
TYPE Original Research

PUBLISHED 26 July 2022

DOI 10.3389/fpubh.2022.876949

OPEN ACCESS

EDITED BY

ZhiMin Xiao,

University of Essex, United Kingdom

REVIEWED BY

Ivan Miguel Pires,

Universidade da Beira Interior, Portugal

Nejat Yumuşak,
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The use of machine learning (ML) for diagnosis support has advanced in the

field of health. In the present paper, the results of studying ML techniques in a

tuberculosis diagnosis loop in a scenario of limited resources are presented.

Data are analyzed using a tuberculosis (TB) therapy program at a health

institution in a main city of a developing country using five MLmodels. Logistic

regression, classification trees, random forest, support vector machines, and

artificial neural networks are trained under physician supervision following

physicians’ typical daily work. The models are trained on seven main variables

collected when patients arrive at the facility. Additionally, the variables applied

to train the models are analyzed, and the models’ advantages and limitations

are discussed in the context of the automated ML techniques. The results

show that artificial neural networks obtain the best results in terms of accuracy,

sensitivity, and area under the receiver operating curve. These results represent

an improvement over smear microscopy, which is commonly used techniques

to detect TB for special cases. Findings demonstrate thatML in the TB diagnosis

loop can be reinforced with available data to serve as an alternative diagnosis

tool based on data processing in places where the health infrastructure

is limited.
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Introduction

Artificial intelligence (AI) is a set of bioinspired algorithms that are used to solve

problems in different applications. Within this wide area, machine learning (ML) is

a common subfield in which models learn from examples of data, taking advantage

of the idea of adjusting parameters in classification or regression tasks (1). There are

several different ML models according to the fundamental concepts for adapting the

parameters, with diverse examples including naive Bayes, decision or classification trees,

support vector machines (SVM), and artificial neural networks (ANNs), which emulate

the behavior of the brain through connectionist models. Besides these and other ML

models, new models are continuously being proposed (2).

Tuberculosis (TB) is a disease caused by theMycobacterium tuberculosis bacillus, and

the World Health Organization still considers it a global emergency because of its high

estimate of more than 1.4 million fatalities in the last 3 years (3). In developing countries,
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TB incidence is as high as 282,000 new cases in recent

years with a mortality rate of 2.4 per 100,000 populations.

In one specific place, Colombia, the reported TB incidence

was 33, the prevalence was 48, and the mortality was 1.6 per

100,000 populations. Given these numbers, any contribution to

decreasing TB fatalities is welcomed. M. tuberculosis is slow-

growing and replicates itself every 24 h, an important fact

that determines subacute symptoms. Additionally, the main

organ affected by TB is the lung, and because of this, the

main signs of the disease are respiratory-related (3). Coughing

and expectoration allow for assessing the probability of TB by

studying sputum; however, because TB is an infectious disease,

the accurate diagnosis is microbiological (4).

In the health area, AI has been applied to solve problems

in public health, medical images analysis, and diagnosis support

systems (5–8). For TB, different approaches have been proposed

since 1999 with the work of El-Solh et al. (9), for whom medical

images were the main source of information. Advances in this

field have allowed for better detecting thoracic diseases including

TB, pneumonia, asthma, and cancer (10, 11). Investigators have

widely used specific ML models in health systems to contribute

to improving TB diagnosis by taking advantage of available

meaningful data (12, 13), such as data from clinical information

(14–16), or molecular biology (17, 18).

ANNs have been particularly valuable in incorporating

ML into TB diagnosis through different architectures such

as multilayer perceptrons (MLP), self-organizing maps, and

adaptive resonance theory (ART) joined to fuzzy models in the

Fuzzy-ART approach to support detection and clustering in

risk groups for pulmonary TB (19–21) and pleural TB (22–24).

Researchers have used different data sources to support health

professionals in daily tasks such as collecting breathing acoustic

signals (25) and other clinical variables (20, 26).

Finally, TB researchers have used deep learning (DL)

architecture using vast data sets to provide scenarios based

on images (27–29). For instance, one important task was

establishing the ImageCLEF data set, which allowed users to

determine TB type and treatment resistance using coaxial

tomography images (28, 30); researchers have also used images

from radiography to support health professionals’ decision

making (31–33). Generally, DL has been widely applied in

assisting with medical diagnosis, utilizing radiography images,

and obtaining highlight results (34, 35). Additionally, one

DL subfield, transfer learning, entails refining large pretrained

models with new data, and several researchers have applied

transfer learning to the same kinds of medical images (27, 36).

