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Balance impairment (BI) is an important cause of falls in the elderly. However,

the existing balance estimation system needs to measure a large number of

items to obtain the balance score and balance level, which is less e�cient

and redundant. In this context, we aim at building a model to automatically

predict the balance ability, so that the early screening of large-scale physical

examination data can be carried out quickly and accurately. We collected

and sorted out 17,541 samples, each with 61-dimensional features and two

labels. Moreover, using this data a lightweight artificial neural network model

was trained to accurately predict the balance score and balance level. On the

premise of ensuring high prediction accuracy, we reduced the input feature

dimension of the model from 61 to 13 dimensions through the recursive

feature elimination (RFE) algorithm, which makes the evaluation process more

streamlined with fewer measurement items. The proposed balance prediction

method was evaluated on the test set, in which the determination coe�cient

(R2) of balance score reaches 92.2%. In the classification task of balance level,

the metrics of accuracy, area under the curve (AUC), and F1 score reached

90.5, 97.0, and 90.6%, respectively. Compared with other competitive machine

learningmodels, ourmethod performed best in predicting balance capabilities,

which is especially suitable for large-scale physical examination.

KEYWORDS
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Introduction

Balance ability refers to the ability to maintain a stable posture immediately and

autonomously when a person’s center of gravity deviates (1, 2). The problem of falls

has become a global public health issue because it greatly increases the risk of injury

and even death among middle-aged and elderly people (1–6). Studies have found that

balance impairment (BI) is a key factor in causing people to fall (7, 8). With the aging

of the international society, it is particularly important to conduct early assessment and

screening of the balance ability of middle-aged and elderly patients.
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The research of balance ability has always been the focus of

some scholars (9–16). Many studies have achieved satisfactory

results by using machine learning or deep learning methods

to solve the problem of balance prediction and falling (see

Supplementary Table 3). Yeh et al. (9) developed a virtual reality

(VR) balance rehabilitation training system for patients and

used the support vector machine (SVM) algorithm to train a

machine learning model on data collected from 48 patients and

36 normal people. Khandoker et al. (10) proved the effectiveness

of wavelet-based and multi-scale analysis in the assessment of

balance disorders in the elderly. Begg et al. (11) collected the

minimum foot clearance (MFC) data from 30 young people

and 28 old people and analyzed the difference in a dynamic

balance between young and elderly. Moreover, as early as 1993,

Holzreiter and Köhle (16) used neural networks to analyze

healthy and pathological gaits to explain balance assessment.

In addition to the gait perspective, Liu and Cheng (13)

started from the center of gravity and used the SVM algorithm

to train a fall detection model. Their accuracy rate is as high

as 98.4%. Similarly, Bao et al. (14) trained the 1–5 PT (physical

therapist) level evaluationmodel and compared it with the actual

PT level of physical therapy, and their classification accuracy

reached 82%. Different from the above method, Nait et al. (15)

used wearable sensors to obtain daily data of 296 elderly people

and combined the convolutional neural network with long-

term and short-term memory to build a network model, which

can effectively assess the risk of falls based on wearable sensor

data. Pickle et al. (17) used a dynamic non–linear autoregressive

neural network to train motion data collected from five able-

bodied individuals and five individuals with Parkinson’s disease

walking on a non-steady-state locomotor circuit comprising

stairs, ramps, and changes of direction. They found that

estimating segment contributions to angular momentum from

mechanical signals (linear acceleration, angular velocity) from a

sparse set of body segments is a feasible method for assessing

coordination of balance. Dubois et al. (18) used the Microsoft

Kinect sensor to collect the balance of 84 participants in 8

balanced tasks. Using the clustering algorithm to analyze the

experimental data, they found that the prediction results of

standing on the foam pad are the most accurate.

