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As COVID-19 continues to impact the United States and the world at large

it is becoming increasingly necessary to develop methods which predict

local scale spread of the disease. This is especially important as newer

variants of the virus are likely to emerge and threaten community spread.

We develop a Dynamic Bayesian Network (DBN) to predict community-level

relative risk of COVID-19 infection at the census tract scale in the U.S. state

of Indiana. The model incorporates measures of social and environmental

vulnerability—including environmental determinants of COVID-19 infection—

into a spatial temporal prediction of infection relative risk 1-month into the

future. The DBN significantly outperforms five other modeling techniques

used for comparison and which are typically applied in spatial epidemiological

applications. The logic behind the DBN also makes it very well-suited for

spatial-temporal prediction and for “what-if” analysis. The research results

also highlight the need for further research using DBN-type approaches

that incorporate methods of artificial intelligence into modeling dynamic

processes, especially prominent within spatial epidemiologic applications.

KEYWORDS

Dynamic Bayesian Network, Bayesian networks, COVID-19 relative risk, Bayesian
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Introduction

The COVID-19 pandemic has caused over 6.4 million deaths worldwide as of

summer 2022 and we are only recently beginning to unravel the causative virus’s

(SARS-CoV-2) spread and patterns of mutation (1, 2). The pandemic has also exposed

deficiencies in the developed world—especially with regards to preparedness—to the

effects from a highly transmissible infectious disease. It is imperative that the scientific,

health, and emergency management communities utilize evidence gained from the

COVID-19 health emergency to begin to develop plans to mitigate the next pandemic.

Recent research suggests we are likely to experience at least one health emergency that

is more pronounced than the COVID-19 pandemic this century (3). Therefore, it is

essential we begin the process of furthering the development of preventative public health

infrastructure in the face of such a threat. One focus of such an effort should be predictive
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modeling which forecasts the infection rate of a disease and

it’s impacts both spatially and temporally. There are numerous

models recently published which focus on COVID-19, but

it is essential that developed models be dynamic enough to

facilitate predictions on a timeframe relevant to public health

intervention and response. Artificial intelligence (AI) offers

the scientific community the means by which to develop such

models and these approaches should be employed in the face

of this persistent threat (4–6). By utilizing AI for preparedness

and mitigation, public health outreach can be deployed with

sufficient spatial-temporal specificity to decrease a disease’s

impact on a community.

We showcase the development of a model which predicts

COVID-19 community relative risk categorically at the census

tract-level (small-scale subdivisions of U.S. counties that average

4,000 inhabitants) in the U.S. state of Indiana. The methodology

is a hybridized approach using a Bayesian hierarchical spatial-

temporal framework to model relative risk and account for

spatial and temporal random effects. Then we incorporate a

Dynamic Bayesian Network (DBN) to predict risk categories

1 month into the future. The DBN, a type of AI, uses

environmental variables andmeasures of the social environment

(i.e., social vulnerability) in its predictive framework. The

modeling is presented in a manner allowing rapid replication

for other locations and to facilitate further predictive studies that

will assist in building predictive public health modeling capacity.

Background

Measures of the social and physical
environment a�ecting COVID-19
transmission

There are numerous factors that affect COVID-19

transmission, community immunity, and probability of severe

disease. Primarily these are encompassed in the social and

physical environment of a particular location at a specific point

in time. The social environment is usually more difficult to

model dynamically due to data availability and timeliness of

collection. Environmental metrics are collected on a more

regular basis via satellite, surface observation stations, or

captured from weather and climate models.

Metrics of the social environment

As with many diseases there is a disparity in impact

from COVID-19 that primarily lies along socioeconomic and

ethnic/racial boundaries (7–9). Most studies conclude that

communities with large percentages of those in poverty, being

in a minority group, advanced age, and lower educational

attainment lead to higher impacts from COVID-19 than

communities with lower percentages (7, 10–12). Most of

these aspects of a community are captured with indices of

social vulnerability. The U.S. Centers for Disease Control and

Prevention, maintains the U.S. CDC Social Vulnerability Index

(CDC SVI), which includes 15 variables from the U.S. Census

Bureau’s American Community Survey (ACS), all ranked in

order from lower percentages of a variable to higher (13). The

15 variables, after ranking, are grouped into 4 separate domains;

socioeconomic status, household composition and disability,

minority status and language, and housing and transportation

(14). Based on 2018 observations, these variables, domains,

and composite CDC SVI score can be mapped at the U.S.

County or census tract level for the entire United States. Another

technique used to index social vulnerability was developed

at the University of South Carolina; the social vulnerability

index (SoVI) (15). This technique utilizes a more advanced

principal component analysis methodology that reduces the

dimensionality of 22 different variables—indicative of social

vulnerability—to a number of domains. Each domain is assessed

based on the component outputs and scored by the amount

of variance explained (16). For example, Indiana using 2014–

2018 ACS inputs contained 22 variables which were reduced to

7 domains and one composite SoVI index (17–19).

Community resiliency is defined as the ability to withstand,

recover or adjust to an external stressor and is often improperly

defined as the opposite of vulnerability. Communities can have

high levels of vulnerability and high degrees of resiliency or low

levels of resiliency and low vulnerability. The Baseline Resiliency

Indicators for Communities (BRIC) was also developed by

many of the same researchers that developed SoVI (20, 21).

BRIC takes the uncorrelated variables (Pearson’s R < 0.70)

from over 50 resiliency indicators available from public sources.

These variables are Min–Max scaled and the index is scored

through a weighted summation. The BRIC is available only

at the county-level for the entire United States since many

of the variables employed are only accessible at that level of

aggregation. Community resiliency, or a lack thereof, has been

linked to poor health outcomes in a number of studies (22–25).

Metrics of the physical environment

Numerous environmental variables have been shown to

be correlated with COVID-19 infection but none more than

air temperature and precipitation (11, 26–33). Temperature,

measured by the daily average, maximum and minimum, is

highly correlated in most studies but the relationship is an

inverse one; higher temperatures lead to less COVID-19 rates

of infection. The amount of precipitation also leads to lower

incidence of COVID-19 (31). Li et al. (1) found a strong inverse

relationship between temperature and COVID-19 incidence.

Higher temperatures decreased COVID-19 incidence (OR =
0.81) in a study conducted early in the pandemic in the U.S

(through April 14, 2020) (34). In a U.S. county level assessment

throughout the first year of the pandemic, Johnson et al. (11),
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found increases of a standard deviation in average 2m above

ground level temperature lowered relative risk of COVID-19

infection by 20.7% and corresponding precipitation increases

lowered relative risk by 4.07%. Although these measurements

are not the only environmental indicators that are related to

COVID-19 (i.e., wind speed, wind direction, humidity) they

do represent the variables with the highest established degree

of impact.

There have been numerous attempts to create an

environmental vulnerability index that is similar conceptually

to the aforementioned social vulnerability indices (35–39). In

the United States, the Federal Emergency Management Agency

(FEMA) has developed the National Risk Index. This index is

a composite of an environmental risk score, historic insurance

loss estimates, SoVI and BRIC. The environmental risk score

is based on 18 individual historic or potential physical hazards;

disease/pandemic is not one of the categories (40). The index is

available for the entire United States at the county and census

tract-level. The NRI was released in later 2020 and as of late

2021 there were no studies available that quantify an association

between the index and an external event or events.