Nevertheless, despite its demonstrable benefits, ML’s

effectiveness can be limited by data availability constraints

related to inadequate information technology infrastructure.

Precarious health systems that cannot or do not collect

radiographic information or conduct specialized testing

significantly complicate the implementation of ML models.

Researchers have analyzed these characteristics and proposed

infrastructure for developing regions that can accommodate few

variables and poor information systems have been treated for

developing regions (19, 21).

The present work proposes ML techniques as a tool in the

loop of TB diagnosis, where health professionals make decisions

but with extra help based on limited available data. This scenario

is studied for using ML in situations with limited infrastructure

for application within the complete TB diagnosis protocol.

Machine learning in the loop

The concept of the “algorithm-in-the-loop” is related to the

use of MLmodels to support decision making and improve both

human–computer interactions and human performance (37).

Interaction between the model and users in a loop is not limited

to simple representations of performance such as numbers but

extends to a global idea that articulates ethics, policies, and

standards (38). Including AI and ML stages in the clinical

decision making support workflow can ultimately improve

patient experiences and outcomes and optimize health system

performance (8). Interactive ML is another term for when

algorithms and humans work together to improve the results in

terms of metrics, understandability, and outcomes (39).

For the case of TB, diagnosis was long based on respiratory

symptoms followed by testing suspicious patients with a serial

sputum smear; however, although this test is simple, it is

necessary to consider some aspects in determining its usefulness.

Smear microscopy is performed using sputum smear and

staining that allows direct microscopic visualization of the

bacillus. However, diagnostic sensitivity is low, around 60%,

because a high number of microorganisms per cubic millimeter

of a sample is required to obtain results (40). Indeed, a high

percentage of people with the disease cannot be diagnosed using

this method, and furthermore, detected bacillus could be a non-

TB mycobacterium. A more sensitive assay is a culture in either

solid or liquid medium, which needs at least 2 weeks to obtain

results (41). Following more recent advances, molecular testing

is now available: Polymerase chain reaction (PCR) identifies the

TB bacillus with high sensitivity and in approximately 2 h (42).

However, the infrastructure for this technology is limited in

developing countries such as Colombia.

From the ML point of view, different applications have

particular characteristics such as requiring biomedical data that

have high uncertainty and incompleteness (43), and strategies

beyond straightforward ML are sometimes demanded. For the

present study, ML in the loop (MLL) is investigated; this

strategy depends on how the ML tool will be used. Researchers

have analyzed the necessary workflows to improve results

(44), but in medicine, where health professionals play an

indispensable role, other investigators have studied the doctor-

in-the-loop in terms of system performance (45, 46). Today,

how ML models perform is no longer the sole concern; models’
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generalizability and functionality during human interaction are

also important. Assessing these broader aspects of performance

allows for understanding important aspects of decision making

and operation that must be considered in system designs (47).

Figure 1 depicts the MLL process for TB diagnosis support

that was studied for the present work. First, a subject with

respiratory disease symptoms arrives at the medical center for

either a consultation or an emergency. There, a member of the

medical staff examines the possible patient and then sends the

patient to internal medicine for a more detailed examination.

After this deeper analysis, if the patient’s respiratory symptoms

continue, medical staff request three main exams to detect

pulmonary TB: sputum smear microscopy, sputum culture,

and molecular assay (GenXpert R©). If results from these three

exams indicate infection, the patient begins antituberculosis

therapy. Meanwhile the results are definitive, there is no positive

diagnosis. However, the patient initialize the antituberculosis

treatment. It is at this point where ML was applied to assist the

medical staff members in diagnosis.

At the study facility, the health care workers are responsible

for acquiring basic patient information equivalent to themedical

records obtained in other stages. This information is input into a

registry for the use of the institution’s TB program; the protocol

to detect TB can be time-consuming, and using ML with this

registry could expedite diagnosis. This study proposed to apply

MLL searches to support health care workers during the time the

test results take. This allows staff to efficiently manage patient

treatment according to the need for isolation, hospital capacity,

and necessary medications.