A large amount of literature and reviews on gait and balance

ability (9–18) has discussed the role and importance of gait and

balance ability in falls (19), but few papers study how to optimize

balance test items and quickly measure balance function. At

present, balance test system is the commonly used tool for

quickly measuring and evaluating the balance ability of subjects,

such as German Bismarck Super Balance (GBSB) (20, 21) and

Biodex Balance System (22). The GBSB system uses three-

dimensional force measurement to eliminate the interference

factor of the individual’s weight on the force plate, which can

obtain more accurate measurement data. There are four actions

measured by the GBSB system, namely (1) stand on feet with

eyes open (FEO); (2) stand on feet with eyes closed (FEC);

(3) stand on one foot with eyes open (OFEO); (4) stand on

one foot with eyes closed (OFEC). Each set of actions includes

12 test items as shown in Supplementary Table 2. In addition,

each action should be kept for a while to collect enough test

data. For each subject, it takes at least 90 sec to measure the

four sets of actions. At the same time, taking into account

the understanding and execution efficiency of instructions for

the elderly, when they performing the balance test, the data

collection time will be extended, which brings inconvenience to

large-scale physical examinations and BI screening. In addition,

in order to obtain a comprehensive balance function result,

balance assessment requires the measurement of a large number

of metrics. Specifically, GBSB system needs to measure at least

61 metrics of the subject to calculate the balance score (20, 21).

However, there is massive redundancy in these metrics.

In recent years, artificial intelligence has been applied

in various fields of medical data processing (23, 24). Using

machine learning algorithms to mine potential information

in data has become one of the promising tools for solving

medical problems (25–31). In this work, we aim at building a

balance assessment model based on the data-driven machine

learning techniques. After analyzing the collected data set, we

will propose an artificial neural network (ANN) model based

on machine learning to predict balance capabilities. Finally, the

proposed model is able to quickly and automatically evaluate

new subjects, which can simplify the measurement metrics and

ensure high accuracy.

Methodology

Overview

The overall process of balance prediction is shown in

Supplementary Figure 1. Subjects need to stand in different

positions on the GBSB platform for data collection, such as

bipedal and single-foot tests with eyes open or closed. Then the

system will automatically measure the four sets of items. After

that, we clean and preprocess the collected data to facilitate

subsequent training and prediction using neural networks.

We used BS and BL as the ground truth for regression and

classification tasks. A lightweight artificial neural networkmodel

was proposed to accurately predict the balance ability of new

test examples.

Data collection and preprocessing

The dataset was obtained from the Second Affiliated

Hospital of Fujian University of Traditional Chinese Medicine,

China. This dataset was used for retrospective analysis,

and a total of 17,541 subjects aged 12–80 years entered

the analysis with medical examination data. This dataset
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does not show any personal privacy other than medical

information. The study was approved by the Medical

Ethics Committee of the Second Affiliated Hospital of

Fujian University of Traditional Chinese Medicine, China

(No. SPHFJP-K2019059-02).

The features consist of 48 common measurement features

of four specific actions and 13 other features. The equipment

used for data collection is the GBSB system. The subjects were

required to stand on the instrument in different postures to

do four sets of actions according to the instructions, including

FEO, FEC, OFEO, and OFEC. The durations were 30, 30, 20,

and 10 sec, respectively. This protocol is set according to the

GBSB system, through which we obtain various measurement

data of the subjects. The details of test were shown in

Supplementary Figure 2.

This dataset collected a total of 17,541 subjects, each

with 61-dimensional features and two labels, where the

61 features represent measurement items, and two labels

collectively represent the balance ability: Balance Score (0–

100) and Balance Level (high, medium, low), which are

used as ground truth for regression tasks and classification

tasks, respectively. The Balance Score is measured by GBSB

system, and then the doctor evaluates the Balance Level

according to the Balance Score and the physical condition of

the subjects.

As shown in Supplementary Figure 3, the whole 61-

dimensional features include 48 common measurement

features of four sets of actions and 13 other individual

features. Each set of actions includes 12 test items.

Supplementary Table 2 shows the value range of

48 common measurement features and four sets

of actions.

Eighty percentage of the data is used as the training set, 10%

of the data is used as the validation set, the remaining 10% are

test set. We performed a 10-fold cross-validation. Since there are

missing values in the dataset, which will affect the prediction

performance of the model on the balance ability. Firstly, we

calculated the median of all samples to deal with the missing

values. Because the proportion of missing data is relatively small

(account 5% of all), the median is a good way to fit the original

data distribution. Regarding the problem of inconsistent feature

dimensions, since the original data conforms to the Gaussian

distribution, we have carried out the following standardization

processing, so that the mean of the data is 0 and the variance

is 1.

z=
x− µ

σ
. (1)

Where x is the original value, z is the standardized value, µ

means the average of all samples, and σ represents the standard

deviation of x.