Predicting spatial-temporal distribution
of COVID-19 infection

Studies comparing the accuracy of COVID-19 prediction

algorithms at fine-scales have found that network-based

approaches accounting for spatial interactions between regions,

produce less error than alternative methods (41, 42). Sartorius

et al. utilize a Bayesian hierarchical susceptible, exposed,

infected, removed (SEIR) model to examine spatiotemporal

variability of COVID-19 caseloads and deaths in MSOAs

(census tract equivalents in the U.K.) in England and forecast

hotspots up to 4 weeks in the future (43). Primarily, their

findings support the use of Bayesian hierarchical spatial-

temporal techniques to successfully unlock important dynamics

of the COVID-19 outbreak. In a study using a network model

similar to one we develop, Vitale et al. built an object-oriented

Bayesian network (OOBN) and used it to infer (simulate)

several scenarios regarding critical thresholds for ICU bed

occupancy (44). The OOBN was robust enough to model

spatial and temporal interactions between variables and to

successfully model multiple lockdown scenarios. Their results

provide strong evidence for utilizing Bayesian network outputs

in policy-making and decision-support environments relative to

public health.

Building on the strengths of network-based approaches,

the abilities of Bayesian hierarchical spatial-temporal modeling

to unravel important space-time dynamics, and the strong

inference capabilities of Bayesian networks, naturally lead to

the formulation of a hybridized methodology taking advantage

of the individual strengths of each approach. This effort

utilizes the Bayesian hierarchical spatial-temporal framework

for modeling important observed space-time dynamics of

COVID-19 infection and the Bayesian networkmethodology for

classification, forecasting and inference.

Methods

We collected COVID-19 infection counts, measures of social

vulnerability and resiliency, and environmental variables to

build a predictive model of categorical relative risk for infection

from SARS-CoV-2. We utilize a two-tiered approach where, (1)

a Bayesian hierarchical spatial-temporal model is fit to smooth

relative risk estimates and, (2) a Dynamic Bayesian Network is

specified to produce predictions of relative risk on a monthly

basis. This modeling is conducted at the census tract-level in

the U.S. state of Indiana and is easily adaptable and extensible

to other locations. For Bayesian and network computing we

employ the bnlearn, gRain, dbnlearn, and INLA packages of the

R statistical platform (45–49).

Data collection

Case counts of COVID-19 infection were collected from the

Indiana Network for Patient Care (INPC) database from March

1, 2020 to October 31, 2021 through the Regenstrief Institute

in Indianapolis, IN (50, 51). Cases were grouped by month for

a total of 20 discrete temporal increments. Environmental data

for temperature and precipitation was collected from Google

Earth Engine data sources (52–54). We collected both observed

and projected data for average maximum daily temperature

and precipitation amounts throughout the study time frame.

Monthly precipitation and mean maximum temperature

projections were acquired from the NASA Earth Exchange

Downscaled Climate Projections (NEX-DCP30) which is a

general circulation coupled model (55, 56). We used an average

of the Representative Concentration Pathways (RCPs) outputs

and utilized these estimates for the month for which predictions

are to be made. Importantly, these data are climate projections

and not actual weather observations. The general purpose of

the dataset is to provide high resolution projections useful for

the evaluation of climate change impacts at fine-scales (56,

57). Therefore, we felt this was an essential dataset to use for

our monthly predictions. It is also ideally suited to simulate

situations where we have no observed values for validation.

Observed average daily maximum temperature and the sum of

precipitation was calculated from the North American Land

Data Assimilation System (NLDAS) and collated monthly (58).

Zonal average monthly high temperature and zonal monthly

sum for precipitation were calculated for each census tract in the

U.S. state of Indiana (1,503 total census tracts).
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Measures of social vulnerability were collected from the

U.S. CDC SVI and SoVI. The U.S. CDC SVI is available

through the U.S. CDC website and we acquired SoVI using both

the Vulnerability Mapping Analysis Platform (VMAP) (http://

vulnerabilitymap.org) and available GitHub scripts (13, 17–

19). Some discrepancies were observed between the two SoVI

datasets and for the purposes of this research, we utilized the

proprietary VMAP variables tomaintain consistency with others

using these products. The SoVI dataset only contained 1488

census tracts for Indiana and we used an average SoVI score

for the 15 tracts present in our original dataset that were absent

from SoVI. The U.S. Federal Emergency Management Agency

(FEMA) National Risk Index (NRI) is available through the

FEMA website and includes the NRI score itself along with the

BRiC variable and a 2010–2014 version of SoVI; compared to the

2015–2018 SoVI used in this study. We used only the NRI and

BRIC score from the NRI dataset (40).

Bayesian and Dynamic Bayesian
Networks

Bayesian Networks (BN) are graphical models representing

variables along with their conditional dependencies. BNs

are represented with directed acyclic graphs (DAG) where

directional arcs link dependency between variables or nodes.

Joint probability functions are determined by the chain rule of

probability within the arc and node representation. Conditional

probability tables allow evaluation of each node in the network

and their interactions. Nodes which have parents are conditional

and those without are marginal. BNs have been shown to be

highly adaptable and consistently accurate in a number of

applications (44, 59–68). One of the simplest BNs is the naïve

Bayes classifier, naïve Bayesian network, or “idiot” Bayes, which

has proven to be a valuable, accurate, and robust classification

technique (69).

Figure 1 shows a simple BN used to represent a calculation

for the probability of heat-related illness based on temperature

and humidity. The representation shows the node Heat-Related

Illness dependent upon the nodes Temperature and Humidity.

The node, Humidity (in this case absolute), is dependent

on Temperature and Temperature is dependent on neither

Humidity nor Heat-Related Illness. By obtaining a dataset

consisting of temperature, humidity and heat-related illness

rates for a location, one could calculate the parameters of this

specified network thereby creating conditional probability tables

based on the data and begin inference. Furthermore, if one

does not have access to the data but to some descriptors of

the distributions of the data for each node, prior probabilities

could be specified for the calculation of the parameters. As a

simplistic example, one could query the network asking: “What

is the probability of heat-related illness when the temperature

FIGURE 1

A simple Bayesian network.

is in excess of 90 degrees F and absolute humidity exceeds 30

g/m3?”.

Dynamic Bayesian Networks (DBN) are extensions of BNs

(an “unrolled” DBN is a BN) that are often recursive in

form and adaptable to dynamic forms of data such as a time

series. Time is represented through “time slices” where dynamic

nodes are established based on their temporal relationships.

Often in a DBN architecture a time-slice is dependent on

values of the previous slice representing a first order Markov

process; although other orders are possible. This creates a

recursive pattern within the DAG where the structure of

the nodes is consistent between time steps. Even though the

contemporaneous network structure can change from one step

to another this is often not the case and the structure is

entirely recursive. Figure 2 shows a very simple DBN which

is an extension of the BN in Figure 1 and demonstrates the

recursive pattern. This example network would represent heat-

related illness through discrete time steps. In this representation,

there are three time slices where temperature is linked

to humidity and heat-related illness within the time slice

(contemporaneous) but the temperature at time slice t is also

dependent on the temperature from the previous time slice

(t-1) and so forth. Not only can such a dynamic structure

model frequently encountered real-world situations, it can also

represent incremental steps in actual decision-making processes.