Materials and methods

Data set

Data were acquired through the TB program at Hospital

Santa Clara (HSC) in Bogotá D.C., Colombia. The HSC is

an important public institution associated with the Subred

Integrada de Servicios de Salud Centro Oriente (SCO, Middle

East Subnetwork of Health Services) that treats vulnerable

populations with low socioeconomic status or high risk of

sexually transmitted infections as well as persons who live in

overcrowded conditions.

As explained earlier, the data were collected within the

hospital’s traditional TB diagnosis process. Information was

considered from 233 clinical suspected pulmonary TB subjects

whose data had been acquired in the period from January

2017 to December 2019. From this set, 184 subjects (79%) had

TB confirmed and 36 subjects (15%) were determined to be

disease-free based on smear microscopy, culture, and molecular

examination following the national protocol to diagnose TB

(48). Thirteen subjects were not considered because they had

no available information on their TB status. The Ethics and

Research Committee of the SCO approved this study on the

basis of the use of anonymous data with only population-related

variables that posed no risks to subjects. Informed consent was

not required because all data were retrospective and anonymous.

At the HSC, electronic health records are used, but they

are not standardized across the country; records can include

diagnoses and symptoms of medical conditions such as diabetes,

chronic kidney disease, and immunosuppression such as by

the human immunodeficiency virus (HIV). Sociodemographic

variables are also important for TB diagnosis (49), and the

SCO commonly treats vulnerable populations such as persons

who are indigenous, homeless, migrants, or refugees for

TB. Although some of the data are available, the different

information systems do not always communicate with each

other. For this reason, only the variables that were available at

the beginning of the TB program were applied for this study, as

specified above. Using only these data allowed for simulating a

scenario with limited information.

Health care workers at this point of TB diagnosis collect only

seven variables, which were the ones considered in the present

work: sex, age, type of population, city location, HIV/AIDS

(acquired immunodeficiency syndrome) status, antiretroviral

treatment status, and the number of days since treatment onset

(see Table 1). Age and number of days were discrete numeric

variables that were normalized by maximum of 100 and 15,

respectively. Sex was a binary variable where a patient was

either male or female, and this variable was set at 00 when

no data were available. HIV and antiretroviral treatment status

could take either of three possible values: positive, negative,

or unknown. Finally, the type of population and city location

were, respectively, coded with zeros and ones to reflect if a

clinic visitor was a member of a specific vulnerable group and

where in Bogotá City the client resided based on established

geographic divisions.

Machine learning models

ML models are a set of algorithms that learn from

data (50). For the present study, four MLL models were

compared for their usefulness to health professionals and

for the interactions between available features in the TB

decision making process. In health sciences, logistic regression

(LR) algorithms are widely applied to associate predictors

or input variables to an output that represents a detection

or estimation of the illness (41, 51). To evaluate the

present scenario, LR was the fifth model considered to

determine the possible contribution of traditional tools. The

optimization algorithm was based on a quasi-Newton method,

the Broden–Fletcher–Goldfarb–Shanno (lbfgs) approximation;

additionally, penalization was used with a maximum of

100 iterations.
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FIGURE 1

Schematic of using ML in TB diagnosis. During the TB diagnosis, ML tools are employed to support the decision about the antituberculosis

therapy beginning.

Classification or decision tree (DT) algorithms are trained

through supervised learning and are considered a non-

parametric method for classification or regression (52). DT

structure is based on nodes and leaves, where each node is

represented by a function that divides the information flow into

two or more classes according to the function’s output. For the

present case, this function was based on the Gini coefficient.

A notable advantage of this ML model is that it allows for

visually determining the conditions for the input variables and

the leaves. Random forest (RF) is a special DT model, in which

more tree structures are analyzed and tested (53, 54). Then, the

best configuration of trees is selected for the classification or

regression, according to a sample from the data set and avoiding

model overfitting.

SVMs deal with the boundary between hyperplanes that

divides the data classes from input variables represented in a

features space (55, 56). The hyperplanes are built from support

vectors obtained from the training data and optimized according

to the support vectors with the best performance. This model is

widely applied with kernelling, modifying the initial non-linear

separable space into a linear separation through a non-linear

kernel that for the present case was Gaussian.

Finally, an MLP was applied as a model to detect the TB

cases because the results were known in this specific problem

(57). For this case, an architecture with one hidden layer was

trained to detect TB. The number of input nodes was equal to the

number of variables, and there was one output node. Resilient

backpropagation was applied for training and stop criteria with

a maximum of 500 epochs, zero gradients, and early stopping,

the first time early stopping was considered.