The proposed ANN model

Due to the high accuracy and strong robustness of the

neural network algorithm, we designed a model based on a

deep neural network to predict the balance ability. To make the

neural network model fit the data better, generally, the common

methods prefer to increase the depth and width of the network.

However, this will increase the number of network parameters

exponentially, making the computational complexity of the

model greater. Through a large number of experiments, we

find that when the number of hidden layers of the neural

network is set to five, the accuracy and complexity of the model

can be effectively balanced. Supplementary Figure 4 shows the

proposed neural network structure. The entire network contains

an input layer, five hidden layers, and an output layer. In each

middle-hidden layer, the number of neurons is set as 128, 64,

32, 16, and 8 respectively. The dimension of the input layer

matches the number of features of the data, while the output

layer represents the prediction result of the neural network.

We implemented regression and classification tasks using the

proposed model. In the classification task, the output layer

dimension is the number of categories, which indicates the high,

medium, or low level of predicted balance ability. While in the

regression task, the output layer has only one dimension, namely

the balance score.

Notably, the three important components of a neural

network are weights, bias term, and activation function. It is

those weight parameters that are constantly updated during

the learning process of the network that make the neurons

between adjacent layers fully connected. The strength of the

connection between neurons is determined by the value of

weight. Furthermore, bias is a crucial parameter of the model

to ensure that the output value calculated by the input cannot

be activated casually. Typically, the activation function acts as

a non-linear mapping, which can limit the output amplitude of

the neuron within a certain range. The structure of one neuron

is shown in the dotted box in Supplementary Figure 4. Given the

input feature data xi(i = 0, 1, . . . n), the output S is calculated

as follows:

S = max{0,
(

w0x0 + w1x1 + . . . + wnxn + b
)

}, (2)

where the weight parameter wi(i = 0, 1, . . . n) represents

the connection strength between neurons. It should be noted

that the activation function is set in our experiment as

the ReLU function, which not only promotes the non-linear

representation of features but also makes the neurons have

sparseness that further improves the fitting ability of the model.

The purpose of training the model is to obtain the model

parameters that minimize the cost function. The cost function

(15) we define is as follows:

J
(

w, b
)

=
1

m

m
∑

i=1

L
(

ŷi, yi
)

+
λ

2m
‖W‖22. (3)
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Where m is the total number of samples, ŷi and yi represent

the predicted value and true value of the i-th sample respectively

and Lmeans cross-entropy loss function. The λ
2m ‖W‖22 is an L2-

regularization term used to penalize complex models. And the

item λ is a hyperparameter that controls the degree of penalty.

In the process of model parameter updating, we use the Adam

optimizer to perform gradient descent and back-propagation.

Experiments

Experimental settings and metrics

The experimental environment is aWindows 10 system with

python 3.6. The neural network model framework used in the

experiment is based on scikit-learn library with version 0.24, an

efficient tool for data mining which built on numpy, scipy, and

matplotlib. In the process of training the neural network, the

batchsize is set to 200. The optimizer used for weight update is

Adam, and its constant learning rate is initialized to 0.001.

We use common evaluationmetrics to evaluate classification

and regression models, namely: Accuracy (Acc), Recall (Re),

Precision (Pr), F1-score (F1), and coefficient of determination

(R2) score. These evaluation metrics range from 0 to 1. The

larger the value, the better the model effect. These formulas are

as follows:

Acc=
TP+ TN

TP+ TN+ FN+ FP′
(4)

Pr =
TP

TP+ FP′
(5)

Re=
TP

TP+ FN′
(6)

F1=
TP(2TP+ FP+ FN)

2(TP+ FN)(TP+ FP)
. (7)

R2(y, ŷ) = 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2

. (8)

Where y = 1
n

∑n
i=1 yi. The ŷi and yi represent the predicted

value and true value of the i-th sample. TP, TN, FP, and FN

represent true positive, true negative, false positive, and false

negative, respectively.