Another key benefit of the BN approach is that it is not

a “black box” which is a common criticism of other network-

based approaches (i.e., artificial neural networks, deep-learning

convolutional neural networks). One can determine the form

of the problem being modeled through decomposition of the

network and the conditional probability tables. For example,

from the BN presented in Figure 1 we can factorize the

probabilities as:

Pr
(

HRI, Humidity, Temp
)

= Pr
(

HRI
∣

∣Humidity, Temp
)

Pr
(

Humidity
∣

∣Temp
)

Pr(Temp)
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FIGURE 2

A simple Dynamic Bayesian Network.

This level of detailed access to the conditional probability

tables in the network allow one to determine strengths of

association; this is a much more difficult and involved process

in many artificial neural network and deep learning approaches.

Relative risk estimation

Relative risk in a spatial-temporal study is a metric that

defines the “relative” risk of a location compared to the overall

risk in the study area at a discrete time interval (areai at

timet). When modeling relative risk in small area studies,

spatial Bayesian hierarchical techniques have shown the greatest

flexibility and accuracy (70, 71). When dealing with disease

counts, aggregated by small areas, there can be large fluctuations

in background population from one area to another (72, 73). As

an example, without incorporating smoothing techniques, the

relative risk in an area with a small population can fluctuate

dramatically depending on the number of infected. These are

usually reported as a standardized morbidity rate or SMR; which

is simply the observed number of infections/expected number of

infections. If a neighboring location contains a varying number

of cases and a very low population through time, the SMR can

markedly fluctuate. Bayesian hierarchical spatial and spatial-

temporal modeling, with the inclusion of proper terms, accounts

for potential large fluctuations by borrowing information both

globally and locally within the defined study area to provide a

smooth model absent problematic variations (74). Furthermore,

the inclusion of spatial, temporal, and spatial-temporal random

effects can account for variables not present in the model, which

can lead to numerous complications (74–77). These and other

benefits of Bayesian hierarchical modeling enable its usage in

a wide array of applications, especially in spatial and spatial-

temporal settings.

In this study, in addition to using the SMR, we calculated

relative risk using the counts of COVID-19 infection modeled

with a Negative Binomial distribution.

Yit ∼ NB (Eitθit) , i = 1, . . . , 1503, j = 1, . . . , 20

Yit is the number of infected individuals at areai & timet. Eit
is the expected number of infected based on the total population

used as an offset and θit is the relative risk. We included spatial,

temporal, and spatial-temporal interaction terms using a scaled

Besag, York, Mollié model (BYM2) with a penalized complexity

prior (74, 78, 79).

log (θit) = diβ + 1√
τ
(
√

1− ϕ S∗ + √
ϕU∗ )+ γt + ωt

+ δit

diβ is a vector containing the coefficients, S∗ and U∗
are, respectively, the spatially structured and unstructured

random effects of the BYM model; scaled to follow the BYM2

specification (74, 78, 79). γt & ωt , correspondingly represent

the temporally structured and temporally unstructured random

effects. γt , is modeled as a conditional autoregressive random
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walk of order one (RW1), and ωt is modeled as a Gaussian

exchangeable IID (ωt ∼ Normal(0, 1
τω

)). The space-time

interaction component δit , also modeled as IID, represents a

parameter vector that varies jointly through space and time.

This allows for deviations from the space and time structure

expressing both dynamic spatial changes from one time frame to

another and active temporal patterns from one area to another

(76). We examined all spatial-temporal interactions specified by

Knorr-Held and found Type I specification to best fit the data

based on Deviance Information Criteria (DIC) (80). Type I does

not smooth through space or time and force spatial and temporal

neighbors to behave similarly; which we also assumed could

potentially bias the Bayesian Network predictions.

Data setup for training, testing, and
validation

Since this is a hybridized technique, there were two ways

the collected data were organized for modeling. The cases

and expected cases were included in the Bayesian hierarchical

spatial-temporal framework specified in section Relative risk

estimation. The fitted responses from this model were used

as observed values of relative risk for area i at time t. We

did not include the vulnerability and resiliency indices or

temperature and precipitation as covariates at this stage of

the model.

Discretization

Bayesian networks often require discretization of

continuous variables, but can accommodate continuous

data and a mixture of discrete and continuous variables.

However, many implementations of BN processes in machine

learning require discrete data. Discretization also has numerous

benefits for modeling and has the potential to aid model

accuracy and computational complexity in some instances (81).

We elected to discretize the model variables for this study to

lower complexity and aid computational time. For relative

risk and SMR discretization we used the typical 3 category

risk model of low, medium and high and separated each class

into two distinct levels for a total of 6 classes: 0–0.5, Low

Low; 0.5–1.00 High Low; 1.0–1.25, Low Moderate; 1.25–1.50,

High Moderate; 1.50–1.75, Low High; 1.75 and up, High High

(the sensitivity analysis used an additional three classification

schemes that are discussed in section Testing, training sets,

validation, and sensitivity analysis). Since the CDC SVI values

are approximately uniformly distributed they were discretized

into four different groupings as follows: 0–0.25, Low; 0.25–0.50,

Moderate; 0.50–0.75, High; 0.75–1.00, Extreme. The SoVI, NRI,

and BRiC were discretized using a k-means clustering technique

with four clusters to match the categories for the CDC SVI. The

environmental variables were discretized with k-means with 15

different groupings across the entire time-frame. Fifteen classes

for temperature was the lowest number of clusters possible that

allowed each month to have more than one value. For example,

with 14 classes the month of June 2020 had only one class which

is an issue for the DBN inference engine. These variables are all

approximately Gaussian distributed with positive skewness for

temperature observed and predicted and negative skewness for

precipitation observed and predicted. k-means clustering has

been shown to be a reliable and robust method of discretization

in supervised and unsupervised learning applications including

Bayesian networks (82, 83).

Testing, training sets, validation, and sensitivity
analysis

Data was separated into several training and testing sets. The

initial training set included all data collected fromMarch 1, 2020

to September 30, 2021. The complementary testing set included

data for October 2021. We created three additional training sets

(1) March 1, 2020 through February, 28 2021. (2) March 1,

2020 through November 30, 2020. (3) March 1, 2020 through

August 31, 2020. Complementary testing sets for each training

set consisted of data for the month immediately following the

last month in the training set. These additional training and

testing sets were used to further evaluate the DBN at three

randomly selected discrete time intervals throughout the study

period (September andDecember 2020,March 2021). Arranging

the data in this way effectively simulates not having data for the

month for which the forecast is made.

Another training set was created using a balanced dataset

with n = 1,000 samples for all six classes. After training each

model we tested the accuracy of the models trained with both

approaches. We used cross-validation to compare alternative

models to the DBN outputs and to compare alternative

methods amongst themselves. Accuracy and Cohen’s Kappa

(K) were used for these comparisons (84). Models trained

with all data available for prior months proved to be the

more accurate (overall accuracy and Cohen’s Kappa) training

scenario (compared to the balanced training set) via these cross-

validation parameters. DBN networks were also compared using

cross-validation (total accuracy, Cohen’sK), Akaike Information

Criteria (AIC), Bayesian Information Criteria (BIC), and total

number of free parameters (degrees of freedom) (84–86).

In order to test the sensitivity of the final DBN model

to changes in classification scheme we tested three additional

discretization categorizations, of relative risk and SMR, apart

from the six-class model in section Discretization. These

included: A nine class output with increments of 0.33 from zero

to >2.66. A 12 class scheme with increments of 0.25 from zero

to >2.75, and finally 16 classes with increments of 0.10 from

zero to >3.00. These four classification schemes are evaluated

with total accuracy and Cohen’s K and should be sufficient to
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test the tendency of the model to correctly identify varying

risk categories.