Cross-validation was conducted to assess the performance

and generalization of the models (58). Based on the special

scenario under study, the mode of data acquisition, and the

possibility of a system application in the future, the data were

divided into three sets. This allowed for establishing the models

based on 2 years of data that were validated and tested for

generalizability in the third year. Through this process, the tool

can be used using previous information with similar properties.

Table 2 shows these sets, the year of acquisition, and the number

of instances per set.

A process to balance the classes was implemented, searching

to adjust the inequality between positive and negative TB for

the classes. In this case, a weighted training process of internal

parameters for each model was regulated according to the

frequency of the instances by class (59).

Variable analysis

Study variables were analyzed through the performance

computation for each ML model under study. The variables in

Table 1 were converted to zero and then applied to the best

trained of the DT, LR, RF, SVM, andMLPmodels. Subsequently,

model performance metrics such as accuracy, sensitivity, and

specificity were compared.

Automated machine learning

AutomatedML (aML) was also tested to find the best models

(60), and the Tree-based Pipeline Optimization Tool (TPOT)

was applied to obtain the best detectors (61). This was carried

out because of differences in the ML models’ performance. Here

aML and TPOT were used to compare the individual models’

performance and to determine the influences of the ML model

parameters in the search results.

Results

Table 3 shows the findings for the training process and

the test scores with data from the year left out in the cross-

validation described before; accuracy (ACC), sensitivity (SE),

and specificity (SP) were collected to determine the differences
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TABLE 1 Variables collected.

Variable Values

Sex Male

Female

Age Numeric: 0–100

Type of population Homeless

Native

Exile

Immigrant

Prison

Violence Victim

Other

City location Antonio Nariño

Barrios Unidos

Bosa

Chapinero

Ciudad Bolívar

Engativá

Fontibón

Kennedy

La Candelaria

Los Mártires

Puente Aranda

Rafael Uribe Uribe

San Cristóbal

Santa Fe

Suba

Teusaquillo

Tunjuelito

Usaquén

Usme

Out of Bogotá City

Unknown

HIV/AIDS status Yes

No

Unknown

Antiretroviral treatment status Yes

No

Unknown

due to the balance between positive and negative TB for each

year (see Table 2). Additionally, the area under the receiver

operating curve (AUC) allowed for considering SE and SP

simultaneously.

The LR, RF, and MLP models achieved the best results,

obtaining the highest AUC, 0.84, in the test set (see Table 3). This

value can be compared with the maximum AUC of 0.96 in the

DTmodel for the training set, demonstrating that it was difficult

to generalize the findings from the present application.

TABLE 2 Sets used for cross-validation.

Set Year TB positive TB negative Total

1 2017 34 9 43

2 2018 52 22 74

3 2019 55 10 65

Total 141 41 182

Table 4 presents the ACC, SE, SP, and AUC means and

standard deviations for the three test data subsets. The table

shows that MLP obtained the best results for ACC, SE, and AUC

and that SP was the best with the LR model. These findings

suggest that combiningmodels might give better results for these

metrics. Nevertheless, although SP was the best with the LR, that

model had the worst results for ACC and SE, which suggests

this model’s suitability for the objective task of finding negative

TB cases. Finally, the SVM model gave the worst results for

most metrics.

Table 5 presents the best results for each metric for all the

studied models and the full data set, showing that the LR model

had the best accuracy, SVM had the best sensitivity, and MLP

had the best specificity. Additionally, following subsection 3.3,

all models were checked for relevance. Specifically, for each

model, the input variables (see Table 1) were set at 0, and then,

ACC, SE, and SP were computed. Figure 2 shows the effect

of this processing, notably that type of population was not

important in the LR, RF, and MLP models; when the zero values

were eliminated, the models’ performance improved. Figure 2D

shows that age caused significant differences in the SVM model.

Finally, all variables were relevant in the MLP model.

Table 6 presents the findings from testing aML and

TPOT, which require less intensive user exploration of the

hyperparameters. The table shows that the automated ML was

more successful than manual exploration (see Table 3), although

the results were similar. The first model, for the year 2019,

applied six ML models: two passive-aggressive, two MLPs, one

extra tree, and one gradient boosting. The second model, for

2018, had 28 models that included a number of the different

strategies presented here (e.g., MLP, RF, and logistic regressors).

