China,
South Korea and Japan interacted with each other. However,
these associated relationships with directions can only suggest
that there may exist probable causal relationships that PM2.5

pollution in a city causing the PM2.5 pollution in another city,
but cannot be certain that these interaction relationships between
PM2.5 pollution have causal linkages. The second limitation
is that the framework is not able to quantify the interaction

relationships between PM pollution in cities as the CTMs are

able to do (Table 2). In other words, the framework can answer
whether there is a significant interaction relationship between
PM pollution in two cities and what is the direction of influence
in the relationship, but cannot answer to what extent the PM
pollution in one city affects the PM pollution in the other city
and how much PM pollution is transported to the other city.
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