Alternative modeling

We selected five alternative techniques that are commonly

used in predictive analytics. The response from these five

methods are used to compare to the outputs from the DBN.

Bayesian hierarchical spatial-temporal forecast

To compare a Bayesian hierarchical spatial-temporal

forecast with our developed DBN we created a model

which predicts the relative risk for October 2021 based on

exchangeability with the link function to the likelihood (47, 87).

This prediction YPred
it , is based on information gathered by

previously known values of Yit (from prior months) based on

p
(

YPred
it

∣

∣

∣
Yit

)

=
p(Yit ,Y

Pred
it )

p(Yit)

from the conditional probability;

=

∫

p
(

YPred
it

∣

∣

∣
ξ ) p (Yit|ξ) p (ξ) dξ

p(Yit)

by the property of exchangeability;

=

∫

p
(

YPred
it

∣

∣

∣
ξ
)

p (ξ |Yit) p (Yit) dξ

p(Yit)

by application of Bayes′ theorem;

=
∫

p
(

YPred
it

∣

∣

∣
ξ )p (ξ |Yit) dξ

In this case ξ is a vector of the model parameters established

with the suitable prior, p(ξ). We assume in this case that

the variables being predicted are similar to previous observed

cases and that YPred
it & Yit are generated by the same random

processes generalized by themodel parameters ξ.We did include

the vulnerability and resiliency indices and observed/predicted

temperature and observed/predicted precipitation as covariates

in this model to aid the forecast. After prediction, these relative

risk values were discretized using the same procedures outlined

in the previous section and compared to the DBN model

projections. This model is setup similarly to the model used

to fit the observations for testing except that we do include

the vulnerability and environmental measurements and do not

include case numbers for October 2021 for which the forecast

is made. This alternative method was developed in the R-INLA

package (48).

Multinomial logistic regression

We also developed a multinomial logistic regression model

to compare with the Bayesian network forecasts. Multinomial

logistic regression (MNLR) behaves similarly to binary logistic

regression except more than two categories can exist in the

response. MNLR has been used in a number of health related

studies where risk factors are linked to categorical outcomes

(41, 88–92). In our MNLR setup we use K (6 categories)

possible outcomes by running 5 independent binary logistic

regression models:

ln
Pr(Yi = 1)

Pr(Yi = K)
= β1 · Xi

ln
Pr(Yi = 2)

Pr(Yi = K)
= β2 · Xi

· · · · · ·

ln
Pr(Yi = K − 1)

Pr(Yi = K)
= βK−1 · Xi

Summing the exponentiated solution for the probabilities of

each class and knowing that all class probabilities sum to one:

Pr (Yi = K) = 1−
K−1
∑

k=1

Pr
(

Yi = k
)

= 1

−
K−1
∑

k=1

Pr (Yi = K) eβk·Xi →Pr (Yi = K)

= 1

1+
∑K−1

k = 1
e
βk·Xi

Then solving for each class probability.

Pr (Yi = 1)
eβ1·Xi

1+
∑K−1

k = 1
eβk·Xi

· · · · · ·

Pr (Yi = K − 1)
eβK−1·Xi

1+
∑K−1

k = 1
eβk·Xi

The MNLR model for this study was developed using the

caret and nnet packages in R (93, 94).

Random forest regression

Random Forest Regression was also chosen as a technique to

compare with the alternativemethods and the Bayesian Network

(95). Random Forests (RF) work by constructing numerous

decision trees in the training step and averaging the prediction

of individual trees within the forest. One key benefit of RF over

other methods is they resist overfitting to the training set (96).

RF has been used effectively in a number of epidemiological

studies and they often outperform other techniques (97–103).

Specifically, related to COVID-19 Muhammad et al. found

a decision-tree model had the highest accuracy at predicting

positive and negative cases of the disease (104).We implemented

a Random Forest with Gini Impurity and calculated variance

reduction with mean square error. Each decision tree in the

forest is defined by:

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j)
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Where nij is the importance of node j, wj weighted number

of samples for node j, Cj is the impurity at node j, wleft(j) is the

child node on the left split on node j, wright(j) is the child node

on the right split from node j. The importance of each feature is

calculated by:

fii =
∑

j :→i nij
∑

k∈all nodes nik

Each tree is normalized by:

normfii =
fii

∑

j∈all features fij

Then for the entire forest, feature importance is assigned by:

RFfii =
∑

j∈all trees normfiij

T

The RF model for this study was developed using the caret

and randomForest packages in the R Statistical platform (93,

105).

Support vector machine

Support Vector Machine (SVM) learning algorithms are

widely considered one of the more robust prediction methods

available (106–109). Muhammad et al. found SVM to have

the highest sensitivity −93.34%—of the numerous examined

machine learning techniques at predicting positive and negative

cases of COVID-19 in Mexico (104). Given an input space with

p dimensions the SVM learns a p-1 dimensional maximum-

margin hyperplane (wTx – b = 0) separating the input data

relative to the classes (1 and −1 in this example) defined in

supervised learning (see Figure 3). Given a more complex p-

dimensional non-linear classification the SVM uses the kernel

trick which avoids the numerous issues with forcing linear

learning functions to learn non-linear relationships. For our

developed SVM model we used a radial basis function kernel

defined by:

K(x,

´

´
x) = exp











−

∥

∥

∥

∥

x− ´
x

∥

∥
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∥
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




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

∥

∥
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∥
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∥

∥

∥

∥

2

is the squared Euclidian distance between feature

vectors x and
´
x and σ is the free parameter and is assigned

a value of 0.1 in our model. Our alternative SVM model was

developed using the caret and e1071 packages in the R Statistical

platform (93, 110).

FIGURE 3

Support Vector Machine example representation showing the

maximum-margin hyperplane WTx + b = 0.

Multinomial naïve Bayes

Naïve Bayes relies on Bayes theorem to calculate the

probability of an event occurring relative to prior knowledge

related to the event. In many ways it is similar to the Bayesian

Network description and it is the simplest form of one.

Multinomial naïve Bayes creates a feature vector histogram xi
with the number of times event i is observed. The likelihood of

observation is:

p
(

x
∣

∣Ck
)

=
(
∑n

i=1 xi
)

!
∏n

i=1 xi!

n
∏

i=1

pki
xi

Then through log-space reduction it becomes a

linear classifier:

log p
(

Ck
∣

∣x
)

∝ log

(

p
(

Ck
)

n
∏

i=1

pkixi

)

= log p
(

Ck
)

+
n
∑

i=1

xi · logpki

= b+ WT
k X

b = log p
(

Ck
)

& wki = log pki

Ck = Class k.

Laplace smoothing was used to prevent the possibility of

having a probability of zero in the conditional calculations.

Multinomial naïve Bayes classification has been shown to be

highly effective in a number of studies, especially as it relates

to natural language processing, but also for discrete classes of
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FIGURE 4

COVID-19 case rate per 10,000 (in common logarithm) by month across all Indiana census tracts.

observations (111–114). We used the caret and e1071 packages

for R to develop the multinomial naïve Bayes model (93, 110).

Results

The common logarithm of cases per census tract is shown in

boxplots by month in Figure 4. We used the common logarithm

because scaling the rates in this way allowed for a better

visualization of the variable. COVID-19 cases in Indiana steadily

increased from March 2020 through November and December

of 2020 and significantly dropped after February of 2021. This

drop coincides with the large scale vaccination efforts across the

state. Cases began to rise again in September of 2021 with a drop

into October 2021.