For the 2017 case, aML produced a combination of five models

(two random forests, one mlp, one passive-aggressive, and one

stochastic gradient descent). Table 7 presents the aML and

TPOT results for all 3 years. Specificity is considerably affected

in this automatic generation of models, which is ineffective and

not appropriate in the context of diagnosis support.

Discussion

TB detection in earlier stages is important to prevent

transmission of the disease. However, irrespective of when a
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TABLE 3 Results for the ML models.

Model Validation year Training Test

Accuracy Sensitivity Specificity AUC* Accuracy Sensitivity Specificity AUC*

DT 2017 0.75 0.82 0.50 0.65 0.70 0.82 0.22 0.53

2018 0.94 1.00 0.73 0.86 0.68 0.81 0.36 0.59

2019 0.97 1.00 0.91 0.96 0.72 0.75 0.60 0.68

RF 2017 0.81 0.83 0.72 0.73 0.70 0.79 0.33 0.60

2018 0.94 0.94 0.89 0.87 0.70 0.87 0.32 0.63

2019 0.89 0.90 0.87 0.85 0.82 0.85 0.60 0.77

LR 2017 0.63 0.59 0.78 0.63 0.63 0.59 0.78 0.61

2018 0.71 0.71 0.68 0.63 0.65 0.73 0.45 0.62

2019 0.62 0.58 0.74 0.63 0.65 0.60 0.90 0.84

SVM 2017 0.99 0.98 1.00 0.97 0.65 0.74 0.33 0.45

2018 0.94 0.92 1.00 0.86 0.61 0.75 0.27 0.56

2019 0.89 0.86 0.97 0.85 0.68 0.69 0.60 0.68

MLP 2017 0.82 0.95 0.38 0.77 0.74 0.88 0.22 0.65

2018 0.87 1.00 0.26 0.93 0.74 1.00 0.14 0.65

2019 0.79 0.99 0.23 0.83 0.85 0.93 0.40 0.82

*AUC, Area Under Receiver Operative Curve.

TABLE 4 ML model results for the three test subsets.

Model Accuracy Sensitivity Specificity AUC*

DT 0.70± 0.040 0.79± 0.001 0.39± 0.037 0.60± 0.005

RF 0.74± 0.069 0.83± 0.001 0.42± 0.025 0.67± 0.008

LR 0.64± 0.011 0.64± 0.006 0.71 ± 0.054 0.69± 0.017

SVM 0.64± 0.001 0.72± 0.001 0.40± 0.030 0.56± 0.013

MLP 0.77 ± 0.004 0.93 ± 0.003 0.25± 0.017 0.71 ± 0.009

*AUC, Area Under Receiver Operative Curve. The bold values are the highest values for

each column.

TABLE 5 Best ML model results for the applied metrics and the full

data set.

Model DT RF LR SVM MLP

Accuracy 0.63 0.66 0.86 0.81 0.80

Sensitivity 0.90 0.87 0.94 0.95 0.82

Specificity 0.35 0.36 0.66 0.55 0.68

The bold values are the highest values for each column.

patient is diagnosed, patients in the populations studied in this

work must be kept in isolation because these patients tend not to

maintain safe distances as they are being treated.

Because of the lack of specific clinical symptoms, it is difficult

for physicians to diagnose tuberculosis, but meanwhile, patients

require rapid isolation to prevent spreading the disease to others.

Presumptive TB cases require further analysis, and tools for

completing specific tasks could reduce the workloads of health

professionals. ML and AI could be effective in this context

while keeping decisions under the purview of the medical staff.

Furthermore, in developing or low-income countries such as

Colombia,ML andAI can extend the availability of health care to

remote regions with limited infrastructure and few if any health

care personnel.

There remain many challenges to applying ML and AI

in the health informatics field, but doing so can contribute

to easing burdens for clinical personnel; further testing

of these applications in real-world settings will be highly

beneficial. Furthermore, the coworking between health

professionals and health care AI is a challenge. The American

Medical Association calls for considering AI an augmentation

to human intelligence rather than a replacement (62).

Recent authors have reported on developing this kind of

articulation with health professionals as the center of the entire

strategy (12).