Feature selection

Since the data contains irrelevant feature attributes, it

will interfere with the prediction of new data. In order

to reduce the input feature dimension of the model and

improve the robustness of the algorithm, we adopted a

recursive feature elimination (RFE) algorithm to filter the 61-

dimensional features. As shown in Figure 1, the flow of feature

selection algorithm included recursive feature elimination,

neural network training, and classification.

Results

In this study, we used a physical examination database

from the clinic, which contains the physical examination data

of 17,541 subjects. The descriptive statistics about the subjects

is shown in Supplementary Table 1. Among all subjects, the

middle-aged and elderly (aged between 41 and 80) accounted

for 68.17%. Further, among the people with low and medium

balance ability, the middle-aged and elderly (aged between

41 and 80) accounted for 78.36%, indicating that the target

population of our proposed method is more suitable for the

middle-aged and elderly.

A total of 61 balance indicators were measured and

entered into analysis. Based on the features selected by

the RFE algorithm, we compared the accuracy of different

machine learning models on the test dataset. As shown in

Supplementary Table 4, these competitive machine learning

algorithms include Decision Tree, Random Forest, K-

Neighbors, Linear Regression, Extra Tree, and Support Vector

Machine. Compared with other methods, our proposed neural

network model performs best regardless of the input feature

dimension. Typically, when the feature is 61-dimensional,

the coefficient of determination of our model is the highest,

reaching 97.8%, while the feature is reduced to 13 dimensions,

our model is still the best, with the coefficient of determination

reaching 92.2%. Figure 2 further shows the trend of different

methods in the case of reduced feature dimensions. It can be

seen from Figure 2 that our neural network model can still

maintain a high coefficient of determination even when the

feature dimension drops sharply, indicating that our method is

more robust and stable.

By weighing the feature dimension and model accuracy,

that is to make the measurement time of subject as low as

possible while keeping the coefficient of determination as high as

possible, we finally chose #F= 13 as the final filtered feature. The

selected 13-dimensional features are shown in Table 1. Taking

the selected 13 features as the input of the proposed neural

network model, the true and predicted balance score of samples

on the test set are shown in Supplementary Figure 5. In order

to show more intuitively, we only drew 100 samples. We can

see from the resulting graph that the predicted balance score is

basically the same as the true value, which shows the accuracy of

the model from an intuitive effect.

As shown in Table 2, compared with other machine learning

models like Decision Tree (32), Linear Discriminant Analysis

(LDA) (34), K-Neighbors (36), Logistic (38), Naive Bayes (40),

and Support Vector Machines (SVM) (42), our method has

the highest accuracy, recall, precision, and F1-score evaluation

metrics, reaching 90.5, 90.8, 90.5, and 90.6%, respectively.

From the perspective of clinical balance assessment

procedures, compared with traditional measurement methods,

the proposed method has the following advantages, namely
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FIGURE 1

Feature selection algorithm.

FIGURE 2

The trend of di�erent methods in the case of reduced feature dimensions, where #F indicates the number of feature dimensions. The higher the

R2, the better the model e�ect. The label used on the regression task is balance score (0–100).

(1) fewer measurement metrics, (2) less measurement time.

Our method only needs to measure 13 metrics to evaluate

the balance ability, which takes only 40 sec (55% less

time than GBSB’s 90 sec). For the evaluation accuracy, the

determination coefficient R2 of our method reached 92.2%, and

the classification accuracy rate reached 90.5%, both of whichmet

the clinical requirements.

Discussions

In this work, we propose the method to assess the balance

ability efficiently and accurately, which can predict the risk

of falling. To obtain the balance score and balance level, we

implemented regression and classification tasks on the data set

respectively by designing and training a neural network model.

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.882811
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al. 10.3389/fpubh.2022.882811

TABLE 1 The selected 13 features.