Dynamic Bayesian Network specification

Multiple approaches can be used to learn the structure of

a BN or DBN and specifying an appropriate structure is very

important. There are several machine-learning techniques that

will “learn” the structure of the network from available data.

Examples include hill-climbing, gradient descent, incremental

association Markov blanket (IAMB), naïve Bayes, and Tree-

Augmented naïve Bayes (69, 115–118). An alternative is to

construct the network’s structure from expert advice and follow

a pattern of causation; whether causation is true or not (119).

In this study we specified the structure of our network with

expert opinion following dependency of the variables from

other studies.

In order to further evaluate the relevance of the selected

variables, mean values of which are shown in Table 1, we

added each into a preliminary DBN structure that included

each variable along with the relative risk estimates as a first

order Markov process. The output is presented in Table 2. The

addition of each variable on its own did increase the accuracy

and significantly lowered Akaike Information Criteria (AIC) and

Bayesian Information Criteria (BIC). Including temperature and

precipitation (each contemporaneous and first order Markov

processes), and relative risk as a first and second order Markov

process had the greatest effect on predictive accuracy, K, AIC,

and BIC.

To determine the overall network structure (DAG)

as specified in Figures 5, 6, the selected variables were

incrementally added beginning with the relative risk estimates
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FIGURE 5

Example subset of recurrent structure of the DBN; yellow, temperature nodes; blue, precipitation nodes; gray, social vulnerability/resiliency

index/NRI nodes; red, contemporaneous target, relative risk. For simplicity this DAG makes no distinction between predicted temperature from

NEX-DCP30 and observed temperature from NLDAS. As the modeling moves forward in time, the NEX-DCP30 values are replaced by the NLDAS

observations once the realization is available.

FIGURE 6

Directed Acyclic Graph (DAG) for (time-slice t) from DBN for predicting relative risk of COVID-19 infection. Dashed lines represent data input

from a non-contemporaneous node/inter-time-slice (t-1).
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TABLE 1 Mean values by Indiana census tract for variables used in the DBN.

Month–year Mean posterior relative risk Tempreal Precipreal Temppredict Precippredict CDC SVI SoVI NRI BRiC

March-20 0.979 7.789 103.888

April-20 0.976 9.672 75.995

May-20 1.015 15.834 130.735

June-20 0.979 22.578 89.755

July-20 1.004 25.856 103.786

August-20 1.005 23.099 79.152

September-20 0.395 19.455 36.429 21.276 82.767

October-20 0.383 12.519 109.224

November-20 1.029 8.057 73.983

December-20 1.617 1.161 43.625 0.526 77.847 0.485 −0.0115 23.41 55.813

January-21 3.117 −0.925 58.443

February-21 1.484 −4.513 50.767

March-21 1.002 7.571 85.574 8.456 83.064

April-21 0.999 11.535 70.775

May-21 0.999 16.057 90.196

June-21 0.999 23.566 149.785

July-21 1.005 23.941 119.334

August-21 1.041 24.736 83.189

September-21 1.039 20.476 95.361

October-21 1.035 16.218 168.309 15.897 75.565

TABLE 2 Variables added to DBN independently.

Accuracy 95% CI Kappa AIC BIC

RR 1st order

Markov process 0.3659 0.3415–0.3909 0.051 −116594.50 −118130.60

US CDC SVI 0.3779 0.3533–0.403 0.07 −117083.30 −121529.50

SoVI 0.3773 0.3487–0.3983 0.052 −117093.00 −121539.20

NRI 0.3759 0.3514–0.401 0.073 −117113.50 −121559.60

BRiC 0.3806 0.3559–0.4057 0.07 −117016.00 −121462.20

Temperature 0.3965 0.3717–0.4218 0.101 −119096.10 −129854.10

Precipitation 0.4824 0.4568–0.509 0.271 −152209.60 −269590.90

RR 2nd order

Markov process 0.4032 0.3783–0.4285 0.165 −116035.80 −121956.90

Null information rate= 0.3606.

of the previous months as a first order Markov process. At

this step, variables (nodes,) were incrementally added and if

the inclusion continued to improve the classification accuracy

or lowered the AIC and BIC by at least 10 units the variable

was retained (102, 120, 121). Through this process all selected

variables improved the classification accuracy and lowered

AIC and BIC significantly (see Table 3). In order to develop

competing DBN models, we experimented with divorcing

nodes from the target by adding the SoVI and BRIC values

as direct inputs to NRI since its formulation contains those

two metrics (DBN model #1). A second model (DBN model

#2) used the temperature and precipitation of the previous

month as an input to the contemporaneous temperature and

precipitation nodes, rather than directly linked to relative risk

(i.e., DBN model #1 and #3). Relative risk was also linked by

its value from the previous month. The final DBN structure

(DBN model #3), of which subsets are shown in Figures 5, 6,

ultimately contained 64 nodes and had the most significant

AIC and BIC values. In this architecture, the contemporaneous

physical environment nodes were connected to values of the

previous month. Social vulnerability nodes were also directly

linked to the contemporaneous relative risk node. Finally, to

further improve the model we introduced more memory into

the relative risk estimation by making the relative risk linkages

from past months into a second order Markov process where

the predicted relative risk is dependent on the relative risk

from the prior 2 months (122). This architecture ultimately

contained 193 arcs connecting all the nodes with an average

Markov Blanket of 16.41; as an example if this network were

a fully connected DAG there would be
(

n(n−1)
2

)

or 2016 arcs

(9.57% of total possible). Each node has an average of 6.03

neighbors and the average branching is 3.02. Parameter learning

was performed using maximum likelihood estimation in the

bnlearn and dbnlearn packages (49, 123).

When viewed in its entirety this network matches prior

research and conditional assumptions regarding COVID-19

infection and social and environmental metrics. For example,
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COVID-19 infection relative risk in July is conditionally

dependent on average temperature in June and July and is

conditionally independent of temperature measured in August.

Similarly, July infection relative risk is conditionally dependent

on the relative risk measured in May and June (2nd order

Markov chain), but independent of that measured in August.

In the case of our developed model, it may also be considered

independent of that measured in April, however, since April is a

part of the Markov chain of events it does have some bearing

on a contemporaneous measurement; although clearly not as

directly as those connected via arcs. This is an example of a

process known as the “propagation of evidence” within the DBN

structure which aids inference, classification and prediction.

Model outputs

The results of fitting the DBN network and predicting

relative risk categories for October 2021 are shown in Table 4.

DBN model #3 (Figures 3, 4) has the highest accuracy and

the least number of effective parameters of the examined DBN

architectures. DBN model #2 is only slightly less accurate but

with a significantly higher AIC and BIC. DBN model #2’s

architecture, differs from that in Figures 3, 4 as it links the prior

month’s temperature node to the current month’s temperature

node. This is the only difference between DBN #2 and DBN #3.

TABLE 3 Incremental addition of variables into the DBN.