In this study, the high incidence rate in the analyzed data

set was related to the stage of the diagnosis process, although

despite this, it is possible to see that not all presumptive TB

cases were ultimately diagnosed as positive TB. This indicates

that the ML tool identified variables that were imperceptible

to humans, which could help improve therapy management

as well as increase the efficient allocation of clinical resources

(time, professional staff, medicaments, space, etc.). However,

it was determined in this study that the unbalance between

positive and negative TB cases could be offer a difficulty of

the ML models training (59). However, the RF, LR, and MLP

models achieved similar results for SE and SP, consistent with

earlier findings for MLP models (19, 21, 33, 55); these findings
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FIGURE 2

Sensitivity, accuracy, and specificity for all five ML models: (A) Logistic regression; (B) Classification tree; (C) Random forest; (D) Support vector

machine; (E)Multilayer perceptron neural network. For all ML models is visualized the e�ect of using or not each one of the considered variables

in terms of sensitivity (blue), specificity (green) and accuracy (orange). There it is possible to see how the metrics change, according to the

inclusion or exclusion of the seven variables.
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TABLE 6 Results for the auto ML models by year.

Model Validation year Training Test

Accuracy Sensitivity Specificity AUC* Accuracy Sensitivity Specificity AUC*

AutoML 2017 0.86 0.85 1.00 0.92 0.79 1.00 0.00 0.50

2018 0.92 0.90 1.00 0.95 0.70 0.70 0.50 0.60

2019 0.91 0.92 0.88 0.90 0.83 0.94 0.46 0.70

TPOT 2017 0.77 1.00 0 0.50 0.79 1.00 0 0.50

2018 0.85 0.84 1.00 0.92 0.73 0.72 1.00 0.86

2019 0.74 0.74 1.00 0.87 0.84 1.00 0.00 0.50

*AUC, Area Under Receiver Operative Curve.

TABLE 7 Results for the auto ML models for 3 years.

Model Accuracy Sensitivity Specificity AUC*

AutoML 0.77± 0.004 0.88± 0.025 0.32± 0.077 0.60± 0.010

TPOT 0.78± 0.003 0.90± 0.026 0.33± 0.333 0.62± 0.043

*AUC, Area Under Receiver Operative Curve.

support RF, LR, and MLP as appropriate models for diagnosis

support. In the present study, MLP had the best AUC metric,

which exhibits best balance between SE and SP. Additionally,

the proposed models can decrease the number of cases for

which treatment begins without a confirmed diagnosis, which

should decrease health system costs in time and other resources.

Regarding aML and TPOT, finding the hyperparameters was

not a dilemma, but the SP results were not as good as

they were with other models. Furthermore, it is common for

health informatics applications to have access to only small

data sets or represent only rare events, and these conditions

significantly reduce the accuracy of the results from aML

approaches (60, 61).

Diagnostic algorithms have been incorporated into several

national and international recommendations and guidelines

for optimizing patient approaches. In the case of Colombia,

health entities must notify the alert surveillance system of

public health diseases, to epidemiologically monitor and

clinically control TB to verify the success of the treatment.

National TB registries allow for acquiring adequate global

information on all the current clinical and sociodemographic

aspects of TB as well as the success of the treatment

strategies used.

In terms of limitations of the present study, there was a

high incidence of TB in the data set, which could have induced

bias in the analyzed data; addressing this will require more

specific scenarios that involve clinical observation. Additionally,

TB culture is considered the gold standard for diagnosis in some

cases, especially when the infrastructure of GenExpert is not

available. In this study, although the hospital database can only

hold a limited number of patients, the HSC is an important

center for TB treatment in Bogotá City; future researchers

could incorporate data from more institutions that treat TB.

Finally, researchers could incorporate more technical aspects

such as including ensemble methods, combining different ML

models, and considering more sophisticated models as the

next steps.

Conclusions

The findings of this study make it possible to conclude

that sensitive ML algorithms can support TB diagnosis by

considering the clinical features of the cases as well as

medical and sociodemographic risk factors of the patients.

TB continues to be a global leading cause of death, and

challenges remain in identifying, treating, and containing

the disease in several communities. The mycobacteria–host

relationship can delay diagnosis for a host of reasons, as can

limited clinical resources for diagnosis. Computational tools

such as those studied here can support timely TB diagnosis

and treatment.
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