# Features Units Description Range Mean

1 TLS FEC mm Total trajectory length of shaking, eyes closed with feet 43.1–2,065.2 266.3

2 TLS OFEC mm Total trajectory length of shaking, eyes closed with one foot 26.6–3,799.1 506.2

3 PA OFEC mm2 Peripheral area, eyes closed with on one foot 5.2–57,102.7 2469.2

4 TLPA FEC - Track length per unit area, eyes closed with feet 0.1–27.2 2.0

5 TLPA OFEC - Track length per unit area, eyes closed with on one foot 0.0–6.2 0.3

6 Y-D FEC mm Y-axis mean center displacement, eyes closed with feet −68.5–84.1 27.7

7 Y-D OFEC mm Y-axis mean center displacement, eyes closed with one foot −120.4–127.1 13.9

8 AS-X FEC mm/s Average speed in the X-direction, eyes closed with feet 0.6–65.9 32.1

9 AS-X OFEC mm/s Average speed in the X-direction, eyes closed with one foot 0.7–259.3 182.6

10 AS-Y FEC mm/s Average speed in the Y-direction, eyes closed with feet 1.2–60.0 30.2

11 AS-Y OFEC mm/s Average speed in the Y-direction, eyes closed with one foot 2.1–240.8 48.9

12 LT-X OFEC mm Length of track in the X-direction, eyes closed with one foot 7.1–2,593.1 1,008.7

13 LT-Y FEC mm Length of track in the Y-direction, eyes closed with feet 36.7–1,800.8 947.1

TABLE 2 Classification results (%) with evaluation metrics of di�erent methods on 13-dimensional features.

Single method Acc Pr Re F1 Ensemble

method

Acc Pr Re F1

Decision tree (32) 78.4 78.4 78.4 78.4 BDT (33) 84.7 85.0 84.7 84.8

LDA (34) 78.6 78.9 78.6 78.4 RF (35) 84.0 84.4 84.0 84.1

K-neighbors (36) 80.8 81.3 80.8 80.9 ET (37) 78.9 72.7 72.7 72.7

Logistic (38) 80.9 80.9 80.9 80.8 SGBoost (39) 87.3 87.5 87.3 87.3

Naive bayes (40) 60.1 79.0 60.1 53.4 AdaBoost (41) 83.1 83.6 83.1 83.2

SVM (42) 83.5 83.9 83.5 83.6 Voting (43) 86.7 86.9 86.7 86.7

Ours 90.5 90.8 90.5 90.6 Ours 90.5 90.8 90.5 90.6

The label used on the classification task is the balance level (high, medium, low). Acc, accuracy; Pr, precision; Re, recall; F1, F1-score.

Generally, the fitting ability of neural networks increases as the

number of layers deepens, but the training time and complexity

of the model also increase. We weighed these two aspects and

designed a neural network with five hidden layers. To prevent

the model from overfitting, we added an L2 regular term to the

cost function to prevent the weight parameter from being too

large, which is conducive to improving the generalization ability

and robustness of the neural network.

It is known that the data and features determine the upper

limit of machine learning, while models and algorithms only

approach the upper limit. Therefore, feature selection helps to

discover the output results that we are interested in. We filtered

the 61-dimensional features based on the RFE algorithm. As

shown in Table 2, the accuracy of different models on the test

set decreases as the feature dimensions decrease. Specifically,

when the feature dimension was reduced from 61 to 38, which

was reduced nearly by half, but the accuracy of the model

remained almost unchanged, indicating that the original data

contained feature attributes that were not related to balance

ability. It is worth noting that when the feature dimension of

our model is reduced from 61 to 13, the accuracy rate drops

from 97.8 to 92.2%. The feature dimension is reduced by 78.7%,

however, the model accuracy is only reduced by 5.7%. The above

situation illustrates our proposed neural network can maintain

high accuracy even when the feature dimension is drastically

reduced, suggesting that the original data is redundant and our

model is robust.

In order to get the level of balance ability, a comprehensive

study of different methods on classification task has been

undertaken. There are three categories for the level of balance

ability in the data set, namely: high, medium, and low. For the

prediction of the balance level, we changed the output layer

dimension of the proposed neural network to 3 to perform the

classification task. The input to the network is the selected 13-

dimensional features in Table 1. As shown in Table 2, compared

with other machine learning models like Decision Tree (32),

Linear Discriminant Analysis (LDA) (34), K-Neighbors (36),

Logistic [ (38)], Naive Bayes (40), and Support Vector Machines

(SVM) (42), our method has the highest accuracy, recall,

precision, and F1-score evaluation metrics, reaching 90.5, 90.8,
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FIGURE 3

The area under the curve (AUC) value of each balance level. The

class 0, 1, and 2 correspond to low, medium and high balance

levels respectively.