Accuracy 95% CIKappa AIC BIC

RR 1st order

Markov process 0.37 0.34–0.39 0.05 −116594.50 −118130.60

US CDC SVI 0.38 0.35–0.40 0.07 −117083.30 −121529.50

SoVI 0.41 0.38–0.43 0.13 −119654.10 −135740.60

NRI 0.47 0.44–0.49 0.25 −132598.10 −195245.90

BRiC 0.61 0.58–0.63 0.46 −195858.90 −444751.90

Temperature 0.75 0.72–0.77 0.67 −1079762.20 −3688462.30

Precipitation 0.90 0.88–0.91 0.87 −128374752.50 −469307883.50

RR 2nd order

Markov process 0.97 0.95–0.97 0.96 −659576242.50−2375663790.20

Null information rate= 0.3606.

DBN #1 is significantly less accurate with significantly higher

AIC and BIC scores and a significant increase in effective

parameters. The DBN #1 architecture is similar to DBN #2,

except the BRIC and SoVI nodes are linked to the NRI node.

This mimics the NRI score itself since its product includes the

two variables (along with insurance loss, a variable which we did

not include in this study).

Table 5 presents the results of the alternative modeling

techniques used to compare to the DBN forecasts. The SVM

model with a radial basis kernel was found the be the most

accurate with a 0.5853 accuracy rate and a K of 0.1651.

The random forest prediction was very close to the SVM

with a 0.5782 accuracy and a K of 0.1016. The naïve Bayes,

MNLR and Bayesian hierarchical spatial-temporal projection

did not produce accuracies that were statistically significant

improvements over the null information rate of 0.5456 based on

the 95% confidence intervals.

Tables 6–9 contain the confusion matrices for all 4 months

where predictions were calculated with DBN #3. Prediction

accuracy and confidence intervals were consistently above 95%.

K, which measures observed accuracy relative to expected

accuracy is consistently above 0.95. All sensitivity and specificity

measures were above 0.900 with the majority of values exceeding

0.960. These observations reflect very good agreement between

TABLE 5 Alternative model classification projections for October

2021 relative risk.

Forecasting technique Accuracy Confidence

interval

Cohen’s K

Bayesian hierarchical S-T

projection*

0.3442 0.3202–0.3689 0.0215

Multinomial logistic

regression

0.5509 0.5253–0.5763 0.0075

Support vector machine

(radial basis)

0.5853 0.5581–0.6086 0.1651

Random forest 0.5782 0.5527–0.6033 0.1016

Naïve Bayes 0.5552 0.4969–0.6124 0.1435

Null information rate= 0.5456.
* = Discretized after relative risk prediction.

TABLE 4 Diagnostic measurements of the developed predictive models.

DBNmodel

iteration

Nodes Arcs AIC BIC Effective parameters (DoF) Accuracy

DBN #1 64 156 −17248202.00 −62846642.00 3575 0.8902

DBN #2 64 194 −274603291.00 −1004163064.00 1764 0.9387

DBN #3 64 193 −792350979.00 −2897859858.00 1680 0.9534

Predictions for October 2021.
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TABLE 6 Confusion matrix for October 2021 prediction of relative risk of COVID-19 infection.

Predicted

LL HL LM HM LH HH Sensitivity Specificity

Realization

Relative risk 0.00–0.50 (LL) 11 1 0 0 0 0 1.000 0.999

Relative risk 0.50–1.00 (HL) 0 801 26 9 0 1 0.969 0.947

Relative risk 1.00–1.25 (LM) 0 18 503 5 0 0 0.946 0.976

Relative risk 1.25–1.50 (HM) 0 5 3 96 0 0 0.873 0.994

Relative risk 1.50–1.75 (LH) 0 0 0 0 17 0 1.000 1.000

Relative risk > 1.75 (HH) 0 2 0 0 0 5 0.833 0.998

Overall accuracy= 0.953.

95% Confidence Interval= 0.941–0.963.

No information rate= 0.361.

P < 2.2e-16.

Kappa= 0.918.

TABLE 7 Confusion matrix for March 2021 prediction of relative risk of COVID-19 infection.

Predicted

LL HL LM HM LH HH Sensitivity Specificity

Realization

Relative risk 0.00–0.50 (LL) 351 8 3 2 1 1 0.975 0.989

Relative risk 0.50–1.00 (HL) 4 530 2 2 1 3 0.974 0.984

Relative risk 1.00–1.25 (LM) 3 2 248 3 0 0 0.965 0.995

Relative risk 1.25–1.50 (HM) 2 0 0 154 0 0 0.974 0.995

Relative risk 1.50–1.75 (LH) 1 2 1 0 69 0 0.904 0.998

Relative risk > 1.75 (HH) 0 3 1 1 0 105 0.955 0.996

Overall accuracy= 0.968.

95% Confidence Interval= 0.958–0.976.

No information rate= 0.361.

P < 2.2e-16.

Kappa= 0.958.

TABLE 8 Confusion matrix for December 2020 prediction of relative risk of COVID-19 infection.

Predicted

LL HL LM HM LH HH Sensitivity Specificity

Realization

Relative risk 0.00–0.50 (LL) 447 7 0 3 1 1 0.978 0.987

Relative risk 0.50–1.00 (HL) 7 545 2 2 2 0 0.973 0.986

Relative risk 1.00–1.25 (LM) 2 1 239 0 0 1 0.984 0.997

Relative risk 1.25–1.50 (HM) 0 2 1 89 1 2 0.916 0.995

Relative risk 1.50–1.75 (LH) 0 2 0 2 52 0 0.929 0.999

Relative risk > 1.75 (HH) 0 0 1 1 0 90 0.989 0.999

Overall Accuracy= 0.972.

95% Confidence Interval= 0.962–0.979.

No Information Rate= 0.372.

P < 2.2e-16.

Kappa= 0.962.
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TABLE 9 Confusion matrix for September 2020 prediction of relative risk of COVID-19 infection.

Predicted

LL HL LM HM LH HH Sensitivity Specificity

Realization

Relative risk 0.00–0.50 (LL) 338 2 1 1 0 0 0.983 0.997

Relative risk 0.50–1.00 (HL) 3 578 1 2 0 0 0.986 0.989

Relative risk 1.00–1.25 (LM) 2 2 264 1 0 1 0.974 0.997

Relative risk 1.25–1.50 (HM) 0 3 1 119 0 1 0.968 0.996

Relative risk 1.50–1.75 (LH) 0 0 1 0 68 0 0.986 0.999

Relative risk > 1.75 (HH) 0 0 2 1 0 111 0.991 0.999

Overall Accuracy= 0.982.

95% Confidence Interval= 0.974–0.988.

No Information Rate= 0.389.

P < 2.2e-16.

Kappa= 0.9761.

the predicted values and the realization/observed values in

the study.

Figures 7–10 are maps of the predicted categorical relative

risk in the left-side panel, the realization on the right, and

the difference below. The map showing difference is broken

into 3 classes; under prediction, accurate prediction, and over

prediction. The p-values for Moran’s i were not statistically

significant for the over and under predictions for each month;

indicating a statistically significant probability of complete

spatial randomness of the residuals from the DBN outputs.

Table 10 contains the metrics for the sensitivity analysis. We

not only wanted to examine how different discretization patterns

would impact the models but we wanted to investigate if using

the (more easily calculated) SMR in place of modeled relative

risk would also produce a viable result. For both relative risk

and SMR overall accuracy and Cohen’s K increase as the number

of classes increase. The overall accuracy of the six-class model

using relative risk was 0.953 and ranged to 0.979 for the 16-class

scheme. The use of SMR, instead of modeled relative risk, did

not seem to affect the end result and all models are statistically

similar in their classification accuracy.

Discussion

COVID-19 cases in Indiana steadily increased through the

first month we made predictions, September 2020, a month

which represented an inflection point as cases significantly

increased through the remainder of the year. December 2020,

another randomly selected month for DBN prediction, had the

highest number of cases of all months in the study and follows

the linear increase in cases from September. The third month in

our predictive analysis, March 2021, succeeds another inflection

point where cases dropped dramatically due to vaccine uptake in

the population leading to an exponential decrease in confirmed

cases. The final month, October 2021, shows a slight drop from

those observed in September 2021. These characteristic trends

within the data were initially thought to be potential problems

for the DBN network and its predictive capabilities; especially

with months following or being themselves inflection points.

This proved to be less a challenge for the DBN predictions but

it could explain some of the issues with the alternative modeling

methods used.

The DBNs developed produce highly accurate predictions of

categorical relative risk of COVID-19 infection at a very fine

spatial scale (i.e., census tract). Notable from the incremental

addition of nodes/variables to the network, all produced an

increase in predictive accuracy and each lowered the AIC and

BIC by > 488 units; well beyond the typical set threshold of

10 units (102, 120, 121). As we introduced variables into the

DBN structure and even though there was overlap between

the confidence intervals for accuracy (see Table 2) we retained

the variables, relative risk of the previous month (a first order

Markov process), the CDC SVI, and SoVI, because of the

significant decrease in AIC and BIC. The improvements to the

model, as measured by the information criteria, provides further

evidence of association between measures of social vulnerability

and COVID-19 infection rates supporting numerous studies (8,

11, 124–127). Our work also supports others finding network-

based approaches to be superior in predicting COVID-19 risk

(41, 42, 44).

Following the incremental introduction of variables into

the network, using only the vulnerability/resiliency indices

and the relative risk modeled for the prior month (1st order

Markov process), we were able to achieve an accuracy of ∼61%.

Using only the vulnerability indices (CDC SVI and SoVI) and

NRI produces a model with 47% accuracy, so the addition of

the resiliency index, BRIC, adds 14% to the accuracy of the

model; although none of these variables included individually

offer superior performance compared to the null information
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FIGURE 7

COVID-19 categorical relative risk of infection prediction and realization for October 2021.

rate (Table 2). The BRIC index is only available by county

but does add significantly to the model. The inclusion of the

dynamic environmental variables adds nearly 30% to the overall

accuracy and significantly lowers AIC and BIC by orders of

magnitude. The impact on predictive accuracy from average

daily maximum temperature and precipitation (monthly sum)

supports other studies finding correspondence between these

two environmental measurements and COVID-19 cases of

infection (11, 29–32). The order in which the variables were

added to the model provides no remarkable change to the

metrics shown in Table 3 and the overall predictive effect is not

altered by a different order of introduction.

All three DBN models significantly outperformed the

Bayesian hierarchical spatial-temporal forecast, MNLR, SVM,

random forest and naïve Bayes estimations. The best alternative

forecasting technique was the SVM model with a radial
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FIGURE 8

COVID-19 categorical relative risk of infection prediction and realization for March 2021.

basis kernel, providing an accuracy of 0.5853 and a relatively

low K (0.1651). The difference in performance between the

alternative methods and the DBN estimates is remarkable. For

the dataset under examination, the DBN with its approach

of creating conditional and marginal probability tables based

on the DAG modeling the data, has superior discriminatory

power compared to the alternatives. This is likely due

to the superior ability of the DBN framework to model

non-linear and complex interactions between observations.

Perhaps most surprising is how poorly naïve Bayes performed

with a K of 0.1435 and an accuracy (0.5552) that was not

statistically significant relative to the null information rate.

As discussed previously, naïve Bayes is considered a very

simplistic Bayesian network and in this case would be modeled

as the predictive class being directly linked to each individual

node (directionally, predictive class -> node); in this case
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FIGURE 9

COVID-19 categorical relative risk infection prediction and realization for December 2020.

only 63 arcs directed to the explanatory variables. Naïve

Bayes is best used for unrelated classes of observations and

our classes may be interrelated enough to negatively impact

the prediction. The non-dynamic nature of the naïve Bayes

model, however, is likely the greatest contributing factor to its

insignificant prediction as it is not especially well-suited to time

series observations.

The poor performance of the Bayesian hierarchical spatial-

temporal projection is also notable. The only COVID-19

predictive study we found using this framework was a

compartmental SEIR architecture, embedded in the hierarchy,

used to estimate relative risk with a convolutional CAR model

adjusting for structured spatial dependency and unstructured

spatial heterogeneity (43). However, unlike Sartorius et al.
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FIGURE 10

COVID-19 categorical relative risk of infection prediction and realization for September 2020.

(43), we did not include compartmental components in our

modeling or factor in population mobility which make it less

comparable. Our forecast using this approach is based on a

similar model of the type used for fitting the COVID-19 cases

to create observed relative risk estimates. This projection is

based on exchangeability via a link function to the likelihood

of the model for data from March 1, 2020 through September

30, 2021. This technique produced the poorest projection of

relative risk estimates for October 2021 from all the models

calculated and is perhaps due to only using the distribution

of the likelihood. The similarity between the accuracy of this

forecast and the separate predictions observed from placing

the variables individually into the DBN structure (Table 2) adds

some support to this notion.

Difference maps, between predicted categories and observed

(the bottom figure in Figures 7–10), show the residuals to be
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TABLE 10 Sensitivity analysis of the final DBN Model (DBN model #3).

Modeled relative risk Classes

6 9 12 16

Accuracy 0.953 0.9627 0.9741 0.9789

95% Confidence Interval 0.941–0.963 0.952–0.972 0.965–0.982 0.971–0.984

No information rate 0.360 0.500 0.405 0.415

P-value 2.20E-16 2.20E-16 2.20E-16 2.20E-16

Kappa 0.918 0.943 0.965 0.969

SMR Classes

6 9 12 16

Accuracy 0.958 0.9672 0.968 0.969

95% Confidence Interval 0.949–0.962 0.953–0.973 0.962–0.974 0.961–0.975

No information rate 0.379 0.473 0.332 0.426

P-value 2.20E-16 2.20E-16 2.20E-16 2.20E-16

Kappa 0.920 0.951 0.955 0.959

randomly distributed in space with a very even distribution

between over-predicted and under-predicted classes. Recall, the

predictions utilize data from NASA NEX-DCP30 to forecast

the average environmental conditions for the target month.

However, once observed values are available (∼1–2 days after

the end of the month) and after a prediction is made with the

DBN, we replace the environmental variables with the observed

NLDAS values. This process mimics what would be needed in

an actual predictive decision-making environment. Given a need

to calculate relative risk predictions a month into the future,

we collect values from NEX-DCP30 to obtain the forecast for

the month and run the DBN prediction. As time progresses,

the actual environmental variables are available and updated to

observed values. Continuing this recursive process adds greater

memory to the model, mimics the DBN structure and validates

the predictions. This process can be automated in its entirety

with scripting.

Reasons for misclassification of certain areas are difficult

to ascertain. Residuals are randomly distributed in space and

no census tract is over or under predicted for more than

one time frame. In other words, no census tract in the study

is misclassified more than once. Some of the reasons for

misclassification could be the spatial resolution of datasets

we use to calculate environmental conditions within a census

tract. The spatial resolution of these environmental datasets are

courser than a typical census tract, especially in urban areas,

and could add uncertainty to the classification. However, we are

achieving a very high classification accuracy with DBNmodel #3

and would not expect accuracy to be 100%.