90.5, and 90.6%, respectively. For the balance level, we count the

area under the curve (AUC) value of each category, as shown

in Figure 3. Class 0, 1, and 2 correspond to low, medium, and

high balance levels respectively, and their AUC values reach 99,

93, and 97%, which shows the neural network model trained by

13-dimensional features has high accuracy and low redundancy.

In machine learning, every single algorithm has different

characteristics and application range. To absorb the advantages

of different models, integration technology is usually used to

combine multiple algorithms for improving the accuracy of

the model. There are three methods of integration: bagging,

boosting, and voting.

Bagging

The bagging algorithm separates the training data set into

multiple subsets by random sampling with a return. Then each

subset trains a weak model. Finally, the weight of each weak

model is averaged by combining strategies to obtain a strong

model. The models using the bagging method include Bagged

Decision Tree (BDT) (33), Random Forest (RF) (35), and Extra

Tree (ET) (37). As shown in Table 2, their accuracy reaches

84.7, 84.0, and 78.9% respectively. As can be seen from Figure 4,

except for Extra Tree, there are significant improvements in the

bagging models.

Boosting

The boosting algorithm first trains the data set according

to the initialized weight D1 to obtain a weak model and then

the weak model updates the weight D1 according to the error

to obtain the weight D2. In the second round, D2 is used to

train the data, and so on. The main idea of boosting is to

train multiple models and form a sequence. Each model in the

sequence corrects the errors of the previous one and finally

merges all weak models to obtain a strong model. The models

that use boosting include AdaBoost (41) and SGBoost (39), and

their accuracy reaches 83.1 and 87.3%, respectively, which is

better than the overall effect of the bagging algorithm.

Voting

The voting algorithm (43) creates two or more models, uses

voting to package the algorithm, and then calculates the average

prediction of each sub-model. The voting algorithm shown in

Table 2 is a strong classifier obtained by voting on three single

models including a decision tree classifier, a support vector

machine, and a logistic regression model.

Compared with ensemble techniques, the accuracy of our

method is about 3% higher than the second-place SGBoost

method, which proves the neural network model we proposed

can obtain the best performance whether dealing with regression

tasks or classification tasks. The main reason for this is

that our neural network model can approximate any non–

linear function, skip the model analysis and directly mine the

relationship among the data. In addition, the neural network

fully considers the influence of characteristic factors, while

other machine learning models are relatively fixed. Moreover,

the neural network allows outliers in the training data, which

has strong robustness and fault tolerance to noise. The above

discussion illustrates the fact that our method can effectively

extract different dimensions of features to better fit and predict

the balance ability.

Limitations

Although the proposed method shows good performance,

there are still some aspects that can be further explored in the

future. The first is limited adaptability. Since the data collected is

local balance data, the prediction model may not apply to other

regions. In this case, prediction models in other regions require

additional training on local data sets to generate new models.

Secondly, there is room for improvement in the accuracy of our

automated assessment because of the noise in raw data. We can

also optimize the model through grid search and random search

to further improve accuracy.

Conclusions

In this work, we proposed an artificial neural network model

to train large-scale physical examination data, so that the model

can efficiently and accurately predict the balance score and

balance level, which is beneficial for the early screening and

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2022.882811
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al. 10.3389/fpubh.2022.882811

FIGURE 4

Accuracy comparison between single model and ensemble model. Where BDT, RF, and ET represent Bagged Decision Tree, Random Forest and

Extra Tree respectively.

prevention of falls in the middle-aged and elderly. Compared

with other competitive machine learning models, our method

performed best in predicting balance capabilities, where the

determination coefficient of balance score reaches 92.2%. In

the classification task of balance level, the metrics of accuracy,

precision, recall, and F1 score reached 90.5, 90.8, 90.5, and

90.6% respectively. The proposed method greatly reduces the

dimensionality of the input features, indicating that for the

prediction of balance ability, only two actions with 13 items

need to be measured to get the result, which greatly reduces

the workload.
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