Bayesian networks are incredibly flexible and have the

added benefit of allowing one to relatively easily conduct

“what-if ” analyses. This is often performed in decision-making

environments and is not as easily performed in deep learning

and artificial neural networks and practically intractable in

regression-based techniques (59, 119). For example, if social

vulnerability were lowered for a specific area and resiliency

were increased we could calculate what effect that would

have on our predictions for the location. Also, one could

determine where performing such an intervention would likely

be most impactful. Furthermore, the network is extensible,

additional nodes could be added to the network such as one

representing community vaccination efforts. This could simply

be a Boolean node or something with a more complex state

structure but a DBN is flexible enough to allow for its inclusion

in future iterations.

This research, apart from adding to prior studies seeking to

forecast infection at a fine spatial scale such as a census tract

or the U.K. equivalent, mid-layer super output area (MSOA),

suggests network-based approaches are superior to alternative

methods. Much of the work dealing with larger scale forecasts

utilizes artificial neural networks (ANN), with differing depths

of learning and multiple architectures (i.e., LSTM, CNN),

time series analysis using autoregressive techniques, Bayesian

hierarchical spatiotemporal methods, and regression trees. Due

to their more limited number, there are less examples forecasting

infection at smaller scales. The few that exist also tend to

focus on network-based approaches and Bayesian hierarchical

methods of dealing with spatial, temporal and spatiotemporal

interactions (41–44). Our findings add support to these studies

suggesting that network-based approaches and accounting for

spatial and temporal structure, in a hierarchical manner, blend

together well.
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Limitations

As with all modeling techniques there are caveats and

limitations. The accuracy is likely to be affected if the

class structure were altered. For example, choosing different

boundaries for categorizing the relative risk estimates could

yield differences in accuracy. Table 10 contains the overall

classification accuracy and Cohen’s K (Kappa) for three

alternative relative risk categorizations; apart from the presented

six-class model. The overall accuracy gained from separating

the relative risk categories in this way is not statistically

significant relative to the six-class model. Additionally, since

relative risk is somewhat difficult to calculate we compared the

same categorizations using SMR. Similarly, using the Bayesian-

modeled relative risk does not provide a statistically significant

improvement over SMR; which is much more easily computed.

However, one strength of using Bayesian-modeled relative risk

is the ability to account for spatial and temporal structure in

the data. Due to these characteristics and its capabilities with

sparse data, which is more common in disease mapping studies,

we thought it prudent to highlight the effectiveness of the

more sophisticated model; further emphasizing the extensibility

of the DBN methodology. Additionally, risk is often stratified

into three categories of Low, Moderate and High with little

guidance on where boundaries are in representative data; which

are often defined by the distribution. We proceeded with six

categories of risk, believing it more illustrative of the spatial

variations in relative risk than simply 3 categories and more

easily interpretable than nine, 12 or 16 classes. From our

stratification it is easy to see relative risk values that are greater

than the study area average at the time. Any census tract that is in

the Low Moderate category or above has a greater than average

relative risk of infection.

We also did not evaluate the model’s predictive capabilities

beyond a month into the future. The predictive accuracy of

the model is likely to suffer if predictions are made beyond 1

month. However, it would be relatively easy to implement such

a temporal extension to the modeling. In a similar vein, accuracy

is likely to be different if we decompose the data into weekly

discrete time increments to make forecasts with finer temporal

specificity. We settled on monthly predictions because many

public health agencies lack the capacity to act on daily and/or

weekly scenarios. Monthly discrete intervals seemed to likely be

the best fit for decision-making activities.

The use of county-level and census tract-level data could

be considered a limitation due to using zonal calculations on

the environmental variables. The environmental variables have

different spatial resolutions in their original format (NLDAS =
13,945m and NEX-DCP30 = 927.67m). Clearly, these pixels

are larger than many census tracts, especially in urban areas.

Utilizing a dataset with a more enhanced spatial resolution

would likely alter the results. There are likely to be important

sub-census tract-level variations that are missed by these large

spatial resolution datasets.

There has been recent research emphasis placed onmodeling

the effect of under-reporting of COVID-19 and other infectious

diseases (128–130). We did not account for this in our modeling

due to some of the intrinsic limitations in INLA (the package

in R used for the Bayesian hierarchical modeling); lacking the

ability to directly account for this (47). However, it is likely

that if this effect were accounted for, the DBN would capture

a significant portion of its effect and produce comparably

accurate models. Future efforts should look to account for

under-reporting and/or misreporting, especially in infectious

disease research.

A final consideration is the computational intensity of the

developed models. The Bayesian hierarchical spatial-temporal

modeling takes several hours to compute on a relatively

robust workstation (as of 2021) and can take days if it

is necessary to recalculate conditional predictive ordinate

values. The computation time is significantly improved when

performed in high-performance computing environments.

Our final Bayesian hierarchical spatial-temporal model used

for validation was developed in Indiana University’s High

Performance Computing environment using parallel processing

(131). DBN #3 similarly is ∼100X more computationally

intensive than the alternative methods examined.

Conclusions

We developed a hybridized approach to forecasting

categorical relative risk estimates at the census tract-level on

monthly timeframes. This approach used a Bayesian hierarchical

spatial-temporal model to calculate observed relative risk and

a DBN to make the predictions. The Bayesian hierarchical

technique has the added benefit of accounting for spatial and

serial autocorrelation and other random effects within the

relative risk estimate. By using this output, spatial and temporal

issues are accounted for removing the need to introduce

nodes taking these random effects into account; adding to

the complexity of the network. The three DBNs developed all

outperformed the alternative methods we used for comparison.

There may be additional alternative techniques that could

outperform the DBN on this dataset (i.e., LSTM, RNN, CNN),

but these would likely be more difficult to implement and

would not allow straightforward decomposition of the network’s

parameters determining variable importance; something the

conditional and marginal probability tables in the DBN easily

permit. Furthermore, it is more difficult and in many cases

impossible to include expert opinion on data relationships in the

specification of these alternative methods.

Even though our hybridized approach generated highly

accurate predictions more work is needed that fosters predictive

decision support in public health applications. The current

COVID-19 pandemic has illustrated the need for these types

of models to communication risk to the public and to

support targeted intervention activities such as prioritizing
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communities for vaccination. The month-long predictive

timeframe from our model fits squarely in the decision-

making window of most public health agencies and makes

it ideal for “what-if ” analyses. For example, by adding

a Vaccination node to our model, we could model the

effects in a community after a vaccination campaign and

use such outputs for prioritizing locations. Furthermore,

we can readily incorporate the impact social vulnerability

and resiliency have on the detriment or betterment of

a community.

Further research efforts are needed in using both Bayesian

and Dynamic Bayesian Networks in epidemiological studies.

Unfortunately, examples of DBN approaches to dynamic

epidemiological processes are low in number relative to

other techniques used in machine learning and AI. A

significant benefit of using this technique is its allowance for

the inclusion of expert opinion and offers highly accurate

and robust methods of classification and projection. They

are also extensible by allowing future nodes to be added

taking into account further considerations priming them for

“what-if ” analyses. The research presented here showcases

the capabilities of DBN models to interface with other

techniques and to provide an accurate and robust forecast.

DBN-type models should be among the core techniques

in early warning and response to pandemics or local-

scale epidemics